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A B ST R ACT

Phytoplankton turn seawater green when their concentration increases. This allows us to monitor them using ocean colour. However, as the
spectral properties of phytoplankton and their relationship with other coloured substances in seawater vary, subtle differences (anomalies) in
ocean colour occur that can cause large errors in estimates of phytoplankton abundance. Identifying and understanding these anomalies is
required to interpret ocean-colour data properly, but not all scientists have access to, or can afford, the in-situ instrumentation needed to do
this. We show that practical, low-cost tools developed in the 19th century (a Secchi disk and Forel-Ule colour scale) can be used to quantify a
colour anomaly in the Weddell Sea. Our findings imply that ocean-colour anomalies can be identified using affordable methods. Furthermore,
records collected over the last century may contain clues on how ocean ecosystems have changed with climate.
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INTRODUCTION
Seventeenth-century navigators, like Henry Hudson, sailed
through hostile icy waters with little more than a compass and
their vision. They were acutely aware of changes in the colour
and transparency of the ocean, noting that the water was bluer
where there were icebergs, and they used this information to
help guide safe passage (Wernand and Gieskes, 2011). We
now know that the colour and transparency of the ocean are
controlled by phytoplankton and other covarying coloured
dissolved and particulate substances (Morel and Prieur, 1977).
Phytoplankton modulate planetary biogeochemical cycles and
have a profound effect on marine ecology by fueling the marine
food web. They turn water green and reduce its transparency
when their concentration increases. This has allowed modern
scientists to study phytoplankton at synoptic scales using satellite
ocean-colour measurements.

However, the blue signatures observed by early navigators
in polar seas are not necessarily reflective of low phytoplank-
ton concentrations because the relationship between ocean
colour and phytoplankton concentration varies regionally,
reflecting changes in environmental conditions and microbial
ecology. In the early 1990’s, scientists noticed that, for a similar
concentration of phytoplankton, the colour of the Southern
Ocean appeared bluer than that of waters at lower latitudes
(Mitchell and Holm-Hansen, 1991). This Southern-Ocean
colour anomaly is thought to be related to the unique size and
taxonomic structure of phytoplankton as well as differences
in the contributions from coloured non-algal particles and
dissolved substances (Robinson et al., 2021). Ocean-colour

anomalies also exist in other regions. For example, the Baltic
and Mediterranean Seas have higher concentrations of dissolved
substances that absorb blue light preferentially over other
colours, meaning the water appears greener than in other regions
with similar concentrations of phytoplankton (Jerlov, 1955;
Morel and Gentili, 2009). Identifying and quantifying these
optical anomalies is key to the successful use of ocean colour
for studying phytoplankton. But not all scientists have access to,
or can afford, the in-situ instrumentation needed to do this.

Simple instruments developed in the 19th century and based
on human vision could fill this gap. These include the Secchi
disk that is used for measuring water transparency by lowering
a white disk into the water and measuring the depth at which
it disappears (Secchi, 1864), and the Forel-Ule colour scale—a
scale of 21 shades of ocean colour (Forel, 1890; Ule, 1892)—
used for measuring water colour. The Secchi disk and Forel-
Ule colour scale are still used routinely today, for example, in
participatory science projects and for low-cost environmental
monitoring (e.g. George et al., 2021). They are engaging tools for
teaching as the human participant is the sensor and, like former
navigators, becomes connected with their environment in a way
that is not possible using modern optical sensors.

METHOD
To quantify whether ocean-colour anomalies can be identified
by the human eye, we collected visual measurements of ocean
colour on three cruises across the Atlantic Ocean, spanning low-
latitude regions, and on a high-latitude cruise in the Weddell Sea,
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Fig. 1. The relationship between Secchi depth (using a 30 cm white
disk) and Forel-Ule colour (Novoa et al., 2014) of water above the
Secchi disk at half the Secchi depth in the Atlantic Ocean (circles,
N = 102) and the Weddell Sea (squares, N = 36) using the same
methods (Brewin et al., 2023). Low values of Forel-Ule colour refer
to bluer water, higher values greener water. Bars represent standard
deviations for multiple samples at a station, from different
participants. Regression lines (computed using IDL function
ROBUST_LINEFIT.pro) are ZSD = 10A×FU+B (ZSD is the Secchi
depth and FU the Forel-Ule colour) for the Atlantic Ocean (dashed
line, A = −0.117 (±0.005) , B = 1.774 (±0.011); Brewin et al.,
2023) and the Weddell Sea (solid line, A = −0.138 (±0.009) ,
B = 1.672 (±0.020)) and should not be extrapolated outside the
range of data used in the fits.

Antarctica. We used a 30 cm white disk attached to a profiling rig
for measuring the Secchi depth and used the Forel-Ule colour
scale of Novoa et al. (2014) for measuring the colour of water
above the Secchi disk at half the Secchi depth. We collected
data on all four cruises using consistent methods, as described in
detail in Brewin et al. (2023). Briefly, at each station, the profiling
rig was deployed (typically two casts), and the depths at which
the Secchi disk disappeared and reappeared were measured. A
wire-length sensor was used to determine these depths, although
on some Atlantic cruises slightly different methods were used
(with consistent results; see Section 2.3.2 of Brewin et al., 2023).
Forel-Ule colour scale measurements were collected by visu-
ally comparing the scale with the colour of the water above a
background of the white disk at roughly half the Secchi depth.
Multiple participants (scientists and crew of the research ship)
took part. All Secchi depth and Forel Ule colour data collected
were averaged at each station.

RESULTS
True to the Southern-Ocean optical anomaly, we observed sig-
nificantly bluer waters for similar levels of clarity at high latitudes
when compared with low latitudes (Fig. 1). For the same colour,
the Secchi depth was around 37% shallower in the Weddell Sea
than in the Atlantic Ocean. These results confirm that optical

anomalies can be detected and quantified with the human eye
and simple optical tools. Deviations in the relationship between
ocean colour and clarity for these two regions (Fig. 1) reflect
differences in the composition, concentrations and spectral sig-
natures of the optically active constituents (particles and sub-
stances) present in the water. Due to these anomalies, scientists
should be cautious when interpreting ocean colour data from
these two regions in the same way (e.g. by estimating phytoplank-
ton concentration using satellite-derived band ratios of spectral
remote-sensing reflectance and the same empirical algorithm).

CONCLUSION
We have shown that a colour anomaly in the Weddell Sea can
be identified visually. Our findings imply that spatial and tempo-
ral variations in aquatic ecosystems can be monitored optically
using affordable methods. Furthermore, old records of Secchi
depth and Forel-Ule colour collected over the last century (e.g.
Wernand et al., 2013) may contain hidden clues on how ocean-
colour anomalies have changed with climate.
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