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Abstract—Irregularity and coarse spatial sampling of seismic
data strongly affect the performances of processing and imaging
algorithms. Therefore, interpolation is a usual pre-processing step
in most of the processing workflows. In this work, we propose
a seismic data interpolation method based on the deep prior
paradigm: an ad-hoc Convolutional Neural Network is used as
a prior to solve the interpolation inverse problem, avoiding any
costly and prone-to-overfitting training stage. In particular, the
proposed method leverages a multi resolution U-Net with 3D
convolution kernels exploiting correlations in cubes of seismic
data, at different scales in all directions. Numerical examples
on different corrupted synthetic and field datasets show the
effectiveness and promising features of the proposed approach.

Index Terms—Seismic data processing, Interpolation, Inverse
problems, Convolutional Neural Networks.

I. INTRODUCTION

CONOMIC or environmental constraints, cable feather-

ing in marine acquisitions and the presence of dead or
damaged traces result in most seismic datasets being poorly
and irregularly sampled in space. As a result, the vast majority
of seismic processing and imaging workflows [1]—[3] typically
include a preliminary interpolation step. The importance of the
issue is confirmed by the vast number of methods proposed
and the vitality of the relevant scientific literature.

Interpolation of seismic data is an ill-posed inverse problem.
Therefore, some reasonable a-priori information must be used
in order to solve it, at least implicitly. Depending on the
underlying hypothesis, interpolation methods can be roughly
grouped in four families.

Model driven techniques make simplifying assumptions
on subsurface velocities and implicitly apply a migration-
demigration pair [4]], [5]. The performance of these techniques
is strongly hindered by complex structural burden.

A second family of approaches models seismic data as
a (local) superposition of plane waves and leverages based
on prediction filters. These techniques mainly target regularly
sampled data [6].

A third alternative relies on the fact that seismic data are
inherently low-rank due to their repetitive features [7], whereas
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missing traces increase their rank. These methods recast
interpolation problems as rank reduction and matrix/tensor
completion ones [8]—[10].

Finally, a fourth family of interpolation algorithms leverages
the hypothesis that seismic data are characterized by a parsi-
monious representation in some transform domain. Data can be
well represented by only a few non-zero transform coefficients;
therefore, they can be recovered by imposing some sparsity
constraint |11]-[14]. These methods assume that it is possible
to represent the data as a linear combination of atoms (i.e.,
elementary signals) taken from a dictionary (i.e., a fixed set
of atoms). However, a fixed basis defines only a subset of
the transforms and alternatively represents clean signals as a
linear combination, under a sparsity constraint, of the atoms
in a learned overcomplete dictionary [15].

More recently, besides these traditional processing methods,
many seismic interpolation methods based on Convolutional
Neural Networks (CNNs) have been proposed [16]—[21].
CNNs learn how to reconstruct missing traces during a training
step, usually performed on a set of pairs of corresponding
corrupted and uncorrupted data. Then, at test time, they are
employed to interpolate new data. The performances of these
methods strongly depend on training data. However, collecting
high-quality and well-structured training datasets is a time-
consuming and expensive operation. In addition, while these
techniques have demonstrated cutting-edge performance when
training and test data are strongly correlated, generalizing
results to different data distributions is difficult.

A different approach has been proposed interpreting the
CNN architecture as a deep prior in the framework of inverse
problems to address tasks such as inpainting, denoising or
super-resolution [22]. Through this approach, a CNN learns
how to map a random noise realization into the solution of the
assigned task, only based on the data itself, without the need
of a different training dataset. This strategy has been recently
explored also for the task of 2D seismic data interpolation
using common U-Net as deep prior [23], [24].

Inspired by our previous studies [24], we propose a 3D
interpolation method belonging to the deep prior family. A
key element in this framework is the specific design of the
actual network architecture, which is also the main goal of
this letter. More specifically, the contribution of this study can
be summarized as follows:

o We analyze the deep prior paradigm used in the context
of seismic data interpolation, highlighting some improve-
ment possibilities.
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« Based on these analyses, we propose the MultiResUNet
as a suitable deep prior for the task of seismic data
interpolation instead of the most commonly used U-Net.

« We make use of 3D convolutional layers to fully exploit
correlations in both horizontal and depth/time directions,
in contrast to classically used 2D convolutions.

e We propose an inizialization of the CNN weights which
greatly accelerate the convergence of the method.

« We test the proposed approach on synthetic and field data,
validating it against both a deep prior method based on
U-Net and more traditional interpolation techniques.

II. INTERPOLATION VIA DEEP PRIOR

Let us describe our goal for seismic data interpolation in the
framework of inverse problems. We consider an ideal densely
and regularly sampled three-dimensional cube of seismic data
(e.g., a 3D common shot gather, 2D dataset, a 3D post-stack
volume, etc.). This data cube represents the true model we aim
at estimating through interpolation. Without loss of generality
we can represent such ideal data as a vector my,.. We can
think the observed seismic data dops as generated by a linear
sampling operator S applied to my,. (i.e., a diagonal operator
with zeros on the missing data locations and ones elsewhere).
Therefore, we can recast the interpolation problem as the
inversion of

dobs = Smtrue (1)

This is an ill-posed inverse problem: each solution pre-
serving the observed data honours (I). In order to obtain a
reasonable solution it is necessary to constrain the inversion
by adding some kind of a-priori information. A standard way
consists in formulating the inverse problem as finding the
solution m* that minimizes an objective function

J(m)=FE(Sm — ds) + R (m), 2)

where E(-) is the data fidelity term measuring some distance
between modeled and observed data, and R(-) is a regularizer
function formalizing the distance of the solution from the
space of solutions honouring the desired prior. The choice of
the prior R(-) is critical and usually derives from insights of
human experts.

Deep Image Prior (DIP) is an alternative solution for the
regularization of inverse problems originally proposed in the
context of image restoration [22]. Here, a convolutional au-
toencoder acts as a parametric non linear function fg (-) and
the problem is recast as finding the set of parameters 8* which
minimizes the objective function

J(0) = E(Sfe(2z) — dobs) , 3)

where 6 is the set of weights of the CNN and z is a
random noise realization. Through this procedure, rather than
minimizing the objective function in the space of the model,
we perform the search in the space of the CNN parameters.
In other words, the parametrization through a convolutional
autoencoder modifies the shape of the objective function,
similarly to a preconditioner, and drives the iterative solver
toward solutions consistent with the inherent self similarities
of seismic data.

Although the optimization goal constrains the CNN output
only to fit the observed data d s, as a byproduct the missing
trace also are adequately reconstructed, because they share
the same inner structure captured by the CNN during the
optimization. Therefore, the interpolated solution is obtained
as

m* = fg (2). “4)

Notice that, even though the interpolated result is the output
of a convolutional neural network, this method does not
exploit the deep learning paradigm where a training phase is
performed over a specifically designed set of data.

In particular, with the DIP paradigm, only corrupted data
are used in the reconstruction process and the CNN implicitly
assumes the role of prior information that exploits correlations
in the data to learn their inner structure. Therefore, the choice
of a specific CNN architecture is critical for a suitable and
well-performing solution.

III. PROPOSED NETWORK ARCHITECTURE

The U-Net is a convolutional autoencoder (i.e., a CNN
aiming at reconstructing a processed version of its input)
characterized by the so called skip-connections and originally
introduced for medical image processing |25]. If properly
trained according to the standard deep learning paradigm, it
proves very effective for multidimensional signal processing
tasks such as denoising, segmentation, inpainting, etc.

More recently, the MultiResUNet [26] has been proposed to
improve the performance of the U-Net for multimodal medical
image segmentation, based on the consideration that the targets
of interest have different shapes and scales. If we want to
exploit self-similarities of seismic data, working at different
scales can be strongly beneficial. Therefore, we propose an
ad-hoc MultiResUNet as a proper deep prior for seismic data
interpolation. Moreover, in order to exploit correlations in both
horizontal and vertical directions, in the layers of the proposed
network we use 3D convolutions.

In short, the features of the proposed architecture (Fig.
can be summarized as follows.

i. All filtering operations in network are fully 3D.

ii. Convolutional layers are replaced by so called Multi
Resolution (MultiRes) blocks shown in Fig.[T] This block
approximates multi-scale features of the Inception block
while limiting the number of parameters of the network,
which is critical when employing it as a deep prior.

iii. Skip connections, which are the distinctive feature of the
U-Net, are replaced by Residual Path blocks shown in
Fig. |1| £ is the output of an encoding layer, and D is
concatenated to the corresponding decoding layer.

iv. Downsampling is achieved by 3 x 3 x 3 convolutions with
stride 2 x 2 x 2. Upsampling is performed by nearest inter-
polation. Batch Normalization and LeakyReLU activation
function follow every convolutions apart from the last one
(responsible for the CNN output).

By using this MultiResUNet architecture as a deep prior

we follow the workflow below for both irregular or regular
seismic data interpolation.
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Fig. 1. The MultiResUNet: a Unet-like composed of multi-resolution blocks
(bottom right) and linked by residual path blocks (bottom left).

i. We normalize dobs by applying a gain function to correct
for the geometrical spreading and make data dynamics
more suitable for the CNN. In particular, for the test we
performed, we imposed the standard deviation of the data
to be about 5 after applying the gain function.

ii. The CNN input z is a volume of white gaussian noise
with zero mean and standard deviation of 0.1.

iii. We optimize the weights of the CNN through the ADAM
algorithm by minimizing the ¢; distance between the nor-
malized data dops and the corresponding traces returned
by the CNN. At each iteration we perturb the CNN input
noise with additional gaussian noise to strengthen the
convergence.

iv. After the optimization, the desired interpolated data are
obtained by de-normalizing the CNN output volume to
account for d,ps normalization.

The process of reconstruction of a seismic gather is illus-
trated in Fig. [2| In particular, it shows a vertical section and
a time section of the CNN output at different iterations. First,
some blurry structures are recovered; then all the events are
gradually reconstructed as the number of iterations increases.

As the DIP based inversion requires a high number of
iterations to converge, in order to exploit the proposed method
in production applications, it is mandatory to deal with the
issues related to its computational cost. We faced this aspect
through a strategy similar to transfer learning: contrary to the
original DIP algorithm, where the CNN weights are randomly
initialized, we start with a pre-trained network. In particular,
we observed that convergence is greatly accelerated if we start
with the weights computed for nearby data.

Moreover, with regard to computational aspect, it is worth
considering that the proposed method can also be applied in
a patchwise fashion and its parallelization is straightforward.

IV. EXAMPLES

In this section we report some examples designed to high-
light relevant features of the proposed interpolation strategy. In
the examples, we used the ADAM optimization algorithm set-
ting the learning rate to 0.001. For the sake of reproducibility,
we provide the codes to replicate these examples in the repos-
itory 'https://github.com/polimi-ispl/deep_prior_interpolation.

Metrics. In order to evaluate the interpolation performance
we report two metrics: signal-to-noise ratio (SNR) between

my,e and m*; Pearson correlation coefficient v computed
between my,. and m*, considering only the corrupted sam-
ples. Notice that, as these objective metrics do not completely
describe the goodness of an interpolation result, we also rely
on visual inspection.

3D simple synthetic data. A first set of examples we show
is the reconstruction of a simple 3D shot gather including
several hyperbolic reflection events and 4 superimposed weak
events simulating diffractions (Fig. . The data includes
128 x 128 traces of 512 time samples with 50 spatial sampling
and 4ms time step. We build the corrupted dataset by randomly
deleting 66% of the traces (Fig. .

The corresponding final interpolated section is shown in
Fig. The interpolation result is visibly satisfactory and the
SNR achieved is 15.22 dB. The correlation coefficient between
the predicted data and the true data is 0.985.

As a matter of fact, this example has been designed to test
the effectiveness of the proposed interpolation on a challenging
case with weak events. From the results displayed in Fig.[3|we
observe that, despite they are barely visible, the weak events
crossing the much more energetic hyperbolas are reconstructed
by interpolation.

The wiggle plot in Fig. E]emphasizes the effectiveness of
the achieved result by displaying the comparison between four
reconstructed and original traces on the large gap after trace
35. Red filled wiggles indicate the interpolated traces, well
fitting the original ones in black.

The effectiveness of the strategy we propose in order to
accelerate the convergence is shown in Fig. |5 Here the red
continuous and dashed lines display the value of SNR and
objective function vs. the iteration number when the CNN
weights have been randomly initialized. The blue lines show
the corresponding curves for a CNN with the starting weights
set as those learnt after interpolating a nearby gather. Notice
that the blue line is always above the red line. Moreover,
the pre-trained optimization convergences after 100 iterations
approximately, while when starting from scratch it needs more
than 2000 iterations to get similar results in terms of both
SNR and residual value. This means that, while on a single
TITAN V GPU the computation time is ~70 minutes for 2000
iterations when starting from scratch, the transfer learning
strategy allows to obtain a suitable result in ~ 4 minutes.

2D synthetic data. The second set of experiments aims at
demonstrating the impact of the architecture design and the
improvements achieved through 3D convolutions. It should
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Fig. 2. Reconstruction of seismic data at increasing iterations.
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Fig. 3. 3D synthetic shot gather with weak events(a): interpolation results of
DIP method (c) from irregular sampled data(b).
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Fig. 4. (a) Comparison of single traces between original (black line)

and interpolated (red wiggles) data. (b) Difference between original and
interpolated data plotted in the same scale of Fig. 4a.

be noted that a 2D seismic dataset is actually a cube whose
dimensions are source position, receiver position and time.
On the central part of the well known 2D Marmousi model,
data are modeled through finite differences on an acquisition
geometry of 256 sources and 256 receivers; the source is
a Ricker wavelet centered at 15Hz; the temporal sampling
is 8ms. From this dataset (which is the ground truth of the
experiment) we regularly erase 50% of the traces.

Figs. [6a] and [6b] show an interpolated shot gather obtained
through a standard U-Net deep prior and the corresponding
residual, respectively. While the result is visually satisfactory,
significant signal leakage is evident in the residual. The SNR
in this case is 12.2 dB, and the correlation coefficient between
the interpolated data and the ground truth is 0.969.

By using as a deep prior the MultiResUNet with 2D
convolutions we achieved the result shown in Fig. The
corresponding residual, displayed in Fig. is clearly less
energetic but still contaminated by coherent signal leakage

Cost Function
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Fig. 5. Cost function and SNR vs. iteration number for the case of
initialization from scratch and from the nearby gather respectively.
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Fig. 6. Interpolation result and residual of (a)(b) ordinary U-net, (c)(d) 2D
MultiResUNet and (e)(f) 3D MultiResUNet, respectively.

throughout the whole gather. The SNR and correlation co-
efficient is 14.3 dB and 0.981, respectively.

Finally, Figs. [6¢| and [6f] depict the output of the proposed
MultiResUNet with 3D convolutions and the corresponding
residual, respectively. By taking advantage of the correlation
and self-similarities between different gathers we are able
to greatly limit the residual power and the signal leakage.
This improved result is confirmed by the SNR of 22.1 dB.
More important, the correlation coefficient between original
and restored traces approaches to 0.997, indicating a good
performance.

3D field data. Finally, we test the proposed interpolation
strategy on a 3D migrated field data. The migrated volume we
use is a portion of 128 inlines (250-378) and crosslines (750-
878) with a time sampling of 16 ms from the F3 Netherlands
survey [27]. An inline section of the original volume is shown
in Fig. and the corresponding decimated image (50%
missing traces) is shown in Fig. For this section is mainly
characterized by horizontal and slightly dipping events, which
is favorable for rank-reduction methods; we test the proposed
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technique against the multichannel singular-spectrum analysis
(MSSA) . The deep prior result in Fig.|7c|and the MSSA
result in Fig. are visually comparable while SNR (10.36
dB vs. 7.81 dB) and correlation coefficient (0.935 vs. 0.910)
indicate a better performance of the deep prior method.

X [mi

(c) (d)

Fig. 7. Reconstruction example of field data. (a) complete data (b) corrupted
data (c) reconstruction of DIP method (d) reconstruction of MSSA method

V. CONCLUSION

We proposed an unsupervised CNN-based reconstruction
strategy for 3D seismic cubes that does not rely on standard
training procedures.

A 3D version of the MultiResUNet acts as a deep prior
for constraining the ill-posed interpolation problem. Com-
pared to standard U-Net applied in previous works, this
architecture captures inner data features at different scales,
and 3D convolutions exploit correlation in both horizontal
and vertical directions, making the prior information more
effective. Results achieved on both synthetic and field data
demonstrate the convincing abilities of the proposed workflow
when reconstructing irregularly sampled data even in the
challenging case of weak events.

Computational costs are significantly reduced by properly
presetting the initial CNN weights. Future studies will con-
tinue to address the issues related to computational cost and
the reconstruction of aliased events.
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