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Past Antarctic Ice Sheet (PAIS) dynamics and implications for future sea-level change 3 

 4 
Florence Colleoni, Laura De Santis, Tim Naish, Rob DeConto, Carlota Escutia, Paolo Stocchi, 5 
Gabriel Uenzelmann-Neben, Katharina Hochmuth, Claus-Dieter Hillenbrand, Tina, van De 6 
Flierdt, Lara Perez, German Leitchenkov, Francesca Sangiorgi, Stewart Jamieson, Mike 7 
Bentley, David Wilson, and the PAIS community (see list of co-authors before the references) 8 
 9 
The legacy of the Scientific Committee on Antarctic Research’s (SCAR) PAIS strategic 10 
research programme includes not only breakthrough scientific discoveries, but it is 11 
also the story of a long-standing deep collaboration amongst different multi-12 
disciplinary researchers from many nations, to share scientific infrastructure and data, 13 
facilities, and numerical models, in order to address high priority questions regarding 14 
the evolution and behaviour of the Antarctic ice sheets (AIS). The PAIS research 15 
philosophy is based on data-data and data-model integration and intercomparison, and 16 
the development of “ice-to-abyss” data transects and paleo-environmental, extending 17 
from the ice sheet interior to the deep sea. PAIS strives to improve understanding of 18 
AIS dynamics and to reduce uncertainty in model simulations of future ice loss and 19 
global sea level change, by studying warm periods of the geological past that are 20 
relevant to future climate scenarios.  The multi-disciplinary approach fostered by PAIS 21 
represents its greatest strength. Eight years after the start of this program, PAIS 22 
achievements have been high-profile and impactful, both in terms of field campaigns 23 
that collected unique data sets and samples, and in terms of scientific advances 24 
concerning past AIS dynamics, that have measurably improved understanding of ice 25 
sheet sensitivity in response to global warming. Here, we provide an overview and 26 
synthesis of the new knowledge generated by the PAIS Programme and its implications 27 
for anticipating and managing the impacts of global sea-level rise. 28 
 29 
1. Research focus of the PAIS programme 30 
 31 
Ice sheet and sea-level reconstructions from the past “warmer-than-present” climates of the 32 
last 34 million years provide powerful insights into the long-term response of the polar ice 33 
sheets to climate changes projected for the twenty-first century. Proximal geological evidence 34 
shows the onset of large-scale Antarctic glaciations occurred around the Eocene/Oligocene 35 
Transition at approximately 34 Ma (EOT, e.g. Barrett et al., 1989; Hambrey et al., 1991; 36 
Coxall et al., 2005; Escutia et al, 2011; Passchier et al., 2013; Galeotti et al., 2016; 37 
Passchier et al., 2016). Since then, AIS evolution and variability, recorded in the direct 38 
geological archives have been widely compared with benthic oxygen isotope proxy record of 39 
deep-water temperature and global ice volume from far-field deep ocean locations (e.g. 40 
Zachos et al., 2001; De Vleeschower et al., 2017). Together, they reveal fluctuations in ice 41 
volume and extent that can be explained by changes in atmospheric CO2 and astronomical 42 
forcing (Naish et al., 2001; Pälike et al., 2006; Naish et al., 2009a; Patterson et al., 2014; 43 
Hansen et al., 2015; Galeotti et al., 2016; Levy et al., 2019). Looking at the broad picture, 44 
the EOT really marked the transition into an ice-house and cool-house world (Miller et al., 45 
1991; 2020b; Westerhold et al., 2020). As the initial cryosphere evolved, only one pole, the 46 
South Pole, hosted a continental-size ice sheet. Geological evidence from the Arctic revealed 47 
that small ice-sheets or ice caps may have formed in the Northern high latitudes as early as 48 
the Eocene (e.g. Eldrett et al 2007; Tripati & Darby, 2018). Then, along with the gradual 49 
decrease in atmospheric CO2 (Figure 1a), Greenland glaciated from the Late Miocene, rapidly 50 
followed by episodic and extensive glaciations of most of the high-latitude Arctic margins, after 51 
the onset of Northern Hemisphere glaciations 2.7 Ma (e.g. Thiede et al., 2011).  52 
 53 
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During the past 34 million years, changes in global climate and polar ice volume have been 54 
paced by orbital forcing – the Milankovitch cycles. These regular glacial-interglacial cycles, 55 
which are amplified by internal Earth system feedbacks, occur on a background of secular 56 
change over millions of years driven by global plate tectonics and the carbon cycle (Figure 1). 57 
Rapid stepwise transitions between climate states (e.g. EOT) correspond to thresholds in the 58 
Earth system often linked to a combination of tectonic reorganisation, atmospheric 59 
greenhouse gas composition and extreme astronomical forcing (Zachos et al., 2001, 2008; 60 
Levy et al., 2019). Our knowledge of the evolution of the AIS and its influence on global 61 
climate is now widely documented by proximal ice and sediment core records (e.g. EPICA 62 
Community Members, 2006; Bereiter et al., 2015; Barrett, 2007; McKay et al., 2016; 63 
Escutia et al., 2019; Levy et al., 2019).  64 
 65 
The circum-Antarctic seismic stratigraphic records of the continental margins reveal erosive 66 
unconformities indicative of at least six main periods of massive Antarctic ice sheet (AIS) 67 
advances (e.g. Steinhauff and Webb 1987; Larter et al., 1997; Cooper et al., 1999, 2011; 68 
Brancolini et al., 1995a, 1995b; De Santis et al., 1999; Donda et al., 2007; Kristoffersen 69 
and Jokat, 2008; Bart & DeSantis, 2012; Gohl et al., 2013; Lindeque et al. 2016; Gulick 70 
et al., 2017). Not all the unconformities have been dated but Hochmuth et al., (2019, 2020) 71 
recently provided the first attempt of pan-Antarctic correlation of the various regional seismic 72 
unconformities (Figure 1b). These seismic unconformities likely correspond to: early Antarctic 73 
glaciations after the EOT (e.g. Galeotti et al., 2016), a transient glaciation at Oligocene-74 
Miocene boundary ~23-21 Ma (e.g. Naish et al., 2001; summarised in Wilson and Luyendyk, 75 
2009), ice sheet re-advance at the end of the Mid-Miocene Climatic Optimum (MCO) about 76 
15.8-14.2 Ma (e.g. Levy et al., 2016), the cooling and expansion of the East Antarctic Ice 77 
Sheet (EAIS) at the Middle Miocene Climate Transition (MMCT) ~13.8 Ma (e.g. Lewis et al., 78 
2007; 2008; Levy et al., 2016; Pierce et al., 2017), cooling after a period of warmth known 79 
as  the Late Miocene Cooling ~ 8 - 5 Ma (LMC) (McKay et al., 2009; Herbert et al., 2016; 80 
Gulick et al., 2017), and cooling and expansion of marine-based ice during the Plio-81 
Pleistocene Transition (PPT) 3-2.5 Ma (Naish et al., 2009a; McKay et al., 2012a; Patterson 82 
et al., 2014) and possibly to the Mid-Pleistocene Transition ~1 Ma (e.g. O’Brien et al., 2007). 83 
These periods evidenced by positive excursions in the deep sea benthic 𝛅18O isotope records 84 
(Figure 1a) correspond to episodes of global cooling and ice volume growth periods, generally 85 
associated with a decline in atmospheric CO2 below a threshold (Figure 1b) for triggering the 86 
expansion of terrestrial or marine-based ice and/or the onset of perennial sea-ice.  87 
 88 
Between these cooling periods, multi-proxy global climatic reconstructions and proximal 89 
Antarctic geological climate and ice sheet reconstructions provide evidence for intense and 90 
brief warm periods during which: 91 

- atmospheric CO2 levels, surface temperatures and global sea level rose well above 92 
present-day levels during the MCO (17-15 Ma) and the middle Pliocene Warm Period 93 
(mPWP, 3.3 -3 Ma) (e.g. Miller et al., 2020b for a review); both periods were 94 
characterised by CO2 concentrations higher than 400 ppm and up to 800ppm for some 95 
specific intervals of the MCO (see Figure 1a and references therein). 96 

- atmospheric CO2 levels were near pre-industrial levels, i.e. lower than 300 ppm, but 97 
were associated with warmer global surface temperatures and higher sea-levels than 98 
today during the “super interglacials” of the Pleistocene. This was likely driven by 99 
astronomical forcing. Examples include marine isotope stage (MIS) 31 (1.081-1.062 100 
Ma), and specific warm Late Pleistocene interglacials such as MIS 11 (425-395 ka) 101 
and MIS 5e (130-116 ka) (e.g. Dutton et al., 2015; Miller et al., 2020b). 102 
 103 

These past warm periods are policy-relevant as they provide accessible examples of how the 104 
AIS responded to warmer-than-present global temperatures, comparable to those projected 105 
for the coming decades to centuries (IPCC AR5, 2013; IPCC SCROCC, 2019). However, 106 
using these past warm periods to inform our understanding of the AIS sensitivity under 107 
different atmospheric CO2 levels remains a challenge, in part because Earth system boundary 108 
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conditions were subtly different than today, and the duration and intensity of these past warm 109 
periods was highly variable (e.g. Dutton et al., 2015; DeConto and Pollard, 2016; Colleoni 110 
et al., 2018a; Bracegirdle et al., 2019; Noble et al., 2020). 111 
 112 
For example, the duration of those past warm periods differs, from about ~ 2 million years for 113 
the MCO, approximately 300 thousand years for the mPWP to a few millennia for some 114 
Pleistocene interglacials. Thus, an approach focusing on specific MCO and mPWP glacial-115 
interglacial cycles and interglacials (with similarities to our present interglacial) is being 116 
developed. For example, the Pliocene Model Intercomparison Project community is focussing 117 
its ongoing mPWP model-data comparison on the M2-KM5c (3.264-3.205 Ma) and KM5c-KM2 118 
(3.205-3.130 Ma) intervals (Figure 1b) (Haywood et al., 2016). By using more appropriate 119 
forcing and boundary conditions for climate model simulations, discrepancies between models 120 
and data generally decrease (e.g. Otto-Bliesner et al, 2017). 121 
 122 
In most simulations of future ice sheets evolution, model projections typically extend only until 123 
the policy horizon of 2100 CE (Common Era). However, some ice sheet models have run 124 
projections out as far as 2500 CE (e.g. Golledge et al., 2015, DeConto and Pollard, 2016; 125 
Clark et al., 2016).  The recent IPCC special report on “Ocean and Cryosphere in a 126 
Changing Climate” (IPCC SROCC, 2019) utilises these projections and the results of a 127 
structured expert judgement approach (Bamber et al., 2019) to present projections to 2300 128 
CE, that to some extent account for the long-term thermo-dynamical response of the 129 
Greenland and Antarctic ice sheets and related instabilities (e.g. Golledge et al., 2015, 130 
DeConto and Pollard, 2016). Paleoclimatic changes are often considered at timescales of 131 
tens of millennia to millennia and, in few archives, at sub-millennial timescale. At such 132 
timescales, past reconstructions can inform long-term projections over a few millennia (e.g. 133 
Golledge et al., 2020 for a review), but some refinements at sub-millennial timescales to 134 
investigate some abrupt events of the near past are necessary to reconcile with the 135 
projections. 136 
 137 
During past warm periods, global paleogeography, paleotopography and/or paleobathymetry 138 
can differ substantially from today. Periods prior to the Plio-Pleistocene Transition (3.0-2.5 Ma) 139 
were characterised by a very different continental and oceanic configuration that yielded 140 
changes in the proportion of emerged lands and their locations. This affected surface 141 
elevation, oceanic gateways and bathymetry, which in turn impacted on ocean and 142 
atmospheric circulation (e.g. Dowsett et al., 2016; Herold et al. 2008; Kennedy et al., 2015, 143 
von der Heydt et al., 2016, Huang et al., 2017), on global mean sea level changes (e.g. 144 
Miller et al. 2020b) and on heat transport compared to modern conditions. The Antarctic 145 
continent and its surface elevation have also evolved throughout the Cenozoic, with important 146 
consequences for ice sheet behaviour (e.g. Colleoni et al., 2018b; Paxman et al., 2020). 147 
Thus, direct comparison between the past and future AIS sensitivity to high levels of 148 
atmospheric greenhouse gases is not straightforward. 149 
 150 
Most of the efforts of the PAIS programme, and its predecessor, the Antarctic Climate 151 
Evolution (ACE) programme, focused on the past warm periods (e.g. MCO, mPWP, warm 152 
interglacials of the Pleisotcene) (Figure 1). More specifically, ice sheets and climate 153 
simulations of the MCO emerged during the PAIS programme lifetime. Within its programme, 154 
PAIS promoted collaborative work within six specific sub-committees that addressed the 155 
following topics for almost all of the warm periods listed above: 156 

- Palaeoclimate Records from the Antarctic Margin and Southern Ocean (PRAMSO) 157 
- Palaeotopographic-Palaeobathymetric Reconstructions 158 
- Subglacial Geophysics 159 
- Ice Cores and Marine Core Synthesis 160 
- Recent Ice Sheet Reconstruction 161 
- Deep-Time Ice Sheet Reconstructions 162 
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Scientific advances related to each of these topics are extensively described in the previous 163 
chapters of this book. Many research projects that were initiated within the ACE programme 164 
concluded during the PAIS programme. Many of their findings continues to have a significant 165 
impact on the community of Antarctic researchers and well beyond. In the following sections, 166 
we highlight some of the key findings that have advanced our understanding of the Antarctic 167 
Ice Sheet dynamics, instabilities and thresholds during past warm periods. We conclude with 168 
a discussion of the PAIS legacy, and highlight emerging issues, knowledge gaps, needs and 169 
challenges to be addressed within the next decade by the observational and modelling 170 
communities.  171 
 172 
2. Importance of evolving topography, bathymetry, erosion and 173 
pinning points 174 
 175 
Ice-sheet-ocean-bedrock interactions are of major importance for understanding the dynamics 176 
of the AIS (Mengel et al. 2014; Bart et al., 2016, Colleoni et al., 2018a; Whitehouse et al. 177 
2019; Paxman et al., 2020). Surface and basal boundary conditions determine the 178 
characteristics and regime of the ice flow. At the base of a terrestrial or marine-based ice 179 
sheet, the geothermal heat flux, the morphology as well as the nature of the bed (hard rock or 180 
soft sediments), affect the sliding of the ice, generate heat and yield basal meltwater. When 181 
the ice sheet advances, it erodes its bed and carries sediment. Eroded material is released 182 
into ice shelf cavities and onto the continental shelf at the grounding zone where the ice sheet 183 
floats, disconnecting from its bed. Some of this glacigenic detritus finds its way via glacial 184 
troughs and via channels across the continental slope and rise, and ultimately to the abyssal 185 
plain. Some eroded material is also carried by icebergs and deposited offshore as Iceberg 186 
Rafted Debris (IBRD). These sediments preserved in a wide range of marine environments 187 
provide a valuable archive of past ice sheet dynamics and coeval oceanic and atmospheric 188 
conditions.  189 
 190 
The AIS substantially expanded 34 Ma and since that time has advanced and retreated 191 
numerous times (see Galeotti et al., this volume). As a result, the morphology of the bed below 192 
the ice sheet constantly evolved. Seismic stratigraphic records from the Antarctic continental 193 
margins (e.g. Cooper et al., 1991; Eittreim et al., 1995; De Santis et al.; 1999; Whitehead 194 
et al., 2006; Gohl et al., 2013; Huang and Jokat., 2016), clearly show that the shallow 195 
continental shelves have been prograding northward through time. Sediment isopach 196 
(thickness) reconstructions indicate that much of the sediments have accumulated, and 197 
accreted along the Antarctic continental slope and rise (see references in Hochmuth and 198 
Gohl 2019; Hochmuth et al. 2020 for circum-Antarctic review and reconstructions), implying 199 
that a large volume of material has been eroded and removed from inland regions since the 200 
onset of continental glaciation (e.g. Wilson et al., 2012; Paxman et al., 2019; Hochmuth et 201 
al., 2020). 202 
 203 
The most recent circum-Antarctic reconstructions show that the morphology of the bed has 204 
evolved substantially over the past 34 million years (Figure 2). At the EOT, most of the West 205 
and East Antarctic sectors that are currently below sea level were instead above sea level 206 
(Wilson et al., 2012; Paxman et al., 2019) (Figure 2). With time, tectonic subsidence and 207 
erosion caused those sectors to have deepened below sea level. These reconstructions have 208 
significant implications for the understanding of the evolution of the AIS and for its ice flow. It 209 
is, indeed, much easier to grow an ice sheet on terrestrial surface than on a submarine bed. 210 
On such a restored and emergent topography, simulated Antarctic glaciations at the EOT 211 
produce a total ice volume greater than today and similar to that of the Last Glacial Maximum 212 
(LGM, ~21 ka) (Wilson et al., 2013; Ladant et al., 2014), even though atmospheric CO2 levels 213 
were much higher than today, ranging from around 780 to 560 ppm (Figure 1a). At the EOT, 214 
the ice sheet did not expand across the continental shelves, because the ocean temperatures 215 
were too warm (e.g. DeConto et al., 2007; Bijl et al., 2018). In fact, geological evidence from 216 
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the Antarctic Peninsula documents a faunal turnover from species adapted to temperate 217 
waters (+5°C) to species adapted to cold waters through the EOT (Kriwet et al., 2016, Buono 218 
et al., 2019). 219 
 220 
Continental shelf evolution was critical for advances of the AIS across the marine realm after 221 
the EOT (e.g. Paxman et al., 2020). The evolution of the shallow continental shelves around 222 
Antarctica was connected to the evolution of the topography in the continent’s interior. Various 223 
reconstructions (Cooper et al., 1991; Eittreim et al., 1995; Brancolini 1995a,1995b; Huang 224 
and Jokat, 2016; Paxman et al., 2019; Hochmuth et al., 2020) suggest that in most of the 225 
sectors, the continental shelf edge was located further south than today (Figure 2) and then 226 
prograded seaward over time (e.g. Cooper et al., 1991, De Santis et al., 1999, Huang et al., 227 
2014). The stratigraphic records combined with existing Antarctic deep drilling sites suggest 228 
that the majority of the continental margin expansion occurred prior to the Pliocene (De Santis 229 
et al., 1995, 1999, Hochmuth and Gohl 2019), although in some sectors (e.g Amundsen Sea, 230 
Gohl et al., 2013; Prydz Bay, O’Brien et al., 2007; Wilkes Land, Escutia et al., 2011), 231 
progradation of the margin was still important throughout the Pliocene. The Middle to Late 232 
Miocene is a period of transition during which the Antarctic ice sheet margin advanced into a 233 
cooling ocean, grounding on the continental shelf. This is also when prominent marine-based 234 
sectors of the AIS developed (e.g., Uenzelmann-Neben, 2019), especially in West Antarctica 235 
(Bart et al., 2003). Numerical ice sheet simulations using new Antarctic Mid-Miocene 236 
paleogeographies, showed that during this period, the AIS became increasingly sensitive to 237 
oceanic conditions (Colleoni et al., 2018b), resulting in large glacial-interglacial changes in 238 
ice volume (Gasson et al., 2016). From the Pliocene onward, the Antarctic continental margin 239 
evolved very little. Erosion of the continental interior appears to have been less influential on 240 
the ice sheet since the Pliocene than during the earlier Oligocene and Miocene. The terrestrial 241 
ice sheet became more stable (Passchier et al., 2011; McKay et al., 2012a; Gulick et al., 242 
2017, Kim et al., 2018). However, fluctuations of marine- based ice in deep subglacial basins 243 
still occurred, especially when atmospheric CO2 was between 400-300ppm, during the early 244 
and middle Pliocene between 5 and 3 Ma (Naish et al., 2009a; Pollard and DeConto, 2009; 245 
Cook et al., 2013; Cook et al., 2014; Patterson et al., 2014; Reinardy et al., 2015; Hansen 246 
et al., 2015; Bertram et al., 2018; Blackburn et al., 2020). The relative stability of the 247 
terrestrial AIS is further supported by a recent study of cosmogenic nuclide concentrations 248 
(e.g. in-situ 10Be) in a sediment core from the Ross Sea (ANDRILL Site AND-1B) and implying 249 
minimal retreat of the EAIS onto land during the last 8 million years (Shakun et al., 2018). 250 
 251 
Another important aspect of the continental margin evolution is that its orientation or slope 252 
gradually changed from seaward dipping until the Early Pliocene, to landward dipping as it is 253 
now (Cooper et al., 1991; De Santis et al., 1999) (Figure 3a). This change in the bed 254 
morphology was caused by the numerous ice sheet advances and retreats and associated 255 
erosion and deposition of sediments from the bed. In turn, changes in the bed morphology 256 
then feedback on the ice sheet dynamics. Thus, since the Pliocene, the bed of the AIS marine-257 
based sectors generally has been characterised by retrograde slopes, which favoured the 258 
potential of Marine Ice Sheet Instability (MISI) (Jamieson et al., 2012; McKay et al., 2016; 259 
Colleoni et al., 2018b). Prior to the Late Miocene, climatic conditions were generally warm, 260 
the continental shelves were less expanded in most of the Antarctic sectors and did not 261 
present strong retrograde slope. Consequently, the ice sheet could retreat relatively easily 262 
during warm climate episodes with strong surface melt and oceanic melt (e.g. Levy et al., 263 
2016, Gasson et al 2016). At the end of the Miocene, climate gradually cooled, which favoured 264 
terrestrial EAIS stability, but concurrently, the retrograde slope of the bed favoured instabilities 265 
and fast AIS grounding line retreat in the marine-based sectors during phases of prolonged or 266 
exceptional warmth (Cook et al., 2013, Pollard and DeConto 2009; Naish et al., 2009a; 267 
DeConto et al., 2012,; Pollard et al., 2015; DeConto & Pollard, 2016; Golledge et al. 268 
2017a, Colleoni et al., 2018b; Levy et al., 2019; Blackburn et al., 2020). 269 
 270 
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Fast retreat of the grounding line can, however, be slowed down or stopped by the occurrence 271 
of pinning points at the bed that provide a buttressing backstress that resists seaward ice flow 272 
(Mengel and Levermann, 2014). Pinning points or pinning areas can take different forms. Ice 273 
rises for example, form when an ice shelf anchors on a pre-existing bathymetric high, 274 
stabilizing the flow (Matsuoka et al., 2015) (Figure 3b). They can be tectonic structures or 275 
volcanic islands. Today, several ice rises are visible from the surface, for example, in the Ross 276 
Sea embayment (e.g. Roosevelt Island, Crary Ice Rise, Franklyn Islands and Ross Island) and 277 
in the Weddell Sea embayment (Berkner Island). Halberstadt et al. (2016) and Simkins et 278 
al. (2018) suggested that the retreat of the grounding line during the last deglaciation was 279 
slower in the western Ross Sea than in the eastern Ross Sea, which is characterised by a 280 
smoother bed.  281 
 282 
Pinning points can also form temporarily due to the uplift of the bed as a result of glacio-283 
isostatic adjustment (GIA) in ice sheet retreat and unloading of the crust (e.g. Whitehouse et 284 
al., 2018; Figure 3c). Numerical simulations show that ignoring GIA during ice sheet advance 285 
results in smaller, less extended ice sheets, than would occur if GIA was accounted for, 286 
because GIA creates pinning opportunities (e.g., Colleoni et al., 2018b). Kingslake et al. 287 
(2018) showed that during the early Holocene, the West Antarctic Ice Sheet (WAIS) in both 288 
the Weddell Sea and the Ross Sea temporarily retreated beyond its present-day grounding 289 
line position. It subsequently re-advanced potentially due to uplift of the bed due to GIA, 290 
(Bradley et al., 2015) and the occurrence of relief (e.g. Bungenstock Ice Rise, Weddell Sea) 291 
on which the ice shelf could pin. Similarly, high-resolution bathymetry acquired from a ridge 292 
under the Pine Island Glacier Ice Shelf has revealed geomorphological features that may be 293 
consistent with a retreat of Pine Island Glacier inland from its present position earlier during 294 
the Holocene and a subsequent re-advance to its early 20th century position (Graham et al., 295 
2013). These pinning points can be subsequently eroded or can simply “resorb” after glacio-296 
isostatic adjustment of the bed. 297 
 298 
Finally, the ice sheet can build its own pinning points by accumulating sediments in grounding 299 
zone wedges (GZW) during deglaciations, which slows its retreat (e.g. Alley et al., 2007; 300 
Horgan et al., 2013; Figure 3d). An example of this effect was outlined in Bart et al. (2017, 301 
2018), who analysed a complex of GZWs that formed during the last deglaciation in the 302 
Whales Deep basin (Eastern Ross Sea). Proxy analyses and dating of sediment cores 303 
revealed that the first four GZWs were built during the first ~5000 years of a gradual 75-km 304 
southward ice sheet retreat, between ~17 and ~12.3 ka. They were characterised by low 305 
sedimentation rates (i.e., the GZWs are very thin) and sediment compositions indicate that the 306 
grounding line was pinned on those GZWs, whilst an extensive ice shelf formed during the 307 
retreat. The last three GZWs accumulated, with a clear aggradation sequence, in about 800 308 
years between 12.3 ka and 11.5 ka, implying that the grounding line was not retreating during 309 
this brief interval. These GZWs were characterised by very high sedimentation rates and were 310 
thus relatively thick compared to the older ones. Sediment compositions seaward of those 311 
three GZWs indicate that the ice shelf there broke up at the very beginning of this time interval 312 
and never reformed, and that the grounding line remained pinned successively on top of those 313 
last three GZWs. After building the uppermost GZW, the grounding line stepped back by about 314 
100 km within a few decades, resulting in a very brief, massive ice discharge of about 0.1 mm 315 
Sea Level Equivalent (SLE, Bart and Tulaczyk, 2020). Similar mechanisms and sequences 316 
have been inferred from the analysis of Pine Island Bay continental shelf multibeam and 317 
marine seismic data from the Amundsen Sea Embayment shelf (Uenzelmann-Neben et al., 318 
2007; Jakobsson et al., 2011; 2012; Klages et al., 2015). Data show that the ice stream 319 
retreat was paused due to the built of GZWs during the last deglaciation. GZWs can also build 320 
as a consequence of ice sheet retreat in a narrow trough in which lateral edges serve as a 321 
pinning zone that slowdown the retreat. Livingstone et al. (2013) and Jamieson et al. (2012, 322 
2014) mapped a series of GZWs in a paleo-ice stream trough in Marguerite Bay (Antarctic 323 
Peninsula). Numerical simulations have shown that ice stream retreat rates slowed as the 324 
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grounding line passed the laterally narrow parts of the trough. If a constant sedimentation rate 325 
was assumed, GZWs could form, thus further slowing the retreat. 326 
 327 
The presence or absence of pinning points influences ice sheet dynamics. The estimated rates 328 
of sea level change during past periods may have been affected by potential pauses or 329 
changes in the rate of AIS (or other ice sheets) advances or retreats, due to ice-bed 330 
interactions. These variations may become highly relevant, especially for the interpretation of 331 
sea level reconstructions since the LGM, or simulated ice volume changes at the sub-332 
millennial scale (Klages et al., 2017; Bart et al., 2018, Kingslake et al., 2018). However, the 333 
erosion of potential paleo-pinning points, during the numerous phases of expansion of the 334 
AIS, makes it difficult to know the role of pinning points on past ice sheet variability at sub-335 
millennial time scales in reconstructions older than the LGM. Therefore, pinning points are 336 
generally not resolved in paleo-ice sheet simulations, where bed topography cannot be 337 
reconstructed with sufficient accuracy or resolution (<5 km). Moreover, shallow ice 338 
approximation ice sheet models frequently used for paleo-ice sheet simulations need a 339 
smoothing of the bed morphology in order to enable numerical convergence in areas where 340 
the morphology is too steep for the applicability of the hydrostatic approximation. For example, 341 
the Parallel Ice Sheet Model (PISM, Bueler and Brown, 2009) proposes different levels of 342 
smoothing of the bed, and this model is frequently used within the PISM paleo-community 343 
(e.g. Golledge et al., 2012, Albrecht et al., 2020). Full-Stokes ice sheet models, in which no 344 
hydrostatic approximation is applied, do not require bed smoothing since the physics account 345 
for both horizontal and vertical shear of the ice flow. However, full-Stokes models are too 346 
computationally demanding and are still not usable for most paleoclimate applications 347 
(Colleoni et al., 2018a and references therein). Given that most paleogeographic 348 
reconstructions (e.g. Paxman et al., 2019; Hochmuth et al., 2020) are very coarse in spatial 349 
resolution and highly uncertain in terms of detail, bed smoothing in ice sheet simulations 350 
resulting in the loss of local pinning points is generally of lesser importance than the biased 351 
controls on ice sheet dynamics induced by uncertain bed morphologies (e.g. Gasson et al., 352 
2015). 353 
 354 
 355 
3. Reconstructions of Southern Ocean sea and air surface 356 
temperature gradients 357 
 358 
Equator-to-pole surface temperature gradients influence Earth’s latitudinal heat distribution. 359 
Reconstructions of meridional temperature gradients since the Late Cretaceous clearly show 360 
a gradual steepening during the transition from greenhouse to icehouse conditions as the polar 361 
regions cooled and ice sheets developed (e.g. Zhang et al, 2019). Reconstructions also show 362 
the emergence of oceanic fronts in the sub-tropics and high latitudes, especially in the 363 
Northern Hemisphere (e.g. Zhang et al, 2019). The development of the Southern Ocean 364 
frontal system is of importance for reconstructing past AIS. The Antarctic Polar Front (APF) is 365 
a region marked by elevated current speeds and strong horizontal gradients in seawater 366 
density, temperature, salinity. It is currently located at approximately 50°S in the Atlantic and 367 
Indian sectors, and around 60°S in the Pacific sector. During warm periods, proxies imply a 368 
substantial southward shift of the Antarctic Polar Front (APF) associated with a significant 369 
reduction in sea ice extent (e.g. Taylor-Silva and Riesselman, 2018; Bijl et al. 2018; 370 
Sangiorgi et al. 2018; Salabarnada et al., 2018; Chadwick et al., 2020; Evangelinos et al., 371 
2020). Conversely, during cold periods, the Antarctic Polar Front shifts northward 372 
accompanied by a large expansion of the sea ice cover (Gersonde et al., 2005; Kemp et al. 373 
2010; McKay et al., 2012a). 374 
 375 
Fewer sediment cores have been recovered in the Southern Ocean high latitudes than in the 376 
North. South of 50°S, sea surface temperature (SST) proxy reconstructions are rare (Figure 377 
4). The ACE programme and more recently, the PAIS programme increased the number of 378 
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SST and Sea Water Temperature (SWT) at 0-200 m depth records from the Southern Ocean’s 379 
Antarctic margin. SST and SWT records are now available for the MCO from the continental 380 
shelf site ANDRILL AND-2A (Western Ross Sea, Levy et al., 2016) and from the continental 381 
rise at Integrated Ocean Drilling Program (IODP) Site U1356 (Adélie Land margin, Sangiorgi 382 
et al., 2018; Hartman et al. 2018). Mid- to late Pliocene SST records are available from 383 
ANDRILL-1B sediment core (Ross Sea shelf, McKay et al., 2012a) and from other cores on 384 
the continental rise and abyssal plains from the Indian sectors (see Dowsett et al., 2013 for 385 
an SST compilation). MIS 31 SST records are available from continental rise sites such as 386 
Ocean Driling Program (ODP) Site 1101 (Antarctic Peninsula, Beltran et al., 2020) and IODP 387 
Site U1361 (Adélie Land margin, Beltran et al., 2020) and from site ODP Site 1094, (south of 388 
APF, South Atlantic sector, Beltran et al., 2020). For MIS 11 and MIS 5e, no Antarctic 389 
continental margins SST records are available so far. However, recent International Ocean 390 
Discovery Program (IODP) Expedition 374 to the Ross Sea (McKay et al., 2019), IODP 391 
Expedition 379 to the Amundsen Sea (Gohl et al., 2019), and expedition INS2017_V01 on 392 
the Sabrina Coast (Armand et al., 2018; O’Brien et al., 2020) have recovered highly 393 
expanded sedimentary sections from the continental rise. This promises upcoming high-394 
resolution SST records for Pleistocene interglacials, for which most of the ice proximal SST 395 
information is still missing. 396 
 397 
A comparison between MCO and mPWP global meridional proxy-based SST gradients 398 
highlights the difference between the two periods in the Southern Hemisphere and how much 399 
the global climate state has evolved between 17 and 3 Ma (Figure 4a). During the MCO, the 400 
air surface temperature gradient strengthened between 30°S to 40°S, as in the Northern 401 
Hemisphere, suggesting that sub-tropical marine frontal system was well developed. The 402 
meridional SST and SWT gradients were much weaker than today and a summer warming of 403 
16°C to 22°C (± 5°C) compared to today, was observed in geochemical proxies at around 60-404 
65°S on the East Antarctic continental rise (Sangiorgi et al. 2018; Hartman et al., 2018) and 405 
a warming of about 2°C to 12°C (± 5°C) compared to today is recorded in the Ross Sea (Levy 406 
et al., 2016, Sangiorgi et al., 2018) indicating a total absence of or rare occurrences of sea 407 
ice during this period. The mPWP was characterised by a meridional SST gradient weaker 408 
than today (e.g. Brierley et al., 2009; Haywood et al., 2013) and with a significant Arctic 409 
amplification, while the warming anomaly was more subdued in the high southern latitudes 410 
(Figure 4a). South of 55°S, East Antarctic continental rise summer SST were warmer than 411 
today by about 4°C to 6°C on the East Antarctic continental rise and by up to 7°C on the Ross 412 
Sea shelf (McKay et al., 2012a), indicative of a highly reduced, if not absent, summer sea ice 413 
cover in some sectors.  414 
 415 
During both the MCO and the mPWP, the APF was probably more contracted towards high 416 
latitudes in all sectors around Antarctica (Taylor-Silva and Riesselman, 2018; Sangiorgi et 417 
al., 2018). The mPWP presents a meridional SST gradient steeper than during the MCO and 418 
it is possible that the APF might not have reached latitudes as poleward as during the MCO. 419 
The contrast between the mPWP and MCO meridional SST gradient south of 40°S, suggests 420 
that the gradient probably steepened during the Late Miocene (Herbert et al., 2016). However, 421 
in some sectors of the Antarctic margin, there is strong evidence for warmer conditions during 422 
the Early Pliocene compared to the mPWP, i.e. sea-ice reduction and warming west of the 423 
Antarctic Peninsula (e.g. Hillenbrand & Ehrmann 2005; Escutia et al. 2009) and in Prydz 424 
Bay (Whitehead et al. 2005). This was accompanied by a poleward shift of the APF (Bart & 425 
Iwai 2012; Whithehead & Bohaty 2003; Escutia et al. 2009). 426 
 427 
During the Pleistocene, MIS 31, MIS 11 and MIS 5e meridional SST gradients highlight the 428 
strong impact of precessional astronomical forcing, with SSTs warmer than today especially 429 
in the Northern Hemisphere mid-to-high latitudes (Figure 4b). All three interglacials present 430 
SST gradients quite similar to today in the equatorial to sub-tropical latitudinal bands. The 431 
discrepancies between them emerge for latitudes poleward of 50°S. For MIS 31, alkenone 432 
and long chain diol analysis on sediment cores revealed an SST warming of 4°C to 12°C on 433 
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the Adélie Land margins and the Antarctic Peninsula (Beltran et al., 2020). Proxies suggest 434 
reduced or even absent winter and summer sea ice in the Ross Sea and offshore Adélie Land 435 
margin; information is missing for other Antarctic sectors (see references for Figure 6d). The 436 
abrupt appearance of foraminiferal oozes and bioclastic limestone in the Ross Sea and 437 
coccolith-bearing sediments in Prydz Bay during MIS31 (Bohaty et al., 1998; Scherer et al., 438 
2003; Villa et al., 2008, 2012) indicates a significant southward migration of the APF. In terms 439 
of the SST gradient, MIS 31 shows more similarities with the mPWP in the Southern 440 
Hemisphere than with the more recent Late Pleistocene interglacials.  441 
 442 
No SST or SWT proxies south of 60°S are available for MIS 11, thus it is difficult to assess the 443 
magnitude of a potential warming closer to the Antarctic margins. Interpretation of diatom and 444 
geochemical changes could help to estimate SST or SWT from the Wilkes Subglacial Basin 445 
and the Ross Sea margins (see Wilson et al., this volume for references). North of 40°S, 446 
tropical to subtropical MIS 11 SSTs were warmer than modern by about 1-4°C, and between 447 
50°S and 60°S, only a 1-2°C warming above modern is recorded (Kunz-Pirrung et al., 2002). 448 
Apart from just a single exception, no SST reconstructions are available for MIS 5e south of 449 
60°S (Capron et al., 2014, Hoffman et al., 2017; Chadwick et al., 2020), and the 450 
reconstructed SSTs north of 60°S are similar to those of MIS 11 (Figure 4b). It is hence difficult 451 
to assess the magnitude of surface and ice proximal sub-surface ocean warming during MIS 452 
5e. Capron et al., (2014) report warmer than present-day conditions that occurred for a longer 453 
time interval in southern high latitudes than in northern high latitudes. They also report an 454 
earlier MIS5e warming in the Southern Ocean starting from 130 ka compared with the 455 
Northern high latitudes and synchronous with Antarctic ice core records. Moreover, Chadwick 456 
et al. (2020) showed that the sea-ice minima and SST maxima were reached at slightly 457 
different times in three Southern Ocean sectors. During both MIS 11 and MIS 5e, the few 458 
existing records indicate a seasonally sea ice covered ocean (Kunz-Pirrung et al., 2002; 459 
Wolff et al., 2006 Escutia et al., 2011; Wilson et al., 2018, Chadwick et al., 2020). Ice core 460 
analyses by Wolff et al. (2006) suggested on the basis of sea-ice proxies in the EPICA Dome 461 
C ice core that winter sea ice was largely reduced during MIS 5e and MIS 11 in the Indian 462 
sector of Antarctica, and that summer sea ice was likely absent. In addition, similar proxy 463 
analyses on the EPICA DML ice core from Dronning Maud Land indicate a sea ice reduction 464 
in the Atlantic sector during MIS 5e (Schüpbach et al., 2013).  465 
 466 
4. Extent of major Antarctic glaciations 467 
 468 
This section focuses on glaciations that occurred during the Eocene-Oligocene Transition 469 
(EOT, ~34 Ma) (see Galeotti et al., this volume), during the Mid-Miocene Climatic Transition 470 
(MMCT, 14.5 to 13.5 Ma) (see Levy et al., this volume), the M2 glaciation (3.312-3.264 Ma) 471 
preceding the mPWP, and the Last Glacial Maximum (LGM, ~21 ka) (see Siegert et al., this 472 
volume). 473 
 474 
The EOT was characterised by the development of a continental ice sheet on Antarctica 475 
(Barrett, 1989; Hambrey et al. 1991; Wise et al., 1991;  Zachos et al. 1992) as atmospheric 476 
CO2 level fell (e.g DeConto et al., 2003) and the Southern Ocean cooled (e.g., Bijl et al., 477 
2013) as a result of the opening of ocean gateways. (e.g. Kennett et al., 1977) (Figure 1). 478 
Across the EOT, deep-see temperatures cooled by 3° to 5°C (e.g. Liu et al., 2018) as a 479 
consequence of decreasing CO2 levels (Pagani et al., 2005). Sedimentary cycles from a drill 480 
core in the western Ross Sea provided the first direct evidence of orbitally controlled glacial 481 
cycles between 34 million and 31 million years ago (Galeotti et al., 2016). Initially, under 482 
atmospheric CO2 levels of ≥600 ppm, a smaller AIS, restricted to the terrestrial continent, was 483 
highly responsive to local insolation forcing. The establishment of the Antarctic Ice Sheet (AIS) 484 
is associated with an approximately +1.5 per mil increase in deep-water marine oxygen 485 
isotope values (δ18O) beginning at ~34 million years ago (Ma) and peaking at ~33.6 Ma 486 
(Coxall et al., 2005; Bohaty et al., 2012), with two positive δ18O steps separated by ~200,000 487 
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years (Figure 1b). The first positive step in the isotope data primarily reflects a temperature 488 
decrease (Lear et al., 2008) (EOT-1, ~34.46-33.9 Ma); the second one has been interpreted 489 
as the onset of a prolonged interval of maximum ice extent at ~33.6 -33.7 Ma (EOT-2) (Liu et 490 
al., 2009). Stratigraphic unconformities identified from the continental margins of Antarctica 491 
(Figure 1b, e.g. De Santis et al., 1995; Eittreim et al., 1995; Cooper and O’Brien 2004; 492 
Escutia et al., 2005; Whitehead et al., 2006; Gohl et al., 2013; Uenzelmann-Neben and 493 
Gohl; 2014, Gulick et al., 2017) presumably correspond to one of these 𝛅18O excursions. 494 
 495 
Galeotti et al. (2016) suggest that a continental-scale AIS with frequent calving at the 496 
coastline did not form until ~32.8 million years ago, coincident with the earliest time when 497 
atmospheric CO2 levels fell below ~600 ppm. The atmospheric CO2 threshold for the onset of 498 
large-scale Antarctic glaciations remains, however, uncertain and varies between 900 ppm to 499 
560 ppm in numerical climate and ice sheet simulations (DeConto et al. 2003; Ladant et al. 500 
2014, Liakka et al., 2014, Gasson et al, 2014).  Liakka et al., (2014) showed that when 501 
accounting for vegetation-albedo feedbacks, large-scale Antarctic glaciations occurred when 502 
atmospheric CO2 dropped between 1120 ppm and 560 ppm. Ladant et al. (2014) simulated 503 
a first Antarctic expansion at EOT-1 associated with a first sea level drop of about 10 meters 504 
(atmospheric CO2 set to 900 ppm) and a second one coinciding with early Oligocene glaciation 505 
Oi-1 (33.4 to 33.0 Ma, Miller et al.,1991; Zachos et al., 2005) of about 63 meters (atmospheric 506 
CO2 set to 700 ppm). Sequence boundary and ice volume proxies suggest that the extent of 507 
the AIS gradually increased across the EOT and expanded to either near-modern dimensions 508 
(Miller et al., 2008; 2020a) or as much as 25% larger than at present day (Katz et al., 2008; 509 
Wilson et al., 2013). Numerical ice sheet modelling studies show a large range of ice volumes 510 
across the EOT. Simulated glaciations lead to sea level fall clustered around 10 m SLE and 511 
25 m SLE relative to present AIS volume (DeConto and Pollard 2003; Pollard and DeConto 512 
2005; Gasson et al., 2014; Ladant et al, 2014; Liakka et al, 2014; Wilson et al., 2013) 513 
(Figure 1d), which corresponds to a total simulated AIS volume up to  83 m SLE. This is 514 
broadly in agreement with sea level falls up to 70 m estimated from low-latitude shallow-515 
marine sequences (e.g. Cramer et al., 2011) (Figure 1c). Both DeConto and Pollard (2003) 516 
and Ladant et al. (2014) simulated isolated big ice caps over East Antarctic highlands 517 
presumably during EOT-1, that ultimately coalesced during Oi-1 (Figure 5a). This is supported 518 
by the geological evidence of glacimarine deposits in the Wilkes Land continental shelf and 519 
rise since 33.6 Ma (Escutia et al., 2005, 2011) and by glacial sediment transport to the 520 
continental slope of the Prydz Bay margin since ~35 Ma (O’Brien et al, 2004). No ice 521 
grounded on the continental shelf at this time (Figure 5a, e.g. Barrett et al., 1989, 2007), and 522 
the continental shelf edge was located farther South than present for most of the Antarctic 523 
margins (Figure 2). 524 
 525 
The Mid-Miocene Climatic Transition (MMCT, ~14.8 - 13.5 Ma) is a period of global cooling 526 
following the extreme warmth of the Mid-Miocene Climatic Optimum (MCO). The onset of 527 
global climatic cooling at ~14.8 Ma marks the start of the MMCT (Böhme, 2003; Flower and 528 
Kennett, 1993; Holbourn et al., 2014; Shevenell et al., 2008). Disconformities in the 529 
ANDRILL AND-2A record (Levy et al., 2016) and across the Ross Sea (De Santis et al., 530 
1999) (De Santis et al., 1999), pulsed deposition of ice-rafted debris offshore Prydz Bay and 531 
the Adélie Land margin (Pierce et al., 2017) together with an increase in sea ice indicators in 532 
the Ross Sea and off East Antarctica (Levy et al., 2016; Sangiorgi et al., 2018) and major 533 
turnover in Southern Ocean diatom species (Crampton et al., 2016), suggest marine ice sheet 534 
advances across the Ross Sea during glacial intervals for the first time since the onset of the  535 
MCO (Figure 5b). Ice sheet advance in the Wilkes Land margin is recorded by erosion of 536 
older sediments from the shelf (Escutia et al., 2011) and an increase in dinocyst assemblages 537 
from the seasonal sea ice zone south of the Antarctic Polar Front (Sangiorgi et al., 2018). 538 
Additionally, less well-dated erosional unconformities in the Weddell Sea (e.g. Huang et al., 539 
2014), Amundsen Sea (e.g. Lindeque et al., 2016; Uenzelmann-Neben and Gohl, 2012), 540 
Bellingshausen Sea-Antarctic Peninsula (e.g. Rebesco et al., 2006; Uenzelmann-Neben, 541 
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2006), Sabrina Coast (Gulick et al., 2017) and in Prydz Bay (e.g. Whitehead et al., 2006), 542 
are attributed to MMCT marine-based ice expansion, and together imply that both the EAIS 543 
and the WAIS expanded onto the continental shelf at this time. An increase in glacial-544 
interglacial amplitude in the far-field δ18O data suggests that the AIS expanded further during 545 
successively, gradually colder glacial phases. This interval of increased glacial expansion 546 
culminated in a major step in the δ18O record at 13.9 Ma (Figure 1b). During the MMCT, 547 
Southern Ocean SSTs cooled by about 6 °C (Holbourn et al., 2007; Sangiorgi et al., 2008). 548 
Bottom water temperatures generally cooled by 2 to 3 °C (Cramer et al., 2011; Lear et al., 549 
2015; Shevenell et al., 2008) and global sea level may have dropped by as much as 50 m 550 
(Miller et al., 2020a), hinting at the possibility of some ice expansion in the Northern 551 
Hemisphere (DeConto et al., 2008). Summer temperatures in the Trans-Antarctic Mountains 552 
declined by >8 °C (Denton and Sugden, 2005) and this cooling has been linked with a shift 553 
from temperate climate wet-based glaciation with a dynamic ice sheet in a warm to 554 
temperature climate to a predominantly dry glaciation style with a more stable terrestrial ice 555 
sheet under moder-like Antarctic polar climatic conditions (Lewis et al., 2008; Lewis and 556 
Ashworth, 2016; Sugden and Denton, 2004).  557 
 558 
The largest benthic foraminifera 𝛅18O shift during this period is of about 1.3 ‰ (e.g. Holbourn 559 
et al., 2013), partly corresponding to an estimated a sea level drop of 35-40 m from interglacial 560 
to glacial. Interestingly, numerical ice sheet models can only simulate such a large interglacial-561 
to-glacial amplitude in ice volume (Gasson et al., 2016, Colleoni et al., 2018a), when using 562 
a reconstructed Mid-Miocene paleogeography (e.g. Paxman et al., 2019). Backstripped sea 563 
level data (Miller et al., 2005, Kominz et al., 2008) and calibrated benthic 𝛅18O sea level 564 
changes (Miller et al., 2020a) revealed potential sea level falls up to 10 to 20 meters below 565 
the present-day mean sea level during the MMCT (Figure 1c), implying a greatly expanded 566 
AIS, perhaps up to 30% larger than today. The compilation of simulated Antarctic ice volume 567 
contributions to global mean sea level for this cold period ranges between +10 to -20 m SLE 568 
relative to present (Gasson et al., 2016, Colleoni et al., 2018a) (Figure 1d, cyan squares).  569 
 570 
The Mid-Pliocene M2 glaciation (~3.312-3.264 Ma) corresponds to a large transient increase 571 
in the deep-sea benthic 𝛅18O records (Figure 1b) with a cooling of at least 3.5°C preceding 572 
the peak of M2 (Karas et al., 2020) and an atmospheric CO2 level drop of about 320-343 ppm 573 
(de la Vega et al., 2020). A compilation of climate proxy data suggests that during this 574 
glaciation, Greenland mountain glaciers expanded (Thiede et al., 2011; Jensen et al., 2000) 575 
and that other ice caps also grew in the Northern Hemisphere (De Schepper et al., 2013; Tan 576 
et al., 2017). In fact, this glaciation marks the end of global warmth of the early Pliocene (5.5 577 
to 3.3 Ma) and the beginning of a step-wise transition towards bipolar cooling that culminated 578 
in continental-scale Northern Hemisphere glaciations ~2.7 Ma. Numerous sedimentary 579 
hiatuses, including the M2 glaciation, are observed in the AND-1B sediment record (western 580 
Ross Sea, Naish et al., 2009a) during the Mid to Late Pliocene. Continental margin 581 
morphology appears to have allowed the AIS to advance to the shelf edge during the M2 582 
glaciation in the Ross Sea (e.g. Kim et al, 2018, McKay et al., 2012a; McKay et al. 2019), 583 
Prydz Bay (O’Brien et al., 2007), Sabrina Coast (Gulick et al., 2017), Wilkes Land (Eittreim 584 
et al., 1995; Escutia et al., 1997; De Santis et al., 2003), and the Antarctic Peninsula and 585 
Amundsen Sea (Rebesco et al., 2006, Gohl et al., 2013). The glacio-eustatic sea level drop 586 
of this period is represented by a major erosional sequence boundary on the New Jersey shelf 587 
(Miller et al., 2005) and global sea level fall of about 30 m at the M2 glaciation (Naish and 588 
Wilson, 2009; Miller et al., 2012; Grant et al., 2019; Miller et al., 2020a) (Figure 1c). Based 589 
on the review of circum-Antarctic evidence of grounding events and sequence stratigraphy, 590 
Bart (2001) suggested indeed, an Antarctic ice volume larger than today and almost as large 591 
as during the LGM, implying the existence of relatively small Northern Hemisphere ice sheets. 592 
In contrast, the compilation of simulated Antarctic ice volume, however, likely underestimates 593 
the ice sheet expansion during this glaciation (Figure 1d) and, instead, yields a global mean 594 
sea level rise up to 5 m above present-day mean sea level (Pollard and DeConto, 2009; Tan 595 
et al., 2017; De Boer et al., 2017a). 596 
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 597 
The Last Glacial Maximum (LGM, ~19-23 ka) is the most recent glaciation that occurred 598 
before present, and as such, is the best documented glaciation. Ice core records have shown 599 
that the atmospheric CO2 levels dropped to about 185 ppm (Lüthi et al., 2008). Global climatic 600 
reconstructions revealed that the global mean temperature dropped by about 4-7 °C (e.g. 601 
Schneider von Deimling et al., 2006; Tierney et al., 2020) compared to present. Marine 602 
benthic and planktic foraminifera recorded a clear 𝛅18O increase (Imbrie et al., 1984, Lisiecki 603 
and Raymo, 2005), actually, observable concomitantly to all past cold glacial periods (Imbrie 604 
et al., 1984, SPECMAP stack; Lisiecki and Raymo 2005, LR04 stack; Westerhold et al., 605 
2020, CENOGRID; Zachos et al., 2008, Figure 1b). Calibrated conversions of the 𝛅18O 606 
record or dated paleo coral reefs suggest a global mean sea level drop ranging between 80 607 
m to 130 m relative to present (Figure 1c) (e.g. Waelbroeck et al., 2009; Bard et al., 1990; 608 
Shackleton, 2000), with a cluster between 110 m and 130 m below present-day mean sea 609 
level. Diatoms and radiolarians show that the sea ice cover was larger than today. Winter sea 610 
ice cover shifted northward by about 5 to 10° (e.g. Gersonde et al., 2005; Benz et al., 2016) 611 
and summer sea ice edge, although more uncertain, might have been located around 60.5°S 612 
(Green et al., 2020 and references therein). Compilation of climate proxies suggest a potential 613 
strengthening and equatorward shift of the Southern Hemisphere westerlies (e.g. Kohfield et 614 
al., 2014; Lamy et al., 2014; Struve et al., 2020), which remains debated (e.g. Kim et al., 615 
2017; Sime et al., 2016; Lamy et al., 2019).   616 
 617 
There is persuasive evidence from the geological record to indicate that the AIS was larger 618 
than present around the time of the global sea level lowstand at ~20 ka, although the extent 619 
of this expansion is well constrained at only a few sites around the continental margin 620 
(Whitehouse, 2018). Both marine and terrestrial geological data indicate that at the LGM, the 621 
AIS almost extended to the continental-shelf break in most sectors (Eittreim et al., 1995; 622 
Anderson et al., 2002, 2014; Hillenbrand et al., 2012, 2014; The RAISED Consortium, 623 
2014; Mackintosh et al., 2014; Arndt et al., 2017; Bart et al., 2018) (Figure 5c), as during 624 
many previous Pleistocene glaciations (e.g. Escutia et al., 2003). However, the AIS did not 625 
advanced up to the continental shelf edge in Prydz Bay (O’Brien et al., 2007; Mackintosh et 626 
al., 2014; Wu et al., 2021, in the Western Ross Sea (Halberstadt et al., 2016; Prothro et al., 627 
2018) and in parts of the Amundsen Sea (e.g. Larter et al., 2014; Klages et al., 2017). 628 
Furthermore, the scenario for ice advance in the Weddell Sea embayment remains uncertain 629 
(The RAISED consortium, 2014; Whitehouse et al., 2017; Nichols et al. 2019). Ice sheet 630 
expansion during the LGM led to a thickening of the AIS of several hundreds of meters almost 631 
in all sectors, especially around West Antarctica as supported by exposure data (see Siegert 632 
et al., this volume). On the Antarctic plateau, ice core 𝛅18O isotopes records suggest that 633 
elevation increased of 270 to 660 meters between the LGM and present-day (Werner et al., 634 
2018). Over West Antarctica, the increase in elevation during the LGM is up to 850 to 1800 635 
meters (Werner et al., 2018).  636 
 637 
The relatively small number of proximal geological records on AIS extent and thickness during 638 
the LGM prevents an accurate constraint on LGM ice volume. Distal, deep ocean benthic 639 
foraminifera 𝛅18O records may provide overall ice volume estimates, but do not allow 640 
disentangling contributions from individual contribution of each ice sheets at the LGM (Simms 641 
et al., 2019, and references therein; Clark and Tarasov, 2014). Ice sheet modeling is one of 642 
the possible approaches to simulate the volume of the AIS at the LGM. Such modeling has 643 
yielded an increase in ice volume of 5.9 to 19.2 m of sea level equivalent (SLE) (Bentley, 644 
1999; Huybrechts, 2002) in the late 1990 and early 2000s. With the improvement of ice sheet 645 
models and climate forcing, the range of AIS contributions to sea level change at LGM has 646 
narrowed to about -5 to -12 m SLE (e.g. Huybrechts, 2002; Golledge et al., 2012; Gomez 647 
et al., 2013; Maris et al., 2014; Briggs et al., 2014; Quiquet et al., 2018, Sutter et al., 2019), 648 
with a cluster around -7 to -8 m SLE (Figure 1d and references therein). Another approach is 649 
to inverse AIS by means of glacial-hydro isostatic adjustment (GIA) models, which describe 650 
the viscous response of the solid Earth to past changes in surface loading by ice and water 651 
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(Whitehouse et al., 2018). This approach has also been used in combination with direct ice 652 
sheet modeling (e.g. Whitehouse et al., 2012b) and/or by making use of constraints on ice 653 
thickness from reconstructions based on exposure age dating, as well as satellite observations 654 
of current uplift (Whitehouse et al., 2012b; Ivins et al., 2013; Argus et al., 2014). Estimates 655 
from GIA modelling for the AIS contribution to global mean sea level amount to -5 to -30 m 656 
SLE with most of the contributions smaller than -13 m SLE (Figure 1d). Older studies had 657 
estimated large sea level contributions generally above 15 m (e.g. Nakada et al.,2000; 658 
Huybrechts, 2002; Peltier and Fairbanks, 2006; Philippon et al., 2006; Bassett et al., 659 
2007), but more recent modeling studies and reconstructions have refined these estimates to 660 
below 13.5 m (Mackintosh et al., 2011; Whitehouse et al.,2012a; Gomez et al., 2013; 661 
Argus et al., 2014; Briggs et al., 2014) with an average contribution of about -10 m SLE (e.g. 662 
Simms et al., 2019 and references therein). 663 
 664 
Despite those improvements, AIS contributions to sea level changes at the LGM remains 665 
poorly constrained (Simms et al., 2019, and references therein, Clark and Tarasov, 2014) 666 
and this has global consequences on the assessment of past, present and future sea level 667 
changes. Land ice retreat in both hemispheres during the last deglaciation have produced a 668 
residual GIA signal that still affects present-day sea level changes measurements (Martín-669 
Español et al., 2016). This residual signal is estimated from modelled reconstructions of 670 
global land ice thickness changes, and spatio-temporal deglaciation history (e.g. ICE-5G to 671 
ICE 7G, GLAC-1, ANU; Peltier et al., 2004; Peltier et al., 2015; Roy and Peltier, 2018; 672 
Tarasov and Peltier, 2002, 2003; Lambeck and Chappell, 2001; Lambeck et al., 2002). To 673 
date, there is no consensus on AIS volumes at the LGM and through the last deglaciation, A 674 
compilation of cosmogenic exposure ages from low-elevation sites shows that the AIS 675 
substantially thinned throughout the Holocene, but mainly after the MWP-1A (Small et al., 676 
2019). The RAISED consortium (2014) provided partial pan-Antarctic grounding line position 677 
at ~15 ka, 10ka and 5ka. In the ice sheets deglaciation scenarios ICE-6G and ICE-7G (Peltier 678 
et al., 2015; Roy and Peltier, 2018), the AIS extent at LGM has been set up to its present-679 
day extent, but with grounded ice filling the embayments currently occupied by the Ross Ice 680 
Shelf, by the Ronne-Filchner Ice Shelf and by the Amery ice shelf. This surely affects the 681 
calculation of GIA and its residual signal and, as such, the assessment of post-glacial and 682 
present-day land ice contribution to on-going sea level changes (Martín-Español et al., 2016). 683 
 684 
At regional scale, the inclusion of realistic, spatially variable relative sea-level forcing through 685 
coupled simulations of 3-D ice-sheet and GIA-modulated sea-level change results in a 686 
stabilising effect on marine-grounded ice sheet dynamics (Gomez et al., 2010). The grounding 687 
line, in fact, advances or retreats in response to the regional ice fluctuation. The latter triggers 688 
viscoelastic solid Earth rebound as well as a change of the local geoid height in response to 689 
the variation of the gravitational pull (e.g. Stocchi et al. 2013). In particular, the predicted 690 
increase in the volume of the WAIS during the last glacial cycle is smaller in the coupled 691 
simulations due to negative feedbacks associated with an increase in near-field water depth. 692 
The latter stems for the combination of ice-driven solid Earth subsidence and counterintuitive 693 
local sea-level rise caused the gravitational attraction of the growing ice sheet’s mass (Gomez 694 
et al., 2013; De Boer et al., 2014b, 2017b; Konrad et al., 2014). At global scale, Gomez et 695 
al. (2020) showed that the retreat of Northern Hemisphere ice sheets during the last 696 
deglaciation and associated sea level rise directly impacts on the dynamical behaviour of the 697 
AIS and conditions its own retreat. Modelled AIS sensitivity on different paleobathymetries 698 
since the Mid-Miocene shows that the position of the AIS advance on the continental shelf 699 
depends on glacio-isostatic adjustment (generating pinning points, see Section 2) and on the 700 
magnitude of global mean sea level changes (Colleoni et al., 2018b; Paxman et al., 2020). 701 
A similar relationship between the AIS stability and global mean sea level changes has 702 
recently been inferred from a North Atlantic deep-ocean benthic 𝛅18O record of the Plio-703 
Pleistocene Transition and the early Pleistocene (Jakob et al., 2020). Based on a range of 704 
Mg/Ca paleothermometer calibrations, the sea level record suggests that the gradual 705 
expansion of the Northern Hemisphere ice sheets, and the consequent substantial lowering 706 
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of global mean sea level, led to an increasing stability of the terrestrial EAIS (Jakob et al., 707 
2020). Other studies also highlight the sensitivity of the marine-based sectors of the AIS to 708 
rapid sea level rise at millennial to sub-millennial time-scales, such as the impact of rapid sea 709 
level rise during the various meltwater pulses episodes of past deglaciations (e.g. Golledge 710 
et al., 2014; Petrini et al., 2018; Turney et al., 2020).  711 
 712 
 713 
 714 
5. Antarctic Ice Sheet response to past climate warmings 715 
 716 
Assessing the AIS behaviour during past periods warmer than today can inform on the 717 
magnitude and timing of past and future sea level changes, as well as on various mechanisms 718 
triggering ice sheet retreats that can vary through time (i.e. atmospheric and/or oceanic 719 
warming). At millennial to sub-millennial scales, the crossing of tipping points caused by 720 
Earth’s climate system feedbacks can cause rapid ice sheet retreats. One example is ocean 721 
warming triggering MISI. Because the global climatic state has been constantly evolving, the 722 
conditions necessary to cross these tipping points have also evolved as well. To highlight this 723 
aspect, several policy-relevant warm periods in the geologic past have been analysed, based 724 
on a few climatic and glaciological indicators synthesized in Figure 6. Note that except for the 725 
sea ice (Figure 6d), all the other variables are expressed as anomaly relative to their present-726 
day value (20th century for MAT and SST).  727 
 728 
The compilation of global mean sea level changes and simulated Antarctic contributions is 729 
exhaustive and illustrates a key focus of the paleo polar community has been producing over 730 
recent decades. We do not discard computed estimates of AIS contribution to global mean 731 
sea level change that could appear out of the range of data. Instead, we consider such values 732 
as part of the uncertainties associated with uncertain models physics and boundary conditions. 733 
References for all compiled data and simulated ice volumes are provided in the caption of 734 
Figure 1.  735 
 736 
The Mid-Miocene Climatic Optimum (MCO, 17-14.8 Ma). The MCO presents an interesting 737 
analogue for assessment of climate projected for the next decades to centuries 738 
(Steinthorsdottir et al., 2020). At that time, Antarctica hosted the only existing continental-739 
size ice sheet. Geological proxy data indicate atmospheric CO2 concentrations generally 740 
varied between 300 ppm and 600 ppm on glacial-interglacial (orbital) time scales during much 741 
of the MCO (Foster et al., 2012; Greenop et al., 2014), but it may have reached values as 742 
high as 840 ppm (Retallack, 2009) (Figure 1a). The limited existing geological proxies of 743 
terrestrial Antarctic temperature, from the Ross Sea (Warny et al., 2009) and off Adélie Land 744 
(Sangiorgi et al., 2018), indicate a surface air temperature warming of approximately 14°C to 745 
25°C relative to today. Comparison with the global Mean Annual Temperature (MAT) clearly 746 
emphasises strong polar amplification occurred during the MCO (Goldner et al., 2014). Sub-747 
Water Temperature (SWT) and SST reconstructions from the Ross Sea (ANDRILL-2A, Levy 748 
et al., 2016) and from the Adélie Land margins (Sangiorgi et al., 2018, Hartman et al., 2018) 749 
also support this polar amplification (Figure 6c). On the continental rise (paleo latitude 53°S, 750 
Sangiorgi et al., 2018), a 5-10°C SWT warming (likely summer) was recorded, but on the 751 
continental shelf (~77°S) this estimated warming was even larger, reaching 10-20°C through 752 
the MCO.  753 

Together, far-field data and modelling experiments suggest a highly dynamic ice sheet during 754 
the MCO. The AIS was mostly responsive to eccentricity-modulated precession affecting local 755 
insolation and leading to widespread inland retreat of the land-terminating ice sheet on glacial-756 
interglacial timescales (e.g. Holbourn et al., 2013). Levy et al. (2019) suggested glacial to 757 
interglacial ice volume fluctuations were of about 30 to 46 m SLE for a 𝛅18O shift of about 758 
0.88‰, which was successfully simulated by Gasson et al., (2016) and Colleoni et al., 759 
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(2018a) using idealised (but representative) mid-Miocene boundary conditions. Geological 760 
records recovered adjacent to the EAIS suggest it advanced and retreated many times through 761 
the TAM during the MCO (Hauptvogel and Passchier, 2012), but did not advance far beyond 762 
the coastline during glacial intervals (Levy et al., 2016). The cored interval spanning ~17 to 763 
15 Ma at Integrated Ocean Discovery Program (IODP) Site U1521 (McKay et al., 2019) 764 
consists of diatom-rich mudstone and diatomite, which also indicates ice distal environments 765 
in the Ross Sea through the MCO.Sediments collected at IODP Site U1356, off the coast of 766 
the Adélie Land margin  (East Antarctica), suggest open-water conditions at the site 767 
throughout the MCO (Sangiorgi et al., 2018). Modelling studies suggest the Wilkes Subglacial 768 
Basin remained free of grounded ice during warm interglacial episodes through the early to 769 
mid-Miocene (Gasson et al., 2016; Colleoni et al., 2018a; Paxman et al., 2020) but it is 770 
unclear whether grounded ice advanced across the region during glacial intervals prior to the 771 
MMCT (Pierce et al., 2017). Mg/Ca calibrated sea level and sequence boundary estimates 772 
suggest Global Mean Sea Level (GMSL) rise ranging from +20 meters to + 30 meters above 773 
present (Miller et al., 2005; Kominz et al., 2008) (Figure 6e). The compilation of simulated 774 
AIS contributions to GMSL vary between +15 m SLE to + 35 m SLE (Langebroek et al 2009; 775 
Gasson et al. 2016; Colleoni et al., 2018b; Stap et al. 2019) (Figure 6e). Such a large range 776 
mostly results from the use of different ice sheet models, different bed topographies and 777 
bathymetries, and different climate forcing in the mid-Miocene experiments. The range of 778 
potential Antarctic ice sheet GMSL contribution was significantly to +16 to +17 meters by 779 
Gasson et al. (2016), and Colleoni et al. (2018b) using an idealised Mid-Miocene 780 
paleotopography similar to that of Paxman et al. (2019), a prescribed atmospheric CO2 of 500 781 
ppm. 782 

The mid-Pliocene Warm Period (mPWP, 3.3 - 3 Ma) is considered as one of the most 783 
geologically accessible and relevant examples of climate change driven by atmospheric CO2 784 
levels equivalent to present-day one (Naish & Zwartz, 2012; Masson-Delmotte, 2013; 785 
Haywood et al., 2016). Atmospheric CO2 levels ranged between 300 ppm and 450 ppm and 786 
global mean temperature was about 2-3°C warmer than present during the warmest 787 
interglacials (Masson-Delmotte, 2013) (Figure 6a & 6b). One of the striking characteristics 788 
of the mPWP is that the SST proxy compilations reveal a meridional temperature gradient 789 
weaker than today (Figure 4), characterised by expansion of tropical to sub-tropical bands, 790 
no boreal and reduced austral summer sea-ice and thus a strong northern and southern polar 791 
amplification (e.g. Lunt et al., 2012; Haywood et al., 2020). Modelling showed that such SST 792 
patterns reflected a weaker Hadley circulation than today (Brierley et al., 2009; Haywood et 793 
al., 2020). In the Southern high-latitudes, the coastal Antarctic region was up to 6°C warmer 794 
than today (e.g. McKay et al., 2012a; compilation in Dowsett et al., 2012) (Figure 6b) mostly 795 
due to the fact that summer sea-ice and the ice sheet had retreated and the APF had 796 
contracted to more southern latitudes (Taylor-Silva and Riesselman, 2018). Evidence 797 
documents episodic sea ice in the Ross Sea, and offshore Adélie Land and in Prydz Bay (e.g. 798 
McKay et al., 2012a; compilation in Dowsett et al., 2012) (Figure 6d).  Seasonal sea ice was 799 
likely present in the Weddell Sea (Burckle et al. 1990). Reconstructed SSTs show a pan-800 
Antarctic warming of up to 5°C on the continental slope and rise (Whitehead and Bohaty, 801 
2003; Escutia et al., 2009). SSTs also show a warming up to 6°C in the Ross Sea (McKay 802 
et al., 2012)(Figure 6c), which was likely caused by the sea-ice albedo feedback, and 803 
decreasing local albedo due to the retreat of coastal land ice. 804 
 805 
 806 
Global mean sea level reconstructions (paleo-shorelines and sequence stratigraphy) indicate 807 
a sea level rise between about +15 m to +28 m (Wardlay and Quinn, 1991; Dwyer and 808 
Chandler, 2009; Kulpecz et al 2009; Naish and Wilson, 2009; Sosdian and Rosenthal, 809 
2009; Miller et al., 2012; Winnick and Caves, 2015 ; Dimitru et al 2019; Miller et al., 2020a), 810 
whereas Mg/Ca paleothermometry calibration of benthic δ18O records suggest a GMSL up to 811 
+40 m above present (Figure 6e). GMSL changes based solely on benthic δ18O records, 812 
however,  yield large uncertainties (±15m) (e.g. Raymo, 2018).GMSL change amplitudes 813 
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larger than +30 m above present can only be explained by melting the terrestrial sectors of 814 
the AIS, but retreat of the the EAIS in the Ross Sea since 8 Ma appears not likely because a 815 
recent study that found extremely low concentrations of cosmogenic 10Be and 26Al isotopes in 816 
the ANDRILL AND-1B marine sediment core (Shakun et al., 2018). In addition, many of these 817 
peak GMSL estimates (e.g. Miller et al., 2012; Hearty et al., 2020) have not been corrected 818 
for regional deviations due to tectonics, glacio-isostatic adjustment, and dynamic topography 819 
(Raymo et al., 2011; Rovere et al., 2015; Dumitru et al., 2019). A reassesment of Grant et 820 
al. (2019) based on far-field data implies GMSL during the warmest mid-Pliocene interglacial 821 
was no higher than +21 m (Grant & Naish, 2021). This new estimate is very close to the 822 
average of +20 m above present provided by sea level reconstructions based on sequence 823 
stratigraphy and paleo-shore lines.  824 
 825 
The compilation of simulated Antarctic ice sheet contributions to GMSL ranges from ~ +3 m 826 
SLE to +15 m SLE (de Boer et al., 2017; Pollard and DeConto 2009; Pollard & DeConto, 827 
2012; de Boer et al., 2015; Austerman et al., 2015; Gasson et al., 2015, Yan et al., 2016; 828 
DeConto & Pollard, 2016; Dolan et al., 2018) (Figure 6e). Although there is no observational 829 
evidence of a potential melting from the Greenland Ice Sheet so far, recent transient numerical 830 
simulations suggest that the Greenland ice sheet melting could have contributed up to about 831 
6 m SLE to GMSL rise (De Boer et al., 2017). Based on this estimate, the lower bound GMSL 832 
rise (+15 m) implies a contribution of the AIS no larger than 9 m SLE.  Considering the upper 833 
bound of GMSL rise of about +20 m to + 28 m above present, the maximum contribution of 834 
the AIS thus ranges between +15 to +22 m SLE, implying melting of the WAIS and all marine- 835 
based sectors of the EAIS (e.g. DeConto and Pollard, 2016; Golledge et al., 2017). Site 836 
ANDRILL AND-1B in the Ross Sea recorded numerous occurrences of open-marine 837 
conditions suggesting frequent retreats of the Ross Ice Shelf during the mPWP (Naish et al., 838 
2009). Provenance of fine-grained detritus offshore the Wilkes Subglacial Basin and ice-rafted 839 
debris offshore the Aurora Subglacial Basin and Prydz Bay was attributed to the retreat of 840 
marine-based sectors of the East Antarctic ice sheet (Whitehead et al. 2006; Cook et al., 841 
2013, 2014;  Bertram et al., 2018; Blackburn et al., 2020). Similar circum-Antarctic retreat 842 
of the marine-based sectors was simulated for one of the Early Pliocene interglacials 843 
(Golledge et al., 2017), supported by sedimentological and geological evidence of a circum-844 
Antarctic warming events during that period (e.g. Whitehead and Bohaty, 2003; Escutia et 845 
al 2009; McKay et al., 2012a). 846 
 847 
Marine Isotope Stage 31 (MIS 31, 1.081-1.062 Ma) is a prominent mid-Pleistocene 848 
interglacial categorised as “super interglacial” based on the expanded lacustrine sediment 849 
record from Lake El'gygytgyn in Siberia (Melles et al., 2012). It corresponded to an 850 
exceptionally high eccentricity and obliquity inducing particularly intense high-latitude 851 
summers. The level of atmospheric CO2 is not well known for this interval but ranges from 300 852 
to 420 ppm (Honisch et al., 2009) (Figure 6a). A circum-Antarctic warming has been inferred 853 
from sediment core analysis in the Ross Sea (Scherer et al., 2008; Naish et al., 2009), in 854 
Prydz Bay (Villa et al., 2008), on the Adélie Land margin and in the Antarctic Peninsula 855 
(Beltran et al., 2020). In particular, the presence of diatoms in the Cape Roberts sediment 856 
record (Scherer et al. 2008) suggested a 3-5 °C warming of upper ocean temperatures 857 
compared to today, with seasonally open-ocean (no summer sea ice) (Figure 6d). For the 858 
Adélie Land margin and the Antarctic Peninsula, Beltran et al. (2020) reconstructed summer 859 
SSTs that were on average were 3°C to 6°C warmer than today (Figure 6c). Similar warm 860 
conditions are recorded in the Ross Sea at site ANDRILL AND-1B as indicated by seasonal 861 
open-ocean conditions (Figure 6d) and suggesting a retreat of the Ross Ice Shelf (Naish et 862 
al., 2009; McKay et al., 2012b). Global mean sea level rise during MIS 31 is relatively poorly 863 
constrained from far-field records. Sea-level indicators preserved in coastal cliffs of the 864 
Northern Cape Province of South Africa and from Cape Range, Western Australia, suggest 865 
highstands not more higher than +15 – 16.5 m above present mean sea level (Hearty et al., 866 
2020; Sandstrom et al., 2020). Note that those estimates are not corrected from GIA, 867 
dynamic topography and local tectonic. Far-field evidences of four consecutive Middle 868 
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Pleistocene Transition sea-level highstands between MIS 31 and MIS 35 were identified in a 869 
speleothem record from a western Sicily cave (Mediterranean Sea) (Stocchi et al., 2017). 870 
The peculiarity of this marine cave is that it has been last flooded between MIS 35 and MIS 871 
31, and has been tectonically uplifted to higher elevations afterward. Among several GIA-872 
modulated relative sea level scenarios, only those accounting for a significant AIS retreat up 873 
to about 25 m SLE at MIS 31 and 35, are capable to flood the marine Sicilian cave. The 874 
compilation of simulated AIS melting contribution to GMSL ranges from 2 to 10 m SLE 875 
(DeConto et al., 2012; de Boer et al. 2013; Beltran et al 2020) (Figure 6e). The upper bound 876 
of this range is in agreement with far-field, though uncorrected, sea level changes and indicate 877 
a large WAIS retreat, with a modest contribution from East Antarctic marine-based sectors. In 878 
fact, mineralogical provenance from IBRD from ODP Site U1090 (South Atlantic) and ODP 879 
Site U1165 (Prydz Bay) revealed that the EAIS retreated significantly over MIS 31 and 880 
particularly in the Prydz Bay region. However, other sectors of the EAIS were still 881 
characterized by active marine margins (Teitler et al., 2015). Beltran et al. (2020) suggested 882 
that the AIS retreat was caused by a stronger advection of Circumpolar Deep Water (CDW) 883 
resulting from the changes of the westerlies (subpolar jet). Such process was also inferred 884 
from changes in the geochemical composition of Holocene foraminifera shells from the 885 
Amundsen Sea and the aeolian dust from a West Antarctic ice core record. Both geological. 886 
evidence support the notion of enhanced advection of CDW onto the continental shelf due to 887 
a strengthening / poleward shift of the westerlies can drive WAIS retreat (Hillenbrand et al., 888 
2017). 889 
 890 

Marine Isotope Stage 11 (MIS 11, 425-375 ka) occurred close to the Mid-Bruhnes Event 891 
(Figure 1). It is the Late Pleistocene warm stage considered as one of the closest analogues 892 
to our future because astronomical forcing of a few time slices within MIS 11 are very similar 893 
to today (Loutre and Berger, 2003). MIS 11 is also the oldest middle Pleistocene interglacial 894 
categorised as a “super interglacial” based on lacustrine sediment records from the Lake 895 
El'gygytgyn in Siberia (Melles et al, 2012). Global mean air temperature was 1.5-3°C higher 896 
compared to modern temperatures (Figure 6b) although atmospheric CO2 levels were around 897 
280 ppm (Figure 6a). On the Antarctic plateau, the surface air temperature increased by 2°C 898 
to 3°C (Jouzel et al., 2007; Uemura et al., 2018). A polar amplification occurred during that 899 
period but was reduced compared to MIS 31 or older warm periods. MIS 11 is not really an 900 
intense but brief interglacial such as MIS 5e (130-116 ka, see below); its major characteristic 901 
is its longer duration of ~ 50,000 years (Tzedakis et al., 2012), which may have been key to 902 
ice sheet melting (Irvali et al., 2020). Reconstructed SSTs were not much warmer than 903 
modern temperatures (e.g. Hodell et al., 2000; King and Howard, 2000; Becquey and 904 
Gersonde, 2002, 2003a, 2003b). In fact, geological evidence supports the idea that a modest 905 
but sustain warming was at the origin of ice sheet retreat in the Wilkes Subglacial basin during 906 
MIS 11 (Wilson et al., 2018; Blackburn et al., 2020). Recent modelling studies, indeed, 907 
showed that the WAIS and part of the EAIS retreat could occur with a limited warming of 908 
+0.4°C if applied for a duration of 4 000 years (Mas e Braga et al., 2021). As with other past 909 
intervals, the absence of ice proximal oceanic temperature reconstructions is thus one of the 910 
critical gaps to constrain ice sheet simulations of this interval. Reconstructed GMSL from data 911 
suggest a rise of about +13 m above present sea level (Raymo and Mitrovica, 2012; Roberts 912 
et al. 2012) and up to +20 m during MIS 11 (Kindler and Hearty, 2000; Hearty et al., 1999; 913 
Brigham-Grette, 1999). Such a range of sea level rise implies the complete melting of both 914 
the Greenland Ice Sheet and the WAIS, which would account for about 12 m SLE, leaving 915 
about 8 m SLE from the EAIS melting (e.g. Lythe et al., 2001; Warrick et al., 1996. Mas e 916 
Braga et al. (2021) recently simulated a contribution from the WAIS around 4.3 - 4.5 m SLE 917 
and a contribution from the EAIS ranging from 2.3 to 3.7 m SLE. Sedimentological analyses 918 
from Erik Drift, Southeast Greenland reveal that most of South Greenland deglaciated during 919 
MIS 11 (Reyes et al., 2014). The compilation of simulated AIS contributions to GMSL ranges 920 
from ~ -3 m SLE to + 13 m SLE (Tigchelaar et al. 2018; Sutter et al. 2019; Mas e Braga et 921 
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al., 2021) (Figure 6e) and in absence of further geological constraints, it is difficult to refine 922 
this range.  923 

Marine Isotope Stage 5e or Last Interglacial (LIG, 130-116 ka) was the most recent 924 
interglacial with temperatures warmer than today. It has long been considered as an analogue 925 
for the future climatic changes (Jansen et al., 2007). However, at the peak of the LIG, the 926 
astronomical forcing differed too much from the present-day to be a true analogue 927 
(Ganopolsky and Robinson, 2011). Nevertheless, the LIG presents a very useful time period 928 
for understanding the Earth System response (e.g. internal feedbacks in the climate system) 929 
to the Paris Agreement temperature targets (e.g. IPCC 1.5C Special Report). Atmospheric 930 
CO2 concentration were low (Figure 6a), and reconstructed global mean temperature is 931 
estimated to have been about 0.5-2°C higher than today (Masson-Delmotte et al., 2013; 932 
Hoffman et al., 2017) (Figure 6b). The East Antarctic plateau recorded a warming up to 5.5°C 933 
at ~128.66 ka followed by a plateau around 2°C (Petit et al., 1999; Watanabe et al, 2003; 934 
Jouzel et al., 2007). A polar amplification thus occurred during this period (Capron et al., 935 
2017), and was broadly of the same magnitude than during MIS 11. Antarctic continental 936 
margin sediment records imply seasonal sea ice in most of the sensitive marine-based sectors 937 
(e.g. Konfirst et al. 2012; Presti et al. 2011) (Figure 6d). Global mean sea level rise is 938 
estimated to about +5.9 m to +9.3 m above present level from paleo-shorelines (Dutton et al., 939 
2015 and ref. therein) and up to almost +20 m based on calibration of benthic and planktonic 940 
𝛅18O records (Waelbroeck et al., 2009; Rohling et al., 2009) (Figure 6d), also involving some 941 
Greenland Ice Sheet melting. However, ice core constraints and modelling studies suggest 942 
that the contribution from Greenland was likely about +2-3m (Dahl-Jensen et al, 2013), 943 
implying a significant meltwater contribution from Antarctica, although also a Greenland Ice 944 
Sheet contribution of up to +5.1 m SLE has been suggested (Yau et al., 2016). The 945 
compilation of simulated AIS melting contributions to GMSL range from about -2 m SLE to + 946 
8 m SLE (Figure 6e) (e.g. Huybrechts et al. 2002; Pollard and DeConto 2012; de Boer et 947 
al. 2015; Goelzer et al. 2016; Sutter et al. 2016; DeConto and Pollard 2016; Tigchelaar et 948 
al. 2018; Quiquet et al. 2018; Colleoni et al. 2018b; Sutter et al. 2019; compilation in De 949 
Boer et al., 2019). Antarctic ice core records of 𝛅18O, considered as a proxy for ice volume 950 
changes, have been analysed in an attempt to better constrain the individual contribution of 951 
Antarctica to GMSL. Based on these analyses, numerical climate and ice sheet simulations 952 
suggest that part of the 𝛅18O signal could be explained by sea ice reduction rather than ice 953 
sheet retreat (e.g. Holloway et al., 2016). In absence of ice proximal ocean temperature 954 
reconstructions, as for other Late Pleistocene interglacials, it is very difficult to constrain the 955 
magnitude and timing of the Antarctic ice sheet retreat during this interval. The magnitude of 956 
oceanic warming required to trigger a large retreat of the marine-based sectors at that time 957 
varies between models from +2°C to +3°C relative to pre-industrial temperature (e.g. Sutter 958 
et al., 2016, DeConto and Pollard, 2016, Turney et at., 2020). However, Turney et al. (2020) 959 
also showed that with a modest ocean warming of +0.4°C, the major ice shelves disintegrated 960 
within 600 years. While continental margin sediments offshore from the Wilkes Subglacial 961 
Basin suggested a reduction of this marine-based sector of the EAIS during MIS 5e (Wilson 962 
et al. 2018), geological evidence from the WAIS are contradictory and suggests either that no 963 
major ice sheet retreat occurred (e.g. Hillenbrand et al. 2002,2009; Spector et al., 2018; 964 
Clark et al., 2020) or that considerable retreat took place (e.g. Turney et al. 2020). 965 

 966 
6. Antarctica and global teleconnections: the bipolar seesaw 967 
 968 
Inter-hemispheric heat transport, the so-called bipolar see-saw (Stocker and Johnsen, 969 
2003), is another key process affecting AIS evolution. It regulates oceanic and atmospheric 970 
temperatures at sub-millennial to millennial time scales. The bipolar see-saw mechanism was 971 
hypothesized by Stoker et al. (1998) on the basis of observed asynchronous changes in ice 972 
core records between Greenland and Antarctica for some of the Dansgaard/Oeschger events 973 
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that occurred during the last glacial cycle (Blunier et al., 1998). Stocker and Johnsen, (2003) 974 
hypothesized that icebergs melting and meltwater discharges close to the North Atlantic 975 
convection sites caused a substantial weakening of the Atlantic Meridional Oceanic Circulation 976 
(AMOC).  Such a slowdown of the AMOC could have induced a gradual heat transfer to the 977 
South, with a lag of a few centuries to millenia, thus explaining the asynchronous temperature 978 
changes between Greenland and Antarctic ice core records during the last glacial period 979 
(EPICA Community Members, 2006, Pedro et al., 2018). Recent findings confirm that for 980 
example, the cooling of the Antarctic Cold Reversal is synchronous with the Bølling–Allerød 981 
warming in the Northern Hemisphere 14,600 years ago (Stenni et al., 2011). The Bølling–982 
Allerød is coincident with the occurrence of meltwater pulse 1A (MWP-1A) that caused a rapid 983 
sea level rise of about 9 to 20 m (e.g. Deschamps et al., 2012; Lambeck et al.,2014; Peltier 984 
et al.,2015; Liu et al., 2016) at a rate of 4 meters/100 yr (e.g. Peltier and Fairbanks, 2006; 985 
Deschamps et al., 2012; Carlson et al., 2012). Although some studies have considered the 986 
AIS as a potential contributor to MWP-1A (e.g. Clark et al., 1996; Bassett et al., 2007; 987 
Weaver et al., 2003; Golledge et al., 2014), most geological and glaciological studies argue 988 
against a large Antarctic contribution from either sector (e.g. Licht et al. 2004; Bentley et al., 989 
2010, The RAISED Consortium, 2014; Spector et al., 2017). However, IBRD records from 990 
“Iceberg Alley” in the Scotia Sea showed recorded the occurrence of eight events between 20 991 
ka and 9 ka, including the MWP-1A (e.g. Weber et al., 2014). Etourneau et al., (2019) showed 992 
that a +0.3–1.5 °C increase in subsurface ocean temperature (50–400 m) in the northeastern 993 
Antarctic Peninsula drove a major collapse and recession of the regional ice shelf during both 994 
the instrumental period and the last 9000 years. Modeling studies support the idea of a 995 
responsive marine-based sectors of the AIS at millennial time scales, driven by oceanic 996 
melting rather than by atmospheric forcing triggering fast ice sheet instabilities (e.g. DeConto 997 
and Pollard (2009); Golledge et al., 2014; Blasco et al., 2019; Lowry et al., 2019).  998 
 999 
Meltwater sources of such millennial oscillations are poorly constrained (e.g. Clark et al., 1000 
2002, Peltier et al., 2005; Liu et al., 2016). This limits our understanding of the causes of the 1001 
events, i.e. warm water advection to the grounding line (e.g. Golledge et al., 2014) or bipolar 1002 
seesaw caused by melting Northern Hemisphere ice sheets (e.g. Menviel et al., 2011), abrupt 1003 
global mean sea level rise (e.g. Clark et al., 2002; Golledge et al., 2014; Gomez et al., 2020), 1004 
atmospheric forcing (e.g. WAIS Divide Project members, 2015), or feedbacks within the 1005 
climate system. Past, present and future meltwater-climate feedbacks have been widely 1006 
studied and there is an extensive literature on modelling the global climate response to 1007 
freshwater discharge from ice sheets (e.g. Stammer et al., 2008; Roche et al., 2014; Boning 1008 
et al., 2016; Bronselaer et al., 2018, Golledge et al., 2019; Sadai et al., 2020). Results from 1009 
these studies highlight the role of altered inter-hemispheric heat transport on the global climate 1010 
both in the past and in the future. Different mechanisms respond to the freshwater at different 1011 
timescales but the overall feedbacks loop spans the millennial scale (Turney et al., 2020). 1012 
The sequence of those feedbacks loops is illustrated in Figure 7 and is based on two recent 1013 
contributions, i.e., Turney et al. (2020) for the LIG (130-116 ka), and Golledge et al. (2019) 1014 
for projected climate changes until 2100 CE following RCP 8.5 emission scenario. 1015 
 1016 
Turney et al (2020) reported evidence of substantial ice discharge across the Weddell Sea 1017 
sector during the LIG based on a blue-ice core record. Substantiated by with climate and ice 1018 
sheet simulations, they suggest that the ice discharge (and subsequent multi-meter global 1019 
mean sea level rise) was caused by a millennial-scale oceanic warming following freshwater 1020 
discharge in the Northern high latitudes (Heinrich event 11 at ~ 135-130 ka) and a weakening 1021 
of the AMOC (Böhm et al., 2015). This mechanism corresponds to the bipolar see-saw. 1022 
Turney et al., (2020) identified a loop of positive ice-sheet-climate feedbacks that further 1023 
amplified the warming close to the Antarctic margin. Grant et al. (2014) identified two main 1024 
meltwater pulses, one at 139 ka pre-dating Heinrich event 11 (135 ± 1 and 130 ± 2 ka) and 1025 
one occurring at about 133 ka during this Heinrich event. Marino et al. (2015) found that 1026 
Heinrich event 11 coincided with a rapid sea-level rise mostly explained by Northern 1027 
hemisphere ice sheets deglaciation. The occurrence of this meltwater pulse supports the 1028 
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positive feedbacks described in Turney et al. (2020) and potentially explains the delayed 1029 
timing of AIS contribution to the GMSL highstand at the LIG. A delay of a few thousands of 1030 
years is supported by the idealised modelling study by Blasco et al. (2019), suggesting that 1031 
the bipolar seesaw accumulated heat in the Southern Hemisphere, enhancing ocean warming 1032 
on a millennial time scale during the last deglaciation. Similarly, Clark et al. (2020) suggested 1033 
that the rate of global mean sea level changes during the LIG as well as spatial sea level 1034 
variations could be explained by the responses of the Antarctic and Greenland ice sheets to 1035 
Heinrich event 11 and associated climate feedbacks. The sequence of feedbacks in Turney 1036 
et al. (2020) can be applied to other interglacials and is as follows (Figure 7, top): 1037 
 1038 

(1) Northern high-latitude freshwater was released during the Heinrich 11 event (~135 and 1039 
130 ka); 1040 

(2) Subsequently, a weakening of North Atlantic Deep Water (NADW) flow was observed, 1041 
and heat was transferred gradually southward. 1042 

(3) An increased in meridional inter-hemispheric thermal gradient due to Northern high 1043 
latitudes cooling induced a southward shift of the Inter-Tropical Convergence Zone 1044 
(ITCZ) and of the Southern Hemisphere westerly winds (e.g. Shevenell et al., 2011). 1045 

(4) The southward shift and strengthening of the westerlies (e.g. Hillenbrand et al., 2017, 1046 
Etourneau et al., 2019; Lamy et al., 2019, Dickens et al., 2019) drove an enhanced 1047 
northward Ekman transport and a stronger southward advection of CDW on the 1048 
continental shelf (e.g. Hillenbrand et al., 2017, Minzoni et al., 2017).  1049 

(5) Enhanced advection of CDW amplified the melting of the AIS and of the sea ice, 1050 
triggering the AIS retreat. Northward transport of cool surface waters caused sea ice 1051 
expansion and local atmospheric cooling. 1052 

(6) Large freshwater discharge caused a reduction in Antarctic Bottom Water (AABW) 1053 
formation and a subsequent increase in NADW formation. Increase NADW formation 1054 
led to heat transfer towards northern high latitudes, and thus a bipolar see-saw swing 1055 
towards the north. 1056 

 1057 
Golledge et al. (2019) simulated a similar ice-sheet-climate sequence of feedbacks by 1058 
considering on-going and projected meltwater discharge from the Greenland and Antarctic ice 1059 
sheets until 2100 CE at the same time. Results show that a slow-down of the AMOC occurs 1060 
in response to Greenland Ice Sheet melting, and that projected meltwater discharge from 1061 
Antarctica can trap heat of CDW at intermediate depths on the continental shelf (Silvano et 1062 
al., 2018, Bronselear et al., 2018; Sadai et al., 2020), establishing a positive feedback 1063 
establishes that further enhances AIS melting (Figure 7, bottom): 1064 
 1065 

(1) Projected freshwater release at Northern and Southern high-latitudes; 1066 
(2) A weakening of NADW formation is observed, and heat is transferred gradually 1067 

southward; In the South, freshwater stratifies the continental shelf waters. 1068 
(3) Increased in meridional inter-hemispheric thermal gradient induces a weak southward 1069 

shift of the ITCZ and of the Southern Hemisphere Westerly winds. 1070 
(4) Southward shift of the westerly winds drives an enhanced northward Ekman transport 1071 

compensated by a stronger southward advection of CDW on the continental shelves, 1072 
which amplifies the melting of Antarctic ice shelves and sea ice. 1073 

(5) Continental shelf water stratification fosters a northward Ekman transport of cool 1074 
surface waters associated with sea ice expansion and local atmospheric cooling. This 1075 
mechanism further amplifies the advection of CDW to the AIS grounding line and 1076 
initiates its retreat. 1077 

(6) Larger freshwater release further causes a reduction in AABW formation.  1078 
 1079 
Compared to Turney et al. (2020), the sequence of processes and feedbacks in 2100 remains 1080 
incomplete and stops before all the heat from the North is transferred to South. This suggests 1081 
that additional decades to centuries are needed for the effects of the bipolar see-saw on 1082 
southern high latitudes to be felt. 1083 
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 1084 
 1085 
7. The PAIS legacy: bridging the past and the future 1086 
 1087 
7.1 The PAIS legacy 1088 
 1089 
The PAIS legacy is clearly one of successful delivery on addressing high-level scientific 1090 
priorities. Beyond this, it is also the story of a long-lasting network of collaborations, among 1091 
different nations and researchers and striving to share scientific infrastructure and capability 1092 
to investigate remote and challenging Antarctic regions and to address high-level scientific 1093 
priorities. The multidisciplinary concept of the PAIS programme represented the key to its 1094 
success. Eight years after the start of the programme, PAIS achievements are many, both in 1095 
terms of field campaigns and in terms of scientific advances concerning Antarctic ice sheet 1096 
dynamics. Several projects fostered by the PAIS programme fostered, which contributed to 1097 
major scientific advances in constraining AIS contribution to past sea level changes, fostered 1098 
by the PAIS programme, are briefly summarized below. This list is far from being exhaustive 1099 
and the interested readers can refer to the other chapters of this book for more detailed 1100 
descriptions of PAIS research outcomes and other time periods not discussed here. 1101 
 1102 
Antarctic Ice Sheet sensitivity during past high-CO2 worlds and its contribution to 1103 
global sea-level change 1104 

 1105 
Geological proxies from the Antarctic continental margin have improved reconstructions of 1106 
ocean and land temperatures, sea-ice extent, ice sheet extent, subglacial hydrology, carbon 1107 
cycle feedbacks and paleogeography for past warm climate states. This has provided improved 1108 
boundary conditions for testing and developing ice sheet and climate models skills and 1109 
performance, as well as evaluating model sensitivity. Significant outcomes include: 1110 
 1111 

§ Reconciling southern high-latitude meridional temperature gradients and polar 1112 
amplification between model simulations and data during Greenhouse climates (e.g 1113 
Pross et al., 2012; DeConto et al., 2012) and new knowledge of Antarctic margins 1114 
SSTs and SWTs during the MCO, the mPWP and MIS 31 (McKay et al., 2012, Levy 1115 
et al., 2016, Sangiorgi et al., 2018; Hartman et al., 2018; Beltran et al, 2020). Polar 1116 
amplification is much larger during the MCO, mPWP and MIS 31 than during the 1117 
Pleistocene interglacials. Those findings allow an estimate of Earth’s climate sensitivity 1118 
to high atmospheric CO2 concentrations. 1119 

§ Constraining equilibrium and transient ice volumes (e.g. de Boer et al., 2015; 1120 
DeConto et al., 2012; Pollard et al., 2015; DeConto & Pollard, 2016; Goelzer et al., 1121 
2016; Gasson et al., 2016; Golledge et al., 2017; Dolan et al., 2018; Clark et al., 1122 
2019, Stap et al., 2019), and the contribution to global sea-level under past “warmer-1123 
than-present” climates (e.g. Miller et al., 2012; Dutton et al., 2015; Miller et al., 1124 
2020a, 2020b). 1125 

§ Recognition of the importance of bedrock topography and paleobathymetry on past 1126 
Antarctic ice volume reconstructions (e.g. Gasson et al., 2016 building on Wilson & 1127 
Luyendyke, 2009; Hochmuth and Gohl, 2019; Paxman et al., 2019; Hochmuth et 1128 
al., 2020, Paxman et al., 2020) and sensitivity to ocean warming (e.g. Colleoni et al., 1129 
2018a; Paxman et al., 2020).  1130 

§ Recognition of the sensitivity of marine-based sectors of the EAIS from models and 1131 
data (e.g. Cook et al., 2013, 2014; Reinardy et al., 2015; Bertram et al., 2018; Pierce 1132 
et al., 2017; Scherer et al., 2016; Levy et al., 2016; Gasson et al., 2016; Aitken et 1133 
al., 2016; Gulick et al., 2017; Simkins et al., 2017; Golledge et al., 2017b; Wilson 1134 
et al., 2018; Blackburn et al., 2020). 1135 



 

 22 

§ Insights into the influence of mean climate state (CO2) on the response of the AIS to 1136 
orbital forcing (e.g. Dolan et al., 2011; Patterson et al., 2014; Levy et al., 2019 1137 
building on concepts in Naish et al., 2009; Stap et al., 2019, 2020, Sutter et al., 2019). 1138 

 1139 
Geological evidence of ocean forcing and marine ice sheet instability:  1140 

 1141 
The potential for abrupt and non-linear “runaway” retreat of the marine-based sectors of the 1142 
AIS due to marine ice sheet instability (MISI) and potentially also marine ice cliff instability 1143 
(MICI) up until recently had only been mathematically simulated in ice sheet models. 1144 
 1145 

§ Geological observations of the last deglaciation and recent observations coupled with 1146 
models have now identified MISI during the Holocene after atmospheric forcing had 1147 
weakened in the Ross Sea (e.g. Jones et al., 2015; McKay et al., 2016; Spector et 1148 
al., 2017; Bart and Tulaczyk, 2020), and potentially MICI in the Amundsen Sea sector 1149 
(Wise et al., 2017) and Antarctic Peninsula (Rebesco et al., 2014) 1150 

§ There are geological and modern oceanographic observations of oceanic warm waters 1151 
reaching the grounding line of marine-based ice sheets (e.g. Joughin et al., 2011; 1152 
Schmidko et al., 2014; Hillenbrand et al., 2017; Rintoul et al., 2016; Smith et al., 1153 
2017; Hansen and Passhier, 2017) 1154 

 1155 
Improved temporal and spatial patterns of AIS retreat and its contribution to global 1156 
Melt-Water Pulse 1A:  1157 

 1158 
Improved geological and bathymetric constraints combined with ice sheet models have shown: 1159 

§ An improved understanding of the extent and dynamics of the Last Glacial Maximum 1160 
ice sheet and deglaciation into the Holocene (e.g. Hillenbrand et al., 2014; Larter et 1161 
al., 2014; O’Cofaigh et al., 2014; Hodgson et al., 2014; Golledge et al., 2013; 1162 
Mackintosh et al., 2014; The RAISED Consortium, 2014; Anderson et al., 2014; 1163 
Johnson et al., 2014; Lee et al 2017; McKay et al., 2016). 1164 

§ the AIS contributed to melt-water pulse 1A (e.g. Golledge et al., 2014; Weber et al., 1165 
2014), though not from all sectors (e.g. Spector et al., 2017) and to other millennial 1166 
scale fluctuations with estimated contributions to global mean sea level up to 6 m SLE 1167 
(Blasco et al., 2019, Golledge et al., 2014), at a rate of about 1 meter/century in the 1168 
case of MWP-1A (e.g. Gollege et al., 2014). 1169 

 1170 
A better understanding of ice-sheet-ocean interactions 1171 
 1172 

§ During the last deglaciation, proxy data and model simulations consistently find that 1173 
ocean warming drove the ice sheet retreat in different sectors of Antarctica (e.g. 1174 
Hillenbrand et al., 2017; Crosta et al., 2018, Wilson et al., 2018).  1175 

§ Ocean warming is also thought to have accelerated the last deglaciation in the Ross 1176 
Sea during MWP-1A (e.g. Golledge et al., 2014), although this finding is challenged 1177 
by geological evidence from the Tran-Antarctic Mountains (e.g. Spector et al., 2017). 1178 
Based on regional ice sheet simulations, atmospheric forcing can enhance, diminish 1179 
or compensate for oceanic warming during the first half of the deglaciation, while during 1180 
the second half, ocean warming clearly drove the end of the ice sheet retreat (Buizert 1181 
et al., 2015; Blasco et al., 2109; Lowry et al. 2019).  1182 

§ Strengthening of the subpolar jet during deglaciation (e.g. Lamy et al., 2020) 1183 
enhanced advection of CDW towards the continental margins. (Hillenbrand et al., 1184 
2017; Minzoni et al., 2017; Salabarnada et al., 2018; Evangelinos et al., 2020). 1185 

§ Improved understanding of sedimentological facies indicative of sub-ice shelf 1186 
environment opens new perspectives on quantifying the influence of the ocean on the 1187 
AIS evolution through time (e.g. Yokoyama et al., 2016; Smith et al., 2019). 1188 

§ Freshwater release from the Northern high latitudes can induce a bipolar seesaw, 1189 
transferring heat to the Southern Hemisphere and fostering AIS retreat a few 1190 
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thousands of years later (Buizert et al., 2015; Blasco et al., 2019; Turney et al., 1191 
2020; Clark et al., 2020). Likewise, freshwater release from Antarctica can stratify the 1192 
ocean, reduces vertical mixing and the release of heat and gas to the surface, increase 1193 
heat transport at the grounding lines of marine-based ice sheets (e.g. Golledge et al., 1194 
2019; Silvano et al., 2019) 1195 

 1196 
 1197 
Antarctic ice-Earth interactions and their influence on regional sea-level variability and 1198 
Antarctic Ice Sheet dynamics 1199 

 1200 
The importance of departures in regional sea-level changes from eustatic sea-level due to 1201 
rotational, visco-elastic and gravitational changes as water mass is transferred between the 1202 
ice sheets and the ocean has been identified in the far and near-fields of the AIS from paleo-1203 
reconstructions (e.g. Clark et al., 2002; Milne et al. 2008, Raymo et al. 2011, Raymo and 1204 
Mitrovica, 2012; Stocchi et al., 2013; Rovere et al., 2014). This has been established 1205 
through 1D and 3D glacio-isostatic adjustment models that couple (runtime or asynchronously) 1206 
ice sheets and solid Earth processes constrained by both near-field and far-field geological 1207 
reconstructions of sea-level changes. Important outcomes include: 1208 
 1209 

§ Role of Earth deformation processes (GIA and dynamic topography) on near-field sea-1210 
level changes and ice sheet dynamics (e.g. Gomez et al., 2018; Stocchi et al., 2013; 1211 
Austermann et al., 2015; Gomez et al., 2015; Whitehouse et al., 2017, 2019; 1212 
Gomez et al., 2018; Pollard et al., 2017; Kingslake et al., 2018). 1213 

§ Impact of global gravitationally consistent sea level changes induced by Northern 1214 
Hemisphere ice sheets fluctuations on the retreat of the AIS (e.g. Gomez et al., 2020). 1215 

§ Impact of long-term global mean sea level changes on the stability of EAIS (e.g. 1216 
Shakun et al., 2018; Jakob et al., 2020). 1217 

 1218 
Improved interpretation of subglacial processes from mapping seabed 1219 

 1220 
§ Multibeam campaigns in different sectors of Antarctica have mapped the 1221 

geomorphological footprints of paleo ice streams and their associated paleo-drainage 1222 
networks (e.g. Nitsche et al., 2013, The RAISED consortium, 2014; Simkins et al., 1223 
2017, Larter et al., 2019, Kirkham et al., 2019) as well as other subglacial features 1224 
(Kuhn et al., 2017; Bart et al., 2018; Stokes et al., 2018; Dowdeswell et al. 2020). 1225 

§ Analysis of the characteristics of those geomorphological features inform the long-term 1226 
mean and potential maximum rates of grounding line retreat (e.g. 1 to 10 km/yr, Bart 1227 
et al., 2018, Dowdeswell et al. 2020), but also show that meltwater can enhance ice 1228 
flow and cause ice surges and meltwater outbursts (e.g. Simkins et al., 2017; Kuhn 1229 
et al., 2017). These reconstructions provide constraints on the ice flow regime during 1230 
both advances and retreats and on the mechanics and dynamics of ice stream (Stokes 1231 
et al., 2018).  1232 

 1233 
Paleo-data calibrated ice sheets models provide revised global sea-level predictions 1234 
for IPCC scenarios 1235 
 1236 
A new generation of continental scale ice sheet models that simulate MISI and in one case 1237 
MICI have been developed and tested by reconstructing past AIS volume and extent 1238 
constrained by paleoclimate and paleo-ice extent data. These models have been used to 1239 
simulate future Antarctic meltwater contribution to global mean sea-level changes based on 1240 
the Representative Concentration Pathways. Implications include: 1241 
 1242 

§ That Antarctic contribution to global sea-level rise for the year 2100 CE and beyond 1243 
may have been under-estimated in IPCC AR5 projections especially for high emission 1244 
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scenarios (e.g. Golledge et al., 2015; DeConto & Pollard, 2016; Edwards et al., 1245 
2019; Golledge et al., 2020). 1246 

§ These paleo-calibrated AIS models show that a threshold for marine ice sheet stability 1247 
may exist at ~1.5-2°C global warming above pre-industrial (e.g. around RCP 2.6, the 1248 
target of the Paris Agreement) (e.g. Golledge et al., 2015; Clarke et al., 2015; Pollard 1249 
& DeConto, 2016). 1250 

§ Recent paleo-studies have stressed that a moderate local oceanic warming, lower than 1251 
the upper bound of +1.5°C-2°C for pan-Antarctic ocean warming can also trigger fast 1252 
ice sheet retreat if applied for a few centuries: Beltran et al. (2020); Turney et al., 1253 
(2020); Golledge et al., (2017a); Bakker et al., (2017); Feldmann and Levermann, 1254 
(2015). This highlights the importance of polar amplification for the fast response of 1255 
polar areas under past and future global warming conditions. 1256 

 1257 
 1258 
 1259 
7.2 Challenges for the next programmes 1260 
 1261 
Gaps illustrated above highlight the necessity to assess whether or not the WAIS only partially 1262 
retreated or totally disintegrated during past warm periods. Records of such massive ice sheet 1263 
retreats are possibly located below the ice sheet. Locating subglacial drilling sites that could 1264 
have recorded such extensive retreat represents a high priority challenge worthy of future field 1265 
campaigns (e.g. Bradley et al., 2012; Spector et al., 2018). Similarly, it is urgent to assess 1266 
the EAIS marine-based sectors sensitivity to oceanic and atmospheric warming during past 1267 
warm periods (e.g. Cook et al., 2013, 2014; Reinardy et al, 2015; Aitken et al., 2016; Gulick 1268 
et al., 2017; Pierce et al., 2017; Wilson et al., 2018; Blackburn et al., 2020) and their 1269 
potential contribution to global mean sea level change (e.g. DeConto and Pollard 2016; 1270 
Paxman et al., 2020; Mas e Braga et al., 2021) to refine their future contribution to on-ongoing 1271 
sea level rise (e.g. Golledge et al., 2017b; Rignot et al., 2019). 1272 
 1273 
Paradoxically, even though the Pleistocene interglacials are more recent and well documented 1274 
in many places around the world, AIS fluctuations through time have destroyed most of the 1275 
ice proximal geological evidence of these interglacials on the continental shelf, making direct 1276 
records of the ice sheet’s behaviour difficult to find. Only a few precious SST records are 1277 
currently available from the Antarctic continental slope and rise and those records are indirect 1278 
and cannot fill the gap of ice proximal ocean temperature records. This data gap directly 1279 
impedes the validation of numerical paleo-climate and paleo-ice sheet numerical simulations. 1280 
The interpretation of sedimentary facies and geomorphological features on the seafloor, 1281 
however, does allows to infer the type of sub-glacial environments and thus the ice flow during 1282 
past deglaciations to be reconstructed (e.g. Smith et al., 2019; Simkins et al., 2017; Bart et 1283 
al., 2018; Prothro et al., 2020). 1284 
 1285 
Another observational challenge is to recover records with sub-millennial temporal resolution 1286 
for the different past warm periods. Such high-resolution archives can be recovered from the 1287 
continental slope and rise, by drilling levee deposits and contourite systems, or from the on 1288 
the continental shelf in overdeepened basins and fjords (e.g. ODP leg 178 The Palmer Deep 1289 
Domack et al., 2001; IODP Exp 318, Ashley et al., 2020; IODP Expedition 374 Ross Sea, 1290 
McKay et al., 2019; IODP Expedition 379 Amundsen Sea, Gohl et al., 2019; approved IODP 1291 
proposal 732 Antarctic Peninsula, Channell et al.). High-resolution data represent the bridge 1292 
between the past and the future, in particular for centennial to millennial-scale climate 1293 
oscillations (e.g. Weber et al. 2014; Bakker et al., 2017; Bracegirdle et al., 2019; Noble et 1294 
al., 2020; Golledge et al., 2020). High-resolution sedimentary data are also important for 1295 
correlating marine sediment records with ice core records of the past 800,000 years. The on-1296 
going Beyond EPICA: Oldest Ice project (e.g. Fischer et al. 2013; Parrenin et al., 2017; 1297 
https://www.beyondepica.eu/) will allow correlation with expanded sediment records from the 1298 
Ross Sea (IODP Exp. 374) (McKay et al., 2019) including the MIS-31 super-interglacial event 1299 
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and the Amundsen Sea (IODP Exp. 379) (Gohl et al., 2019) across the Mid-Pleistocene 1300 
Transition and from future expeditions, for example the IODP proposal 732-Full2.  1301 
 1302 
To maintain pace with advances of  the observational ice sheet community, the paleoclimate 1303 
modelling community will need to expand efforts more in regional atmospheric and oceanic 1304 
modelling for different past periods representing both glacial and interglacial contexts. 1305 
Regional modelling is computationally expensive and also requires highly resolved boundary 1306 
conditions at high frequency to capture the local variability of processes. Improved large-scale 1307 
global climate simulations will also be required to support regional modelling. Many on-going 1308 
data-model comparison initiatives already exist, and some of them focus on the periods 1309 
described in this chapter, as for example the Paleoclimate Model Intercomparison Project 1310 
(PMIP, now in phase 4) (Kageyama et al., 2018), the Pliocene Model Intercomparison Project 1311 
(PLIOMIP, now in phase 2) (Haywood et al., 2020), the recently started Miocene Model 1312 
Intercomparison Project (MIOMIP) (Steinthorsdottir et al., 2020 and related special issue) 1313 
and the Deep-Time Model Intercomparison Project (DEEPMIP) (Lunt et al. 2017). PMIP 1314 
focuses on the Late Pleistocene and now also includes transient simulations of entire 1315 
interglacials using coupled atmosphere-ocean models. DEEPMIP focuses mainly on the EOT 1316 
and the Eocene warmth. More refined global mean sea level records are also necessary to 1317 
better assess Antarctic ice volume fluctuations over the past 34 Myrs. Both MCO and mPWP 1318 
periods are of high interest to assess Earth climate sensitivity to high CO2 concentrations 1319 
(similar to the projected ones) and global mean sea level rise (e.g. Haywood et al., 2016; 1320 
Steinthorsdottir et al., 2020). Sequence stratigraphy of the continental margins is a powerful 1321 
approach and the key to fill this gap. However, improvements are needed, especially to correct 1322 
those records from glacio-hydro-isostasy (e.g. Grant et al., 2019,2021). Thus, coupled ice-1323 
sheet-GIA-sediment erosion and transport models are needed (e.g. Pollard & DeConto, 1324 
2003, 2019, Whitehouse et al., 2019). 1325 
 1326 
Finally, while the climate and paleoclimate communities are currently putting efforts in the 1327 
development of fully coupled Earth System Models, such models are too computationally 1328 
demanding to allow for long-term transient simulations. With upcoming progress in scientific 1329 
computing, and progress in the computing facilities themselves, using fully coupled Earth 1330 
System Models now seems an achievable objective for paleo studies. 1331 
 1332 
7.3 Long-term projections and the role of PAIS and future programs 1333 
 1334 
Future projections of AIS evolution have shown large improvements over the past few years 1335 
(e.g. DeConto and Pollard, 2016; Pattyn et al., 2018; Edwards et al., 2019). However, 1336 
related uncertainties remain large, indicating that fundamental knowledge gaps still persist 1337 
about ice sheet dynamics, and interactions with the atmosphere, ocean and the solid earth 1338 
(Whitehouse et al., 2019). Morlighem et al. (2020) released an updated subglacial 1339 
topography map revealing the high-resolution bed morphology of some of the glacial troughs 1340 
and their potential in causing AIS instability in case of fast retreat of the grounding line. Many 1341 
of them are still unexplored, despite their clear importance in reconstructing the AIS past, 1342 
present and future dynamics. The release of the IPCC Special Report “The Ocean and the 1343 
Cryosphere in a Changing Climate” (SROCC) in September 2019 (IPCC, 2019) showed that 1344 
our understanding of the various contributions to GMSL change has improved since the last 1345 
IPCC Assessment Report 5 (AR5) in 2013. After the release of AR5, further satellites 1346 
observations revealed that Antarctic ice shelves were thinning faster than previously thought 1347 
(Paolo et al., 2015), caused by observed warming in the surrounding ocean (Pritchard et al., 1348 
2012). Recent re-assessments of 20th century observations confirmed the AIS has been 1349 
losing mass since the publication the publication of IPCC AR5 and that this mass loss strongly 1350 
accelerated at the end of the 20th century (e.g. Shepherd et al., 2018, Rignot et al., 2019).  1351 
 1352 
To precisely assess the AIS contributions to GMSL changes, the polar community has 1353 
increased the monitoring and modelling of AIS evolution. Attention has been focused on ice 1354 
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shelf buttressing and on large partly marine-based drainage basins of the West and East 1355 
Antarctic ice sheet (Fürst et al., 2016) (e.g. Pine Island Glacier, Thwaites glacier, Totten 1356 
glacier, Recovery ice stream, Foundation ice stream) and ice-ocean interactions around 1357 
Antarctica. The particularity of most of the marine-based sectors of the Antarctic ice sheet is 1358 
that they are grounded on a bed with retrograde slope (Joughin and Alley, 2011; 1359 
Morlinghem et al., 2020) or that their buttressing ice shelves are pinned on a sill with 1360 
retrograde slope bed and are thus vulnerable to future MISI. New estimates of future GMSL 1361 
rise from the IPCC SROCC (2019) amount to 0.43 m (0.29–0.59 likely range, RCP 2.6 1362 
scenario) and 0.84 m (0.61–1.10, likely range, RCP 8.5) in 2100 CE , with the possibility of 1363 
multi-meter sea level rise by 2300 CE (Golledge et al., 2015; Clark et al., 2016) but with 1364 
“deep uncertainty (IPCC SROCC, 2019). Ice shelf loss is a key prerequisite for the onset of 1365 
marine ice shelf instabilities. The large uncertainties in the most recent estimates of sea level 1366 
rise from Antarctica mostly result from our inability to assess the potentially unstable behaviour 1367 
of the marine-based sectors of the AIS, and in particular: the sensitivity of ice shelves to sub-1368 
ice shelf melting from below and surface warming above. These gaps inevitably lead to model-1369 
dependent results, particularly for processes that are parameterized (Asay-Davis and 1370 
Jourdain, 2017). This is where the past can close those knowledge gaps, and provide 1371 
necessary observational constraints to model the past and the future evolution of the Antarctic 1372 
ice sheet (e.g. Gasson and Keisling, 2020). 1373 
 1374 
The Earth’s past provides a natural laboratory for testing realistic cases of ice-sheet-climate-1375 
solid earth interactions at different timescales (Bracegirdle et al., 2019). The research 1376 
produced within the PAIS programme has shown that the AIS potentially crossed its tipping 1377 
point for major ice loss many times since the onset of large-scale glaciation (~34 Ma) under 1378 
climatic conditions warmer than today. Past periods have the potential to identify thresholds 1379 
for instability (e.g. Naish et al. 2009; Cook et al., 2013; Weber et al., 2014; Wilson et al. 1380 
2018) or large retreat/re-advance events (e.g. Scherer et al., 2016; Golledge et al., 2017; 1381 
Kingslake et al., 2018; Wilson et al. 2018) and thus to provide credibility to future scenarios. 1382 
Paleo-records also have the potential to reveal new mechanisms as for example the marine-1383 
ice cliff instability (MICI, Pollard et al., 2015; ; DeConto & Pollard 2016). MICI involves the 1384 
fast disintegration of ice shelves by surface-melt induced hydro-fracturing that can trigger 1385 
MISI, and rapid calving at thick, marine-terminating ice margins. This mechanism has been 1386 
implied to explain rapid major mass loss from the WAIS and EAIS during MIS 5e and the 1387 
mPWP (Pollard et al. 2015; DeConto & Pollard 2016) but many open questions about MICI 1388 
and its possible role in past and future sea level rise remain (e.g., Edwards et al. 2019; Pattyn 1389 
et al., 2018). Geological and glaciological evidence can also highlight feedbacks in the ice 1390 
sheet-climate system (Turney et al., 2020) or processes that might not appear policy-relevant, 1391 
but are indeed determinant in understanding the future sensitivity of the AIS and sea level rise 1392 
to ongoing and projected climate changes (Haywood et al., 2019). 1393 
 1394 
 1395 
  1396 
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Figure1 1397 

 1398 



 

 28 

 1399 
Figure 1: Proxies and simulations synthesis over the past 34 million years. Note that the time scale is 1400 
logarithmic a. Reconstructed atmospheric p[CO2] levels are based on alkenone (Pagani et al. 2005, 1401 
2010, 2011; Seki et al., 2010; Badger et al. 2013a, 2013b; Zhang et al., 2013; Super et al. 2018) and 1402 
on boron (Honisch et al., 2009; Bartoli et al., 2011; Foster et al., 2012; Greenop et al., 2014; 1403 
Martinez-Boti, 2015). Late Pleistocene atmospheric CO2 levels are based on the Antarctic ice core 1404 
composite record from Bereiter et al., (2015); b. Deep sea benthic 𝛅18O record from Zachos et al. 1405 
(2001a, 2008). Marine isotope stages (glacials and interglacials) discussed or named in the chapter are 1406 
indicated and based on Miller et al., (1991) for the Oligocene and Miocene, on Haywood et al. (2016) 1407 
for the Pliocene and on Lisiecki and Raymo (2005) for the Pleistocene. Note that marine isotopes 1408 
stages EOT-1 (~34.46-33.9 Ma) and EOT-2 (33.7 Ma) are not indicated. Seismic stratigraphic 1409 
unconformities from different Antarctic sectors are reported with arrows, based on Hochmuth et al., 1410 
2020 and references therein (Ross Sea: dark blue; Wilkes Land: green; Weddell Sea: cyan; Amundsen 1411 
Sea: orange; Cosmonaut Sea: brown; Prydz Bay: purple); c. Reconstructed (pink, purple) and simulated 1412 
(blue) global mean sea level changes (GMSL). Proxy-based reconstructions: benthic 𝛅18O (Miller et 1413 
al., 2020a) from EOT to present, backstripped sequence stratigraphy from New Jersey from EOT until 1414 
the Late Miocene (Miller et al., 2005, Kominz et al., 2008). For the EOT (pink solid squares): Pekar et 1415 
al., (2002); Pekar and Christie-Blick, (2008); Lear et al. (2008), Katz et al., (2008), Miller et al., 1416 
(2009); Bohaty et al. 2(012); Houben et al., (2012); Stocchi et al.  (2013). For the Pliocene: converted 1417 
benthic 𝛅18O record from Dimitru et al., (2019) until the PPT. Pink squares correspond to reconstructed 1418 
Pliocene highstands (Wardlay and Quinn, 1991; Dwyer and Chandler, 2009; Kulpecz et al 2009; 1419 
Naish and Wilson, 2009; Sosdian and Rosenthal, 2009; Miller et al., 2012; Winnick and Caves, 1420 
2015; Dimitru et al 2019) and to M2 glaciation (Miller et al., 2005; Naish and Wilson, 2009; Dwyer 1421 
and Chandler, 2009). For Pleistocene: sea level reconstructions are taken from Hearty et al., (2020); 1422 
Sandstrom et al., (2020) for MIS 31 (uncorrected from GIA and dynamic topography) and from Raymo 1423 
and Mitrovica (2012) and Roberts et al. (2012) for MIS 11. For the last 400 kyrs, reconstructed curves 1424 
of sea level changes are from Waelbroeck et al. (2002) and from Rohling et al. (2009). For MIS5, 1425 
paleoshorelines data are from the compilation in Dutton et al. (2015) and references therein. Simulated 1426 
GMSL changes are from: Bintanja et al., (2005), de Boer et al., (2015) and (Stap et al., 2017) and 1427 
from Raymo et al (2006) for MIS 31 (blue squares); d. Simulated Antarctic ice sheet melting 1428 
contributions (meter Sea Level Equivalent, m SLE) to GMSL changes are from ice sheet simulations 1429 
(squares and curves) and from Glacio-isostatic-Adjustment simulations (dark red triangles). Note that 1430 
some of the reported simulated ice volumes do not refer to volumes above floatation. For the EOT: 1431 
DeConto and Pollard (2003), Pollard and DeConto (2005), Gasson et al (2014), Ladant et al (2014), 1432 
Liakka et al (2014), Wilson et al (2013). For the Miocene: Langebroek et al (2009), Gasson et al. 1433 
(2016), Colleoni et al. (2018b), Stap et al. (2019). For Early Pliocene: Pollard and DeConto (2009, 1434 
transient and black line), Golledge et al. (2017, orange squares). For mPWP to Late Pliocene: de Boer 1435 
et al. (2017, transient blue line), Pollard and DeConto (2009, transient black line). Orange squares 1436 
come from Tan et al. (2017) for M2 glaciation and remaining symbols are for the mPWP considering 1437 
Pollard and DeConto, (2012), de Boer et al., (2015), Austerman et al. (2015), Gasson et al. (2015), 1438 
Yan et al., (2016), De Conto and Pollard (2016), Dolan et al. (2018). When simulations were run with 1439 
averaged mPWP climatic conditions, orange squares are indicatively plotted at 3 Ma. For the entire 1440 
Pleistocene: blue line - de Boer et al (2014) and black line - Pollard and De Conto (2009). For MIS 1441 
31: De Conto et al. (2012), de Boer et al. (2013), Beltran et al (2020). For MIS 11: Tigchelaar et al. 1442 
(2018), Sutter et al. 2019, Mas e Braga et al. (2020). For MIS 5: Huybrechts et al. (2002), Pollard 1443 
and DeConto (2012), de Boer et al. (2015), Goelzer et al. (2016), Sutter et al. (2016), DeConto and 1444 
Pollard (2016), Tigchelaar et al. (2018), Quiquet et al. (2018), Colleoni et al. (2018b), Sutter et al. 1445 
(2019). For LGM based on ice sheet simulations: Philippon et al. (2006), Mackintosh et al (2011), 1446 
Golledge et al. (2012), Brigg et al (2013), de Boer et al (2013), Golledge et al. (2014), Pollard et al. 1447 
(2016), Quiquet et al. (2018), Colleoni et al (2018b), Sutter et al (2019). For LGM based on glacio-1448 
isostatic adjustment simulations: Peltier et al. (2004), Ivins and James (2005), Lambeck et al. (2014), 1449 
Whitehouse et al. (2012), Ivins et al. (2013), Gomez et al. (2013), Argus et al. (2014). Cold periods 1450 
of interest in this chapter are indicated with blue bars: EOT - Eocene-Oligocene Transition; MMCT - 1451 
Mid-Miocene Climatic Transition; LMC - Late Miocene Cooling; PPT - Plio-Pleistocene Transition; MPT 1452 
- Mid-Pleistocene Transition; MBE - mid-Brunhes Event; LGM - Last Glacial Maximum. Warm periods 1453 
of mentioned in this chapter are indicated with orange bars: MCO - Mid-Miocene Climatic Optimum; 1454 
mPWP - mid-Pliocene Warm Period, MIS 31, MIS 11, MIS 5. 1455 
 1456 
 1457 



 

 29 

Figure 2 1458 
 1459 

 1460 
 1461 
Figure 2 Top: Pan-Antarctic isostatically-relaxed paleogeographic reconstructions from Paxman et al. 1462 
(2019) for the Eocene (34 Ma), the Late Oligocene (23 Ma), the Middle Miocene (14 Ma) and BEDMAP2 1463 
for modern pan-Antarctic geography (Fretwell et al., 2013). Bottom: superimposed Eocene (brown), 1464 
Late Oligocene (orange), Middle Miocene (pink) and modern (blue) emerged topography. Isobath at -1465 
1000 meters for each time slices is also indicated. 1466 
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Figure 3 1467 
 1468 

 1469 
 1470 
Figure 3 Schematics of the different ways by which an ice sheet can anchor on the bed. GMSL: global 1471 
mean sea level; GZW: grounding zone wedge; GIA: glacio-isostatic adjustment. 1472 
 1473 
 1474 
  1475 
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Figure 4 1476 
 1477 

 1478 
 1479 
Figure 4: Proxies compilation of reconstructed meridional sea surface temperature (SST) for the MCO 1480 
and the mPWP (a.), MIS 31, MIS 11 and MIS 5 (b.). Note that vertical colour bars correspond to our 1481 
interpretation of approximated location of the zonally-averaged circum-Antarctic Polar Front. Mean Air 1482 
Temperature (MAT) and SST proxies for the MCO are from Golder et al. (2014) for global compilation. 1483 
Due to the paucity of data, we also include terrestrial proxies (MAT, dots). We also include from Super 1484 
et al. (2020) BAYSPAR calibration of TEX86 for North Atlantic ODP Site 982 (brown open squares), from 1485 
Levy et al., (2016) TEX86 Ross Sea SWT 0-200 m depth and Adélie Land margin (Sangiori et al., 1486 
2018; orange open diamonds) and Hartman et al. (2018) for TEX86 BAYSPAR calibrated Adélie Land 1487 
margin SST records (red open squares). MAT and SST proxies for the mPWP are from Dowsett et al. 1488 
(2012) global compilation (light blue open squares) and McKay et al. (2012) for TEX86 Ross Sea SST 1489 
record (dark blue open squares). SST proxies for MIS 31 are from Justino et al. (2017) for global 1490 
compilation and Beltran et al. (2020) for Antarctic Peninsula, Weddell Sea and Adélie Land margin 1491 
SST records (dark green open squares). SST proxies for MIS 11 are from Justino et al. (2017). SST 1492 
proxies for MIS 5 are from Capron et al. (2014) (solid pink squares) and Hoffman et al. (2017) (open 1493 
purple squares), both at 125 ka. Black continuous (mean annual) and dashed lines (boreal and austral 1494 
summers) correspond to pre-industrial HadlSST reconstruction from Rayner et al. (2003). Note that 1495 
many of the SST proxies plotted here from the various compilations tend to be more representative of 1496 
boreal or austral summer conditions rather than of mean annual conditions. 1497 

1498 
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Figure 5 1499 
 1500 

 1501 
 1502 
Figure 5: Simulated Antarctic ice sheet extent during past glaciations of different intervals. EOT to Early 1503 
Oligocene (34 - 28 Ma): extent adapted from simulations by Ladant et al. (2014) with prescribed 1504 
atmospheric CO2 of 700 to 560 ppm. Late Oligocene to Late Miocene (24 - 7 Ma): extent adapted from 1505 
simulations by Gasson et al. (2016) and Colleoni et al. (2018b) prescribing an atmospheric CO2 of 1506 
280 ppm. Late Pliocene to Late Pleistocene (3 Ma to 0): extent adapted from Colleoni et al. (2018b) 1507 
with prescribed atmospheric CO2 of 190 ppm. Paleotopographies and bathymetries are from Paxman 1508 
et al. (2019). Note that ice shelves are not represented on the different panels. Schematics below each 1509 
circum-Antarctic view corresponds to an idealised transect along the red lines indicated on the Antarctic 1510 
maps above. Those schematics illustrate the evolution of the continental margin through time, with 1511 
corresponding global mean sea level variations (GMSL, see Figure 1c) referred to present sea level 1512 
(dashed orange line) and Last Glacial Maximum sea level (LGM, 21 ka, dashed blue line).  1513 
 1514 
 1515 
  1516 
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Figure 6 1517 
 1518 

 1519 
 1520 
Figure 6: Main climatic indicators of each warm periods considered in the chapter (a. to d.) and 1521 
associated simulated range of Antarctic contributions to global mean sea level changes (e.). Each panel 1522 
shows ranges of climatic proxies or simulated quantities at global scale and for Antarctica relative to 1523 
their present-day value. Note that for each range (global or Antarctic), minimum and maximum account 1524 
for the minimum and maximum uncertainties of the represented proxies when found. a. atmospheric 1525 
CO2 levels, see Figure 1a for references. b. Global mean annual temperature (MAT, °C) anomaly 1526 
relative to 20th century average: MCO - Goldner et al. (2014; mPWP - Salzmann et al. (2013) terrestrial 1527 
proxies (see their Table S3b) and Dowsett et al. (2012) for SST compilation; MIS 31 - Justino et al 1528 
(2019) averaged SST compilation also accounting for Beltran et al. (2020) Antarctic margin proxy-1529 
based SST. However, there is no northern high-latitude MAT or SST reconstructions. Proxies in the 1530 
northern high latitudes suggest sea ice free conditions (Detlef et al., 2018) as during the mPWP. Given 1531 
the high similarities with mPWP SST gradient (Figure 4), MIS 31 global MAT is tentatively extended to 1532 
mean mPWP MAT (dashed line); MIS 11 - Lang and Wolff (2011) and MIS 5 - Turney and Jones 1533 
(2010); MAT (°C) for Antarctic region (including ice core records) anomaly are relative to 1990 at the 1534 
closest weather station to the sediment cores location: MCO - Warny et al. (2009), mPWP - Passchier 1535 
et al. (2011), Haywood et al. (2020), MIS 31 - Scherer et al. (2008), MIS 11 - Jouzel et al. (2007), 1536 
MIS 5 - Jouzel et al. (2007), Lang & Wolff (2011). c. Sea surface temperatures (SST, °C) anomaly 1537 
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relative to present value at each core location: continental shelf values (pink) are from Cape Roberts or 1538 
ANDRILL sites: MCO - Sangiorgi et al. (2018) are sea water temperature (0-200 m depth), mPWP - 1539 
McKay et al. (2012), MIS 31 - Scherer et al. (2008). SST records from continental slope and rise 1540 
(purple) are from: MCO - Sangiorgi et al (2018) are sea water temperature (0-200 m depth), Hartman 1541 
et al. (2018), mPWP - Dowsett et al. (2012) compilation of proxies below 60°S, MIS 31 - Beltran et al. 1542 
(2020). Note that many of the SST proxies could be representative of boreal or austral summer 1543 
conditions rather than annual mean. d. Proxies for presence/absence of sea ice are shown for different 1544 
Antarctic sectors, RS (Ross Sea), WS (Weddell Sea), WL (Wilkes Land margin), PB (Prydz Bay). Open 1545 
blue squares indicate intermittent sea ice cover during the period, solid blue squares indicate seasonal 1546 
sea ice (mostly no sea ice during austral summer) and question mark correspond to absence of 1547 
information for the sector. For MCO - Sangiorgi et al. (2018), Levy et al. (2016), Hannah (2006); for 1548 
mPWP - Burckle et al. (1990), Whitehead et al. (2005), McKay et al (2012a), Taylor-Silva and 1549 
Riesselman (2018); for MIS 31 - Bohaty et al. (1998), Scherer et al (2008), Villa et al. (2008), Beltran 1550 
et al. (2020); for MIS 11 - Kunz-Pirrung et al. (2002), Wolff et al. (2006), Wilson et al. (2018), Escutia 1551 
et al. (2011); for MIS 5 - Kunz-Pirrung et al. (2002), Wolff et al. (2006), Konfirst et al. (2012), Presti 1552 
et al. (2011), Hartman et al. (2016), Wilson et al. (2018). e. Ranges for global mean sea level changes 1553 
(GMSL, dark blue) relative to today from data and models (dotted grey). For mWPW, the proxies 1554 
indicate a sea level rise up to + 40 m above present that is indicated by the transparent blue line on the 1555 
plot. For MIS 31, GMSL data are uncorrected from GIA and dynamical topography. Simulated ranges 1556 
of Antarctic Ice Sheet melting contributions are shown in light blue. Range from recent GMSL 1557 
reconstruction based on benthic 𝛅18O records from Miller et al. (2020a) is shown with dotted purple 1558 
line. See Figure 1c and 1d and the main text for references. 1559 
 1560 

1561 
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Figure 7 1562 
 1563 

 1564 
 1565 
Figure 7: Cartoons for the impact of freshwater release and associated feedbacks loop at global scale 1566 
and on Antarctica. Top cartoon is based on Turney et al. (2020) and describes the evolution of those 1567 
feedback as a consequence of Heinrich event 11 (~135 ka) and subsequent evolution until MIS 5e (time 1568 
frame of few millennia). Numbers indicate the order of the sequence. Bottom cartoon shows similar 1569 
feedback but as projected until 2100 for the RCP 8.5 high-emission scenario (time frame of few 1570 
decades) based on Golledge et al. (2019). AABW: Antarctic Bottom Water; CDW: Circumpolar Deep 1571 
Water; ITCZ: Inter-Tropical Convergence Zone; NAIW: North Atlantic Intermediate Water; NADW: North 1572 
Atlantic Deep Water. 1573 
 1574 
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