
 

Appendix 

 

The diffusion equation with zero-order reactor is  
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With starting profile C(z,0)=φ(z) for 0 ≤ z ≤ L, initial condition, and values C(0,t)=A(t) and 

C(L,t)=B(t) for t≥0, boundary conditions. 

The Fourier expansion in sin(βnz) has norm 2/L and sin(βnL) is null in the zeroes 

βnL=nπ, therefore, βn=nπ/L. 

From the Fourier series the solution results 
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With Fourier coefficients given by 
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For obtaining the coefficient Cn(t), we multiply both sides of the partial differential 

equation time (2/L)sin(nπz/L) and integrate in the interval 0 ≤ z ≤ L (Amerio, 1976). 

We obtain, after integrating twice the second-order partial differential equation: 
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Applying the rule of derivation under the integral sign, the other terms become 
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after the definition 
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Thus, Cn(t) satisfies the first-order linear differential equation 

 

)()]()1()([
2

)(
)(

22

22

tDftBtA
L

Dn
tC

L

Dn

dt

tdC
n

n

n

n 


 

 

And integrating with respect to the time 
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For the initial concentation 
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and for the initial condition 
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we obtain the expression 
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that gives the solution of the equation A.1 under the given conditions. 

For every time t, the explicit solution is 
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and represents the evolution of the second 2.1 example. 

For long-term evolution, the steady-state concentration solution of this expression, 

asymptotically attained and maintained by the ecosystem. 

For obtaining it, we limit the summation behaviour 
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substituting as unitary the sinus coefficients 
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This inequality is valid for all the sinus values. 
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Taking into account that for α>β it follows 
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and that for n>3 it results 
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The final inequality is 
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The second-member series in the inequality is convergent as it follows from the 

D’Alembert criterion that 
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for n going to infinity. Thus, the starting series is convergent toward the first-order term 

of a time-negative exponential function, a first-order infinitesimal of the time step plus a 

quartic-order infinitesimal of the same time function. 

The renewal of the variable C(z,t) after the period t+Δt is 
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with both factors at first-order approximation in the time increment. 

The cross-product term with (Δt)0 gives C(z,t) 
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Finally, the cross-product terms in (Δt)2 are of higher-order infinitesimals and therefore 

not giving contributions to this first order approximation. 

Thus, the time increment at first order (Δt)1 gives 
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multiplying the starting value times the coefficient –π2D/L2. 

Finally, the second first-order term (Δt)1 multiplies the time integrated terms 
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giving the stationary solution, CS(z,t), times the coefficient Δtπ2D/L2 and independent of 

the initial condition that does not contribute to this term also. 

Defining C(z)=lim CS(z,t), the first-order approximation in (Δt)1 is obtained as the long-

term solution for t>>L2/π2D, given in the text,  
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We consider that the system starts at an initial homogeneous concentration, C(z,0)=C0, 

and that f(z,t)=-S/LD. 

 

The steady-state solution of the time-independent partial differential equation with sum 

of all internal sources and sinks, S in mmol C m-3 s-1, b.e. primary production vertically 



integrated along the layer, considered in the following constant in time, and with time-

independent boundary concentrations A and B is 
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Thus, in this notation  
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The general solution is 
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and a and b result 

 

Ab

D

S

L

AB
a







2  

 

Substituting these values, the stationary solution is 
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On the other hand, the long-term Fourier integration requires the term fn which is  
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The solution, considering t>>L2/Dπ2, is the series summation 
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where C0 is the homogeneous initial condition, and A, B, S are the boundary condition at 

the top of the layer, the boundary condition at the bottom of the layer, the vertically 

integrated sum of all sources and sinks in the layer, respectively. The first series does no 

contribute for long-term integration; the other three series give the following positive 

contributions to the asymptotic concentration: 
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 b) Second Term 
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 c) Third Term 
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Grouping all power terms of the spatial variable z, we obtain q.e.d., the asymptotic 

solution 
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This is equal to the steady-state solution obtained without the time-derivative term in the 

partial differential equation.  

The difference with respect to the text expression is given by the substitution of π/2 in 

the place of π in the above solution, because the orhogonal functions in this Appendix 

are given as an half-period and, on the other hand, as a quarter-period in the text solution 

for the two consistent boundary condition: due to the two different and consistent 

boundary conditions, i.e. a couple of Dirichlet conditions here with respect to mixed, 

Dirichlet-Neumann conditions in the text. 

Explicitly, in the first 2.1 example the transformation of the diffusive term is after 

integration along z 
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Integrating the second time along z we obtain 
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And, writing the solution in terms of Cn , we obtain 
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Using the same notation, but in the 2.2 conditions and in the first 2.1 example, we obtain 

the asymptotic solution 
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With air-sea concentration A and inflowing flux from the bottom of the layer F. As in 

the above-solved Dirichlet case, S is the sum of all the sources and sinks in the layer, 

taking into account the thickness L of the layer and its porosity Φ, with the diffusion D in 

the layer. 

 

 

 



 

Plate 1. Position of the CO2-GEO scheme in the geochemical matrix; vertical 

displacements of the different model zones are shown in the three different 

environments: atmosphere, sea water column and benthos, top-down air-sea-sediment; 

relevant processes and research activities are cited next to each zone. CO2-GEO topics 

concern the time and space variability of gas concentrations in benthic habitats and the 

description of the evolution of the sediment: in the aerobic zone, with the biological 

uptake of carbon, nitrogen, phosphorus, silica, and the oxidation of methane; in the 

sulfate and nitrate anaerobic reducing zone, with the methanotrophic processes; in the 

anaerobic carbonate reducing zone, with methanogenetic processes. The Systems Model 

subtasks consist in four top-down segments: Air-Sea Carbon Fluxes, Photic Zone 

Ecology, Bottom Boundary Layer Description, Sediment Geochemistry. 
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Abstract 

The dynamics of the aquatic ecosystem requires a thorough knowledge of the chemical 

and physical parameters in both the water column and the sediment. The constitutive 

equations of the former subsystem solve diffusion and transport processes in three-

dimensional domains; the latter is described by one-dimensional and nonlinear 

differential equations whose solution strongly depends on slower diffusion parameters. 

An evolution method, CO2-GEO, which minimises the squared deviation between the 

exact evolution and the consistent prediction with the transformation method, is 

developed and verified to estimate the single-layer evolution and the three-layer 

sediment description based on the diffusion parameters in the porewater. The method is 

generic and is extended here to the trophic behaviour of carbon dioxide and methane. 
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