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S U M M A R Y
Ambient-noise records from the AlpArray network are used to measure Rayleigh wave phase
velocities between more than 150 000 station pairs. From these, azimuthally anisotropic phase-
velocity maps are obtained by applying the eikonal tomography method. Several synthetic
tests are shown to study the bias in the �2 anisotropy. There are two main groups of bias,
the first one caused by interference between refracted/reflected waves and the appearance
of secondary wave fronts that affect the phase traveltime measurements. This bias can be
reduced if the amplitude field can be estimated correctly. Another source of error is related to
the incomplete reconstruction of the traveltime field that is only sparsely sampled due to the
receiver locations. Both types of bias scale with the magnitude of the velocity heterogeneities.
Most affected by the spurious �2 anisotropy are areas inside and at the border of low-velocity
zones. In the isotropic velocity distribution, most of the bias cancels out if the azimuthal
coverage is good. Despite the lack of resolution in many parts of the surveyed area, we
identify a number of anisotropic structures that are robust: in the central Alps, we find a
layered anisotropic structure, arc-parallel at mid-crustal depths and arc-perpendicular in the
lower crust. In contrast, in the eastern Alps, the pattern is more consistently E–W oriented
which we relate to the eastward extrusion. The northern Alpine forleand exhibits a preferential
anisotropic orientation that is similar to SKS observations in the lowermost crust and uppermost
mantle.

Key words: Seismic anisotropy; Seismic interferometry; Seismic tomography; Wave propa-
gation; Continental tectonics: compressional.

1 I N T RO D U C T I O N

With the availability of very dense seismic network data, array-
based surface-wave measurements, such as the ambient-noise tech-
nique, as well as array-based tomographic imaging methods have
found increased popularity. The eikonal tomography method, so
termed by Lin et al. (2009) because of its relation to the eikonal
equation (e.g. Wielandt 1993), relies on dense array measurements
and is based on the direct conversion of phase traveltimes into
phase-velocity maps without the need for an inversion. The method
has been successfully applied to the USArray using surface wave
measurements both from ambient noise and from earthquakes (e.g.
Lin et al. 2009; Lin & Ritzwoller 2011a) but also on more local
scales (e.g. de Ridder & Dellinger 2011; Mordret et al. 2013; Xu
et al. 2016).

In this study we make use of ambient-noise surface-wave mea-
surements from the AlpArray experiment (fig. 1, Hetényi et al.
2018) evaluated over 2 yr (2016–2017). It has been shown in various
regions that crustal anisotropy can be imaged with ambient-noise
techniques (e.g. Lin et al. 2009; Fry et al. 2010; Gallego et al. 2011;
Lin & Ritzwoller 2011a; Guo et al. 2017). The additional informa-
tion contained in the azimuthal anisotropy can help to understand the
tectonic evolution, because it is sensitive to preferential orientation
of structures from the smallest (mineral alignment) to the largest
scale (kilometre scale folds and faults, asthenospheric flow field,
e.g. Nicolas & Christensen 1987; Kern 1990; Silver 1996). This
adds a dynamic component to the observations, linked to temporal
variations such as the strain field.

The European Alps are a complex and relatively small mountain
belt which was mainly formed by the continental collision of the
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European and Adriatic Plate around 35 Ma (fig. 1, Handy et al.
2010; Carminati et al. 2012, and references therein). The indenta-
tion of the Adriatic Plate into the European one led to major crustal
reorganizations such as a mantle wedge being pushed to crustal
depths in the Ivrea zone (e.g. Malusà et al. 2015; Zhao et al. 2015)
and, in the Neogene, to the sinistral movement along the Giudicarie
fault and the exhumation of the Tauern window (e.g. Scharf et al.
2013; Verwater et al. 2021). The latter was supported by an eastward
extrusion of the eastern Alpine units between the Periadriatic Fault
in the South and the SEMP fault in the north (Scharf et al. 2013).
This movement was likely triggered by the northeastward retreating
subduction of the last remnants of the Tethys ocean during which
the arcuate shape of the Carpathians was formed and the Pannon-
ian basin opened (Handy et al. 2014,and references therein). The
Carpathians are now almost entirely separated from the Alps by the
Pannonian basin and the Vienna basin (Fig. 1). At the junction, the
Carpathians bend northeastward around the Bohemian Massif, an
area of thick and old continental crust that was amalgamated dur-
ing the Variscian orogeny (e.g. Schulmann & Gayer 2000; Franke
et al. 2017). These major changes, first from the continental plate
collision and later the large reorganizations at the beginning of the
Neogene, severely affected both crustal and mantle structure in the
Alpine region. For example, slab break-offs have been proposed
at different times and for different parts of the Alps (for a review
see Kästle et al. 2020). Indications for a slab break-off under the
eastern Alps have been found by Qorbani et al. (2015) when evalu-
ating the azimuthal anisotropy from SKS splitting data. The pattern
of crustal seismicity in the central Alps has been explained with
bouyant crustal material that was dragged down by the retreating
European slab (Kissling & Schlunegger 2018). Such a process is ex-
pected to affect the strain field in the Alps and thus leave an imprint
in the crustal anisotropy. Currently, there are, however, hardly any
studies that image the anisotropic structure in the Alps at sufficiently
high resolution to provide an understanding of how anisotropy links
to past and ongoing tectonic processes (Fry et al. 2010; Alder et al.
2021). With this work we will thus present and discuss eikonal
tomography as a potential method to image azimuthal anisotropy
at crustal and uppermost mantle level from surface waves. In the
following, we will continue previous efforts (Kästle et al. 2016)
to provide an automated and robust phase-velocity picking algo-
rithm from ambient-noise based Love and Rayleigh waves cross-
correlation measurements. The phase-velocity curves are then used
to create azimuthally anisotropic maps of the phase-velocity struc-
ture by applying the eikonal tomography method. The potential
but also the limits of the method that can lead to a significant
bias in the amplitudes of the inferred anisotropic field will be dis-
cussed. Both methods (phase-velocity picking and eikonal tomog-
raphy) are made available as Python based tools that are free to
use, easy to modify and run platform independent on any machine
(supplement).

2 M E T H O D S

2.1 Data preparation and cross-correlation calculation

In this study, we use 2 yr of continuous data recorded at all available
AlpArray seismic network stations (permanent and temporary). The
data processing is handled with a slightly modified version of the
ANTS 2 toolbox (link in acknowledgements), which includes the
following steps: (1) removal of time windows after large earthquakes
(MW > 5.6), for which the earthquake information is taken from the

GCMT catalogue (Dziewonski et al. 1981; Ekström et al. 2012). The
length of the time window to be removed from the record is chosen
according to the approximation by Ekström (2001). (2) Local earth-
quake events are requested via the IRIS catalogue (www.iris.edu)
and a time window, a few seconds before the estimated first P-wave
arrival until all direct signals travelling with velocities 1 km s–1

have passed, is removed. (3) Seismic signals from events that do
not appear in the used catalogs and other high-energy sources are
removed, applying a filter that compares the signal standard devia-
tion of subsequent time windows according to Boue et al. (2013).
(4) Cosine tapering, detrending and demeaning of all data. Each
window has a maximum length of 1 d. (5) Antialias (lowpass) filter
with a cutoff frequency at 1 Hz. (6) Downsampling to 2 Hz. (7) Re-
moval of the instrument response with a water level deconvolution,
including a pre-filter (flat between 2 and 200 s, cut-off periods at 333
and 1 s).

From the pre-processed data, cross correlations are calculated
between the vertical records (ZZ) of all available stations pairs.
Stations pairs with an interstation distance smaller than 20 km are
skipped. The data are cut into windows of 1 hr, witch successive
windows having an overlap of 60 per cent, each window is cosine
tapered (2.5 per cent at the beginning and end of each window) and
linear trends are removed. We then apply a Fourier transformation
and whiten the signals in the frequency domain by division with the
absolute of the spectrum plus a water level for stabilization. From
the whitened spectra, the daily cross correlations are calculated and
stacked resulting in a total number of 261 388 vertical-component
correlations.

2.2 Phase-velocity extraction

From the cross correlations, phase velocities between station pairs
are determined by using the zero crossings of the cross-correlation
spectra (Aki 1957; Ekström et al. 2009; Kästle et al. 2016). The
method is based on the assumption of a 2-D wavefield (e.g. surface
waves) composed of plane waves traveling in random directions.
If this wavefield is recorded for a sufficiently long time at two sta-
tions, cut into windows, correlated and stacked, the resulting cross-
correlation spectrum will resemble a Bessel function (Aki 1957).
The argument of the Bessel function depends on the interstation dis-
tance times frequency divided by phase velocity, thus, for a given
set of these parameters, its zero crossings are known. The phase
velocity can therefore be determined from a cross-correlation spec-
trum by fitting its zero crossings to the ones of the Bessel function.
This approach does not rely on the amplitude information of the
cross-correlation spectrum which is normally distorted by the vari-
ability of energy arriving for different frequencies and by applying
the spectral whitening. The cross-correlation spectrum is often af-
fected by noise, inhomogeneous microseismic source distributions
and very low energy at the low-frequency end of the spectrum. Con-
sequently, zero crossings may be missed or double crossings appear
and it becomes impossible to fit a unique Bessel function to a given
spectrum. The non-uniqueness can be partially resolved by restrict-
ing the range of allowed phase velocities to realistic values. In the
case of Rayleigh-wave phase velocities, extracted from the ZZ cross
correlations, we only allow values between 1.5 and 5.0 km s–1 which
represent the range of expected phase-velocities for these waves at
our periods of interest (2–200 s). The procedure is illustrated in
Fig. 2 and consists of the followings steps: (1) cross correlations for
which less than 150 d are stacked are discarded; (2) applying a time
domain filter that suppresses signals arriving with a velocity below
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Azimuthal anisotropy from eikonal tomography 153

Figure 1. Tectonic overview map showing station locations (black triangles, permanent and temporary AlpArray stations) and a simplified principal stress
field (cyan, stress directions averaged in 100 km radius, data set from Heidbach et al. 2016). AF, Adriatic Front; ApF, Apenninic Front; DF, Dinaric Front; PF,
Periadriatic Fault; GF, Giudicarie Fault; SEMP, Salzach-Ennstal-Mariazell-Puchberg fault. Tectonic units and major lineaments simplified from Schmid et al.
(2004, 2008) and Handy et al. (2010).

(a) (b)

(d)(c)

Figure 2. Example of the zero-crossing picking method for the station pair OX.FUSE, Z3.A073A, at an interstation distance of 398 km. Panels (a) and (b)
show the vertical component cross correlation in the frequency and in the time domain. The red dashed lines illustrate the effect of the velocity filter between
1 and 5 km s–1. The time domain cross correlation is further symmetrized by discarding the imaginary part of the cross-correlation spectrum. The resulting
phase-velocity curve is shown in the bottom panel. (c) shows the phase velocities associated to the zero crossings, exemplarily illustrated by the gray dashed
line between panels (a) and (c). Panel (d) shows the good fit of the dispersion curves when only the cross correlation at positive/negative lag times or the
symmetric (final) one is used.
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1 km s–1 and above 5 km s–1. This results in a smoothed spectrum
in the frequency domain; (3) the signals at positive time lags and
negative time lags are treated separately and if the picked phase
velocities for the two arrivals are too different (mean difference
>0.3 km s–1), the whole cross correlation is discarded (eliminates
∼20 per cent of the available data); (4) otherwise, the correlation is
symmetrized and a final phase-velocity dispersion curve is picked.

The picking procedure itself is similar to the one described in
Kästle et al. (2016). Each zero crossing in Fig. 2 can be associated
with multiple phase velocities as illustrated in Fig. 3. To resolve
this ambiguity between parallel branches, a reference curve, for
example, derived from a regional average velocity model, is neces-
sary that guides the picking algorithm at the low-frequency end of
the spectrum. For low frequencies, the branches are sufficiently far
apart, so that a unique pick can be taken. The original procedure
of Kästle et al. (2016) is modified such that the phase velocities
are not picked directly from the zero crossings as this may result
in rough dispersion curves or wrong picks in case of noisy data.
Instead, an elliptical-shaped area around each zero crossing is de-
fined and an intensity is assigned within this area, ranging from 1,
at the location of the zero crossing, to 0, at the boundary of the
ellipse (Fig. 3). By summing the overlapping contributions from
all ellipses, a smooth intensity field is created and picks are taken
where the intensity is maximized. This can be understood as a Ker-
nel Density Estimation (KDE) with a cosine shaped kernel varying
between 1 in the centre and 0 at the edge of the ellipse. Size and
orientation of the kernels/ellipses have to be chosen carefully, as
the x- and y-axis have very different values and as the branches be-
come narrower with increasing frequency. We deal with this issue
by making an estimate of the y-axis distance between branches and
the x-axis spacing between subsequent zero crossings. The estimate
is based on the reference curve and on previous picks, which also
controls the orientation of the elongated axis of the ellipses. Our
implementation allows to easily adjust the picking behaviour by
modifying the kernel sizes depending on the application and data
quality. The full code is available online and in the supplement to
this paper. With the applied criteria, we obtain a total of 164 116
phase-velocity curves from ZZ correlations. The described program
can also extract phase velocities for the horizontal component cor-
relations (TT, RR), in this case the second order Bessel function
term is taken into account as discussed in Kästle et al. (2016).

2.3 Isotropic eikonal tomography

The procedure described in the following is available as a Python
tool from the supplementary material to this paper. We adapted this
tool from previous works of Lin et al. (2009) and Lu (2019). The
eikonal tomography method was originally proposed by Lin et al.
(2009) and is based on the eikonal equation (e.g. Shearer 2009),

1

c2
=| ∇T |2, (1)

which relates the phase velocity c to the gradient of the traveltime
field ∇T, valid at the high-frequency limit. Lin et al. (2009) ar-
gue that the method takes ray bending into account and, despite
the high-frequency assumption, approximates the influence of the
finite-frequency kernel. It has been shown for ambient-noise ap-
plications that the typical error introduced by this high-frequency
approximation is below 2 per cent of the mapped velocity variations
(Lin & Ritzwoller 2011a; Mordret et al. 2013). The application of
this method is straightforward, the traveltimes from one arbitrarily
chosen central station to all other stations are interpolated onto a

regular grid. By taking the inverse of the gradient of this traveltime
field, the distribution of velocities is obtained (eq. 1, Fig. 4). This
procedure is repeated for all possible central stations. The final,
isotropic map is calculated from the average of the ensemble of
maps. In general, the method requires no regularization, compared
to well-established linearized inversion approaches that apply damp-
ing or smoothing (e.g. Boschi & Dziewonski 1999). However, the
method of interpolating the traveltimes from the single station mea-
surements to a regular grid can have an important influence on the
result. Small errors in the traveltimes can lead to strong variations
in the gradient field which, by taking the inverse of these spurious
gradients, may cause large velocity jumps. It is therefore necessary
to apply an interpolation scheme that produces sufficiently smooth
traveltime fields, to compensate measurement errors, without over-
smoothing and thus loosing information. In practice, previous works
(Lin et al. 2009; Lin & Ritzwoller 2011a; Mordret et al. 2013) have
often applied the spline-in-tension method (Smith & Wessel 1990).
However, we prefer to use (smooth) radial basis splines (a compari-
son of four different interpolation schemes is shown in Fig. S2). For
the spline-in-tension method, the interpolated surface is required to
pass through all nodal points (i.e. stations where a traveltime has
been measured), while the tension parameter can suppress spurious
oscillations between points (Smith & Wessel 1990). With the use of
smooth radial basis splines, we have the additional option to obtain
a smooth surface without the necessity to fit all nodal points which
can be advantageous in the case of measurement errors. Our tests
indicate that the difference from the chosen interpolation method
is relatively small at most periods, if spurious velocity spikes are
removed [step (iv) below] before all models are stacked (Fig. S2).
To be as independent as possible of user-defined regularization
parameters, the smoothing parameter for the interpolation is only
controlled by the obtained velocities. The user has thus to define a
threshold given in terms of deviation from the mean velocity, which
is more intuitive and related to a physical property of the medium.
The procedure is illustrated in Fig. 4 and consists of the following
steps:

(i) A central station is chosen and all phase-traveltime measure-
ments between this station and all other stations are extracted from
the data set. Measurements from stations that are closer than one
wavelength from the central station are ignored. We set a minimum
threshold of 10 measurements.

(ii) An initial interpolation where the traveltime surface passes
through all nodal points reveals areas of strong curvature. Traveltime
measurements at stations that are associated with a curvature that
deviates by more than a threshold of two standard deviations from
the mean are considered outliers and are discarded. This rejects
about 5 per cent of the measurements.

(iii) The smoothing parameter of the interpolation starts at zero
(no smoothing) is iteratively increased until all velocities are below a
user-defined threshold (in this work, three times the regional average
velocity). If the interpolation grid is finer, it will automatically lead
to a larger smoothing parameter, as a rough grid causes implicit
smoothing by taking the blockmean of all station measurements
within one grid cell.

(iv) Regions of the velocity map that show velocities that deviate
by more than a second threshold (in this work, 50 per cent) from
the average velocity are removed from the map. This removes on
average less than 1 per cent of the mapped area.

(v) Regions of the velocity map that are outside the convex hull
defined by the station locations, as well as regions that are too far
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Figure 3. Procedure to extract phase velocities from the zero crossings of the cross correlation spectra. For each zero crossing, a multitude of Bessel functions
can be found that pass through it, resulting in the ambiguity of the subparallel branches. The correct branch is chosen by starting the picking procedure close to
the reference curve, at the low-frequency end. The algorithm stops automatically when the data quality is too bad to choose a good next pick. The background
colours scale with the number of nearby zero crossings and are controlled by the white ellipses around each zero crossing. For better visual clarity, only the
ellipses along two branches are shown in panel (a). The zero crossings in panel (a) are from the cross correlation in Fig. 2 (OX.FUSE, Z3.A073A). Panel (b)
shows the same for a station pair with lower data quality (SK.MODS, Z3.A359A). At the low frequency end, the branches are too far from the chosen reference
curve so that the choice of the right branch is ambiguous. The picking algorithm starts thus at higher frequencies. Because of jumps in the crossings, the picking
is not completed and the result discarded.

(a) (b) (c)

(f )(e)(d)

Figure 4. Example of the eikonal tomography procedure for a single central station for data measured at a period of 6.5 s. Panels (a)–(c) show phase traveltime
measurements, interpolated traveltime field, curvature of the traveltime field and the deduced phase velocities, all before any data rejection or interpolation
smoothing has been applied. Panels (d)–(f) show the same after processing. The final phase-velocity map is created by taking the processed maps (f) and
stacking them for all available central stations. Grey parts of the map indicate that measurements in these areas have been rejected, because the closest station
is too far away, the azimuthal coverage is bad or there are too few values to obtain a stable average velocity estimate.
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156 E.D. Kästle et al.

away from the next station are removed. We choose a distance limit
of 50 km at short periods, and one wavelength at long periods.

(vi) Steps 1–5 are repeated for all available central stations.
(vii) At all grid points, the mean and the standard deviation of

the phase-velocities is calculated. Velocities that deviate by more
than two standard deviations from the mean are rejected.

(viii) The final phase-velocity map is obtained by splitting the
mapped phase velocities into azimuthal bins and taking the mean of
the phase velocities in each bin. Areas where the gap in azimuthal
coverage is greater than 60◦ and where less than 50 phase-velocity
values are averaged are rejected. Secondly, the contributions of
all bins are averaged for each grid cell. This two-step averaging
procedure makes sure that the average is not biased by the number
of measurements from different azimuths.

The example in Fig. 4 shows how the procedure removes rough-
ness in the traveltime field and very high amplitudes in the phase-
velocity map. It is observable that the highest variance in the trav-
eltime field appears at large distances from the central station,
leading to spurious phase velocities. We checked that this is in-
dependent of the chosen interpolation method and interpret it as
an effect of increasing measurement uncertainty with distance for
the given data set and also increasing distortions of the traveltime
field by velocity variations within the medium. The effect is espe-
cially strong around the shown period of 10 s and decreases towards
both shorter and longer periods. We also achieve good results for
the eikonal tomography method if we reject measurements that
are further away than about 300 km from the central station. In
this case, the interpolation smoothing becomes unnecessary (not
shown here). However, because this leads to a rejection of a very
large part of the data set, we decide not to apply an upper distance
limit.

2.4 Anisotropic eikonal tomography

As shown by Lin et al. (2009), the eikonal tomography method can
be used to determine the azimuthally anisotropic velocity structure.
For each central station, we can estimate not only the velocity in each
cell of the interpolated grid, but also the direction of the traveltime
gradient, that is the direction of propagation. With this information it
is possible to determine azimuthally dependent velocity variations
by fitting them to the following equation for slightly anisotropic
media (Smith & Dahlen 1973) to which we added a �1 term, similar
to previous works Lin & Ritzwoller (2011a):

c(ω,ψ) = c0(ω)(1 + A1 cos(ψ − �1) + A2 cos(2(ψ − �2))

+ A4 cos(4(ψ − �4))), (2)

where c(ω, ψ) is the phase velocity, depending on the angular fre-
quency and the azimuth, c0 is the isotropic velocity and A1, A2

and A4 are the amplitudes of the �1, �2 and �4 components. In
practice, values of Ax and �x are found by optimizing the least-
square fit to the c values, identified as described above. The �1

term is non-physical, because it means that two waves propagating
in opposite directions have not the same velocity which violates
the reciprocity of the wave equation. However, Lin & Ritzwoller
(2011b) have shown that the azimuthal velocity measurements can
be biased in such way that there appears a �1 periodicity. Inclusion
of the �1 term can thus avoid tradeoff with the �2 and �4 compo-
nents and serve as an indicator for biased measurements (discussed
below).

It can be difficult to get stable estimates of the anisotropy, because
the expected amplitude of the azimuthal phase-velocity anisotropy

is in the range of 0–3 per cent (e.g. Fry et al. 2010) and therefore
close to the expected range of measurement errors deduced from the
mapped standard deviations and from previous works (1–2 per cent,
Kästle et al. 2016). Additionally, the sensitivity of the eikonal to-
mography method to small traveltime errors can yield very large
velocities at some locations and travel azimuths. It is therefore nec-
essary to average over a larger area, which has already been shown
in previous works (Lin et al. 2009; Lu 2019), while taking care not
to lose too much information in regions where the fast axis direction
shows strong lateral variations. After some testing, we found a good
compromise by averaging over circular regions of 30 km radius and
summarizing the azimuths of the velocity measurements into bins
of 15◦. The anisotropic parameters are only determined at locations
where the total azimuthal coverage is more than 300◦. In each cell,
the isotropic phase-velocity is subtracted before performing the re-
gional averaging and fitting procedure to minimize trade-off effects
between isotropic velocity variations within the circular region and
the anisotropic parameters.

3 S Y N T H E T I C E X A M P L E

We set up a test model as shown in Fig. 5 and calculate synthetic
traveltime data using the fast marching method (FMM) so that the
rays are bent according the the velocity structure. The isotropic
model is based on a satellite image which serves as approxima-
tion to a characteristic earth structure with different anomaly sizes
and shapes. For this example, we use the same path coverage as in
the measured data set comprising ∼71 000 measurements between
station pairs resulting in phase-velocity models from 656 different
central stations. An error is added to the synthetic data, defined in
terms of velocity with a standard deviation of 0.02 km s–1, which
corresponds to a relative velocity error of 0.5 per cent. This means
that the absolute traveltime errors are larger for large interstation
distances, as is expected from the attenuation and the subsequently
lower signal-to-noise ratio over large distances. The same process-
ing steps and parameters as listed above are used to recover the
model. The smoothing parameters in the interpolation was always
zero as the velocity error never exceeded the threshold for the syn-
thetic measurements [step (iii) in Section 2.3].

The large scale features of the example model are well recovered,
smaller features are smoothed out leading to a general reduction of
the anomaly strength, especially for smaller structures. Structures
of sizes below about 30 km are not being recovered. The smoothing
is caused by two related factors: (1) the traveltime field from each
central station is only sampled at a subset of the stations shown in
Fig. 5(c) and is therefore missing details and (2) the incomplete
reconstruction of the traveltime field causes errors in the velocity
field (see blue dots Fig. 5d) that lead to a smooth model when
averaged over the models from all available central stations. The
smoothing effect is also seen in the anisotropic parameters between
patches of identically oriented anisotropy, as well as at the border
of the patches.

In a next test, we check how stable the eikonal tomography works
in the presence strong velocity heterogeneities. We do so by in-
creasing the amplitude of the isotropic velocity variation while
keeping the anisotropic pattern identical to the one already shown
in Fig. 5. The resulting maps in Fig. 6 show that the quality of the
recovered isotropic model remains almost constant, illustrated by
the stable relative errors (a relative residual of 10 per cent for the
15 per cent—anomaly model means an absolute error of 1.5 per cent,
i.e. 0.06 km s–1). While the relative isotropic velocity residual does
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Figure 5. Synthetic test for an isotropic model (transformed from satellite image, credit: ESA, CC BY-SA 3.0 IGO) overlain by patches of either N–S oriented,
E–W oriented anisotropy (2 per cent) indicated by yellow bars. The data coverage is identical to that of the real data set at 6.5 s period with the station
configuration shown in (c). Panel (a) shows the synthetic input model, (b) the recovered model. The red circle indicates exemplarily the 30 km averaging radius
for the determination of the anisotropic parameters. The red bar highlights one example location for which the fit to the anisotropic parameters is shown in (d).
The blue dots in the background give the individual measurements within the 30 km averaging radius.

not change significantly with the anomaly strength, there is a clear
dependence on the anisotropic residual. For the 5 per cent model
in Fig. 6, the anisotropic residual is relatively small and is visi-
ble mostly inside the patch regions with the same orientation as
the input anisotropic direction. This indicates that the recovered
anisotropy points in the right direction but has a smaller amplitude
than the one in the input model. The residual tends to be larger
for small patches and close to the model boundaries. An additional
smoothing effect in the anisotropic structure can be explained by
the fact that our approach averages measurements inside circular
regions of 30 km radius for the determination of the anisotropic
parameters. For higher isotropic anomalies (15–25 per cent), the
anisotropic fast axis orientation is still mostly correct within the
patches, but a spurious signal appears outside these regions. It be-
comes clear that strong isotropic velocity variations introduce a bias
in the anisotropic model.

3.1 Anisotropic bias

To better understand the source of this anisotropic bias and how it
would affect the results for the Alpine models, a synthetic test with
a purely isotropic velocity model, taken from the real-data models
(shown below) is implemented (Fig. 7). The velocities in this ex-
ample vary by –30 per cent to +16 per cent from the mean velocity.

The very slow velocities are related to the thick sedimentary basin
in the Italian Po plain. The synthetic traveltimes are modeled with
a finite difference solver (Devito: Luporini et al. 2018; Louboutin
et al. 2019) using a source wavelet with a dominant period of
6.5 s so that we can include finite frequency effects and reflections.
The phase traveltime is measured in the frequency domain from
the phase of the cross-correlation function between source signal
and the signal at the receiver locations. The recovered, final model
in Fig. 7(b) shows strong, spurious anisotropy with amplitudes of
more than 5 per cent. The areas where the anisotropic bias is most
prominent coincide with areas where the traveltime field is strongly
curved and concave shaped. In this example, no error is added to
the data and the data coverage is idealized with all recorders active
for all possible central stations (station locations in Fig. 5c). No
data rejection based on local strong velocity variations, as we did in
Fig. 6, is performed: in the previous tests, the areas in the seas and
close to the model boundaries were rejected because of bad station
and bad azimuthal coverage. The spurious anisotropy seems to be
less pronounced when the azimuthal coverage is good, but even in
regions with perfect coverage (low velocity basin in southern Ger-
many and directly north of the Po basin) the bias is still significant
(2–3 per cent).

The phase-velocity map for the single-central-station example in
Fig. 7(c) shows that there are significant errors in the recovered ve-
locities, most prominent behind low-velocity zones. One reason for
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158 E.D. Kästle et al.

Figure 6. Synthetic tests to illustrate the effect of strong isotropic velocity heterogeneities. The input model for these tests is the same as shown in Fig. 5(a),
however, the maximum isotropic velocity anomaly varies from ±5 per cent [(a), identical to Fig. 5] over ±15 per cent (b) to ±25 per cent (c). The strength and
pattern of the anisotropy is identical between tests. Panels (d)–(f) give the isotropic velocity difference as colour image and anisotropic residual calculated as
vector difference. The isotropic residual maps are slightly smoothed for visual clarity. White dashed lines indicate the location of the anisotropic regions in the
input model (Fig. 5).

these artefacts is the occurrence of a secondary wave front down-
stream from the sedimentary basins (Feng & Ritzwoller 2017). The
first wave front results from the signals traveling around the low-
velocity area deforming it to a concave shape. The second wave
front is caused by the slower propagation velocity inside the basin.
The basin itself acts like a lens that focuses the waves, therefore
it is possible that the secondary wave package may have a higher
amplitude. Typically, first and secondary waves are not clearly sep-
arated in time and will thus interfere (Fig. S4). The effects of slow
sedimentary basins on wave propagation angles and amplitudes is
discussed in detail in Feng & Ritzwoller (2017). Another effect is
caused by back scattering which leads to an undulating phase error
(and consequently velocity error) with a λ/2 periodicity (i.e. wave-
length λ ≈ 20 km at period 6.5 s) as described in Bodin & Maupin
(2008); Lehujeur & Chevrot (2020). The station sampling distance
in Fig. 7 is larger than this periodicity, thus making it hardly visi-
ble, but the effect can be seen at longer periods and for very dense
sampling examples (Figs S5–S9).

Lin & Ritzwoller (2011b) study in detail the bias in anisotropy
from inhomogeneous media when applying eikonal tomography to
data from the USArray. The typical station spacing is ∼70 km
in USArray and ∼50 km in AlpArray which gives a comparable
setup for testing. They mainly attribute the bias to finite frequency
effects causing backwards scattering in the vicinity of the receiver
locations (mostly responsible for a bias in the �1 anisotropy) and to
wave front healing (Nolet & Dahlen 2000) due to the large size of
the sensitivity kernels (responsible for a bias in the �2 anisotropy).
Both Bodin & Maupin (2008) and Lin & Ritzwoller (2011b) find
that the bias becomes stronger with increasing velocity contrast, as
is the case in our study.

This class of errors from wave interference affect the phase-
velocity measurements directly. It could be reduced by picking first
(direct) arrival times in the time domain which would be valid for
our synthetic test where the source is almost perfectly monochro-
matic (Fig. S4). Preliminary tests show that using only the first-
arrival traveltime field can indeed reduce the mapped artefacts

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/229/1/151/6415199 by U

niversità degli studi di U
dine Area Biblioteche user on 28 M

arch 2024



Azimuthal anisotropy from eikonal tomography 159

Figure 7. Synthetic test with input model taken from the real data model at 6.5 s. The dominant period for the source signal is chosen accordingly. For the
single station example in (c), the same central station as in Fig. 4 is used. In this idealized example, the traveltime field is recorded at all station locations that are
shown in Fig. 5(c). The final model in (b) is derived from the ensemble average of all individual single-central-station models. The bars indicate the anisotropy.
Red/yellow colour of the bars indicate whether the standard deviation of A2 (eq. 2) is above/below 0.5. The velocity residual in (d) gives the difference between
the models in (c) and (a). White dashed lines indicate the iso-contours of the traveltime field.

(Figs S5–S9). Realistic applications, however, typically deal with
dispersive waves and make use of a frequency domain approach
to determine phase traveltimes, as for example the FTAN or the
Bessel function method described in the previous sections where
the entire wave train is taken into account. More than that, if direct
and scattered wave packages are too close it becomes difficult or
even impossible to isolate the first arriving wave.

The errors related to finite-frequency effects in the recovered ve-
locity field can be better understood in the context of the eikonal
equation (eq. 1) that is only valid for smoothly varying media and
approximately plane waves (e.g. Wielandt 1993). Eq (1) is a sim-
plification, derived from a Helmholtz representation of the wave
equation, in which the amplitude term has been neglected. The full
equation reads (Wielandt 1993):

1

c2
=| ∇T |2 −∇2 A

ω2 A
, ∇2 = ∂2

∂x2
+ ∂2

∂y2
, (3)

where A is the amplitude of the wavefield. In terms of Wielandt
(1993), the application of the eikonal equation leads to the dynamic
phase velocity, not the medium phase velocity which can only be
obtained when the amplitude distribution is taken into account (even
then an error remains as shown by Friederich et al. 2000). The
curvature of the wavefield from the point source in Fig. 7 causes
only a relatively low error (<0.1 km s–1), but other effects such as
wave focusing in low-velocity zones have a more severe influence
(Figs S5–S9). The influence of the amplitude term has been studied
in several previous works (Bodin & Maupin 2008; Lin et al. 2009;
Lin & Ritzwoller 2011a; Lehujeur & Chevrot 2020) and it has been

proposed that it becomes negligible at short periods (increasing ω

in Eq. 3), for example, below 1 s for the local data set of Mordret
et al. (2013) or below 40 s for the western part of the USArray
data in the work of Lin & Ritzwoller (2011a). Our tests confirm
that at long periods much larger portions of the map are biased if
the amplitude correction is omitted (for a long period example see
Figs S8–S9). Specifically, the λ/2-periodic phase bias is strongly
period-dependent and becomes larger at long periods.

Our tests indicate, however, that also in the short-period (6.5 s)
finite difference simulation (finite frequency) and the FMM sim-
ulation (infinite frequency) a significant bias in the �2 anisotropy
appears. In both cases, effects such as wave front healing should
play only a minor or no role. At high frequencies, the observed
bias is mainly controlled by the incomplete reconstruction of the
traveltime field by only being able to sample it at the receiver loca-
tions. If the traveltime field is strongly distorted, as expected behind
strong velocity heterogeneities, extremely dense sampling would
be necessary to be able to properly recover it. Typically, this is not
the case, resulting in a smoothed version of the traveltime field
and thus a phase-velocity bias that is dependent on the azimuth of
the wave propagation with respect to the location of the anomaly.
The infinite frequency tests (FMM) in Figs S5–S8 show that in
case of perfect sampling and if no finite-frequency effects appear
the recovered phase-velocity field is almost identical to the input
model, as expected. The only remaining artefacts appear in narrow
stripes, where the size of the grid cells is larger than the curvature
of the traveltime field, and thus the estimation of the traveltime
gradient fails. For a stable gradient estimate, the wave front has to
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160 E.D. Kästle et al.

be approximately plane in the area covered by the gridpoint and its
four neighbor points used to calculate the gradient. To prove the
important influence of the traveltime field sampling in the eikonal
tomography method, we have repeated the test shown in Fig. 7 calcu-
lating synthetics with the FMM method, that is no finite-frequency
effects such as back-scattering, secondary wave fronts, etc. appear.
The resulting anisotropic bias is, however, almost identical to the
one shown in the finite-frequency simulation (Figs 7, S10–S11).
From this we conclude that at short periods, finite-frequency effects
are indeed negligible as proposed by Lin & Ritzwoller (2011a) or
Mordret et al. (2013), but the wavefield undersampling becomes
the dominant factor. Short periods are in this context to be under-
stood as relative to the interstation spacing and depending on the
complexities of the traveltime field caused by the velocity hetero-
geneities. The bias from incomplete traveltime sampling can affect
the �1, �2 and �4 anisotropic components alike, it is therefore
recommendable to model all of them to avoid for example wrong
mapping of a spurious �1 component into the �2 anisotropy (Lin
& Ritzwoller 2011b).

Different from the finite frequency effects that directly bias the
measured phase-velocities between station pairs, and thus will affect
also other tomographic methods, the issue of the incomplete trav-
eltime field sampling is unique to the eikonal tomography method.
The bias from the undersampled traveltime field may be partially
mitigated by choosing a different interpolation scheme, however,
with the herein discussed methods, we did not note a significant
difference.

3.2 Addressing the �2 bias

In the isotropic phase-velocity maps, most of the discussed bias can-
cels out by azimuthal averaging. This has been shown analytically
for the finite-frequency effects by Lehujeur & Chevrot (2020) and
is also suggested by our tests that show a relatively stable isotropic
error with increasing velocity anomalies (Fig. 6). However, for the
estimation of the azimuthal anisotropy, the contributions from dif-
ferent azimuthal directions need to be treated separately, thus a bias
remains. Bodin & Maupin (2008) and Lin & Ritzwoller (2011a)
already indicated that including the amplitude term from eq. (3)
can significantly reduce the influence from the discussed finite-
frequency effects which we confirm in our tests shown in Figs
S5–S8. However, a bias will remain, since also the Helmholtz equa-
tion is only approximately valid for surface wave propagation in a
laterally heterogeneous medium (Friederich et al. 2000; Lin & Ritz-
woller 2011a). We will not discuss this option in detail, because we
estimate it to be unfeasible for typical ambient-noise applications for
two main reasons: amplitude measurements from ambient noise are
difficult because of issues such as non-uniform source distribution
or typical non-linear pre-processing steps that affect different station
pairs and time windows differently (e.g. Fichtner et al. 2020). More
important, however, is the issue of interpolating the strongly vary-
ing amplitude information from the station locations onto a dense,
regular grid, necessary to calculate the Laplacian of the amplitude
field (eq. 3). In our synthetic example at 6.5 s period, we observe an
increase in the wavefield amplitude by a factor of 4 in a very narrow
stripe that is caused by the interfering wavefields, refracted from
the strong velocity contrasts in the model (Fig. S6). In our tests, we
are only able to record and properly correct for the amplitude effect
if we have ‘perfect’ sampling, that is an extremely dense distribu-
tion of stations with a subwavelength spacing which is unrealistic
in most real applications at short periods. Otherwise, the amplitude

field is smeared out or distorted and cannot be used to correct the
dynamic phase velocity. Finally, the incomplete reconstruction of
the traveltime field poses an even more important source of bias at
short periods that cannot be addressed by the amplitude correction.

An alternative to correcting the velocity bias is removing mea-
surements in the map where the traveltime field is strongly curved
and thus violates the plane-wave assumptions made in eikonal to-
mography method (e.g. Mordret et al. 2013). The mapped region
rejected by this approach changes with different central stations and
at short periods only small areas need to be removed thus making
it necessary to remove only a few percent of the measurements and
still being able to recover the entire region in the ensemble aver-
age. This approach works very well in our tests where we have a
perfectly dense station distribution (not shown here for the sake of
brevity). However, in the case of realistic station distributions, as
shown for example in Fig. 7, the regions of highly curved traveltime
become smoothed out and cannot be properly identified anymore
thus making this approach ineffective.

Lin & Ritzwoller (2011b) propose that the presence of the non-
physical �1 anisotropy may be used as indication of the presence of
a bias in �2. In Fig. 8 we check for a spatial correlation of the bias
in with the the �1 intensity, as well as with the velocity gradient and
the uncertainty in the �2 amplitudes (i.e. std A2). We find that in all
three cases the spatial correlation is weak such that it is not straight-
forward to filter out biased anisotropic measurements using these
three parameters as proxy. The closest spatial correlation is found
with the uncertainty in A2 which we calculate from the covariance
of the least-squares fitting procedure to eq. (2). We will reject mea-
surements where the standard deviation of A2 is greater than 0.5.
This value is based on the synthetic test results presented in Figs 6
and 7(b) (see red bars). From the discussion here it is clear that the
A2 standard deviation is only a proxy but no guarantee that all biased
anisotropic measurements are excluded. For example, not all of the
spurious anisotropy shown in Fig. 6 is also related to areas above
the threshold of 0.5 which would get rejected by this approach.

4 R E S U LT S F O R T H E A L P A R R AY DATA
S E T

We apply the eikonal tomography method to the presented AlpArray
data set and extract azimuthally anisotropic maps at periods between
3 and 80 s (Fig. 9). We only show isotropic velocities in regions
where we have enough values for the averaging procedure and with
good azimuthal coverage (see list in Section 2.3), the remaining
parts are greyed out. The same applies for the anisotropic parts
of the map. We additionally use the uncertainty in the anisotropic
intensity, A2, to identify regions where the anisotropic fast axes are
likely biased. We shows these measurements in grey as opposed to
the remaining areas that are below this threshold, coloured in yellow
in Fig. 9. The comparison of the potentially biased anisotropic areas
of the maps with the results of the synthetic test in Fig. 7 reveal
that the anisotropic bias is mostly an issue in and around areas of
very slow phase velocity. The anisotropic fast axes strengths and
directions that are identified as biased follow a similar pattern as
in the synthetic test: the fast axes align with the shape of the low
velocity anomalies, parallel to the elongation axis within the low
velocity areas and curving around the edges, that is parallel to the
boundary of the velocity contrast. The uncertainty in A2 is lowest
around 20 s period and increases both towards shorter and longer
periods. However, the analysis of the A2 standard deviation can only
serve as a proxy for biases anisotropic measurements, there are also
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(a)

(b)

(c)

Figure 8. The anisotropic bias presented in Fig. 6 (f) (±25 per cent isotropic
velocity variation) is compared to three different parameters: (a) to the
strength of the �1 anisotropy, (b) to the gradient of the velocity field calcu-
lated from the input model and (c) to the standard deviation of A2 (amplitude
of the �2 anisotropy; its standard deviation can be calculated from the fitting
procedure to eq. 2). A weak spatial correlation between the biased anisotropy
and the strength of all three chosen parameters can be seen.

other factors that influence the uncertainty, such as errors in the
measured phase traveltimes. Some regions where the anisotropic
fast axis is biases may not be identified at all as can be seen from
the test in Fig. 8.

For each map shown at a certain period, we give a depth range
which we derive from the calculation of sensitivity kernels based
on the model of (Kästle et al. 2018, fig. S1). The min/max values
of the depth ranges are chosen so that, on average, 50 per cent of
the surface under the sensitivity kernel lies within that range. Low
velocity areas, such as the sedimentary cover in the Po-basin or the
thick crustal root underneath the Alps, shifts the peak sensitivity
to shallower depths. For example, in the map at 30 s in Fig. 9, ve-
locities and fast axis directions under the Alps and Apennines are
most influenced by crustal structures, while outside, they are mostly
influenced by mantle features. The isotropic structures are very sim-
ilar to the ones obtained by other inversion approaches previously
applied in the Alpine area (e.g. Kästle et al. 2018; Lu et al. 2018).
The mapped velocities are smoother compared to these previous

studies with slightly reduced anomaly amplitudes compared to a
linearized inversion approach (Fig. S2). This observation is, how-
ever, strongly dependent on the chosen thresholds in the eikonal
tomography method (see Section 2.3) and the regularization param-
eters in the linearized inversion.

5 D I S C U S S I O N

5.1 Variance reduction

The variance reduction serves as a measure to compare the final
models’ data fit to the fit to a constant velocity model. We define it as

variancereduction = 1 −
∑(

tmod
i − tobs

i

)2

∑(
t ref
i − tobs

i

)2
, (4)

where ti is the traveltime between the ith station pair in the observed
data (obs), in the final phase-velocity maps (mod) and in the constant
velocity ‘reference model’ (ref). The variance reduction gets closer
to 1 as the fit improves. The traveltime in the final phase-velocity
model is not a direct output of the eikonal method. We approximate
it calculating the traveltime on a straight ray path between station
pairs.

For the real data case, the variance reduction of the purely
isotropic model is around 0.8 for short periods up to 25 s (Ta-
ble 1). At longer periods, it decreases to values close to zero (no
improvement compared to the constant velocity model). This be-
haviour is also observed with classical inversion approaches (Kästle
et al. 2018) and has three main reasons: (1) the ray approximation
used in this test which is not valid for the large wavelengths at
longer periods; (2) the data quality decreases above 30 s for the
presented ambient-noise measurements making it more difficult to
get a good data fit and (3) the phase-velocity model at long periods
shows only small velocity variations such that it is always closer to
the constant velocity reference model. Including the anisotropy has
only a small but positive effect on the variance reduction (∼0.01),
improving the data fit which we take as indication that the method
is working. We note that, at periods below 30 s, the anisotropic
variance reduction gives slightly improved values if we choose to
average measurements in within a smaller radius, instead of the
30 km radius applied above.

The variance reduction in the synthetic example in Fig. 6 gives
similar values, with a slightly more pronounced effect from includ-
ing the anisotropy (∼0.03). Of course, there is no period depen-
dence, as the synthetic data are calculated with the same error and
same ray approximation for all periods.

5.2 Non-homogeneous noise source distribution and �4

anisotropy

Ambient-noise based traveltime measurements require a homoge-
neous distribution of noise sources from all azimuthal directions,
otherwise the result may be biased (Yang & Ritzwoller 2008; Tsai
2009; Weaver et al. 2009; Yao & van der Hilst 2009; Kästle et al.
2016). We have noted earlier that even small errors in the traveltime
field can lead locally to large phase-velocity variations and thus an
increase in uncertainty of the final phase-velocity maps. An inho-
mogenous noise-source distribution would likely influence neigh-
boring station measurements similarly and therefore only make
a small contribution to the roughness in the traveltime field. Lin
et al. (2013) similarly argue that the inhomogeneous noise source
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162 E.D. Kästle et al.

Figure 9. Rayleigh fundamental-mode phase-velocity maps at selected periods. Velocities are given as deviations from the mean velocity shown in the top
left corner of each panel. Yellow bars indicate the direction and strength of the azimuthally anisotropic fast axis. Greyed out bars indicate that the standard
deviation of A2 exceeds 0.5. In regions where the majority of the bars are grey the anisotropic parameters are thus likely to be biased. White boundaries show
tectonic limits and major faults from Schmid et al. (2004).
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Table 1. Variance reduction and mean anisotropic amplitudes (percent) at
different periods. The variance reduction values are calculated from eq.
(4) using the real data results presented in Fig. 9 for the isotropic and
anisotropic velocity variations. The variance reduction is always higher when
the anisotropy is taken into account except at 50 s period. The anisotropic
amplitudes represent an average over the entire mapped area based on the
regression applied to eq. (2).

Period Isotropic Anisotropic Avg. A1 Avg. A2 Avg. A4

3.0 0.758 0.793 1.25 1.40 0.96
5.0 0.734 0.764 1.77 1.70 0.90
8.0 0.831 0.843 1.32 1.15 0.72
12.5 0.778 0.791 0.91 0.99 0.56
20.0 0.836 0.856 0.67 0.98 0.37
30.0 0.533 0.558 0.70 0.79 0.44
50.0 0.057 0.052 0.74 0.69 0.54
80.0 0.013 0.021 0.84 0.76 0.76

distribution plays a minor role for the eikonal equation tomogra-
phy, because the gradients are less influenced, compared to classi-
cal straight ray tomography. Also, averaging over the ensemble of
phase-velocity maps will cancel out most of this bias. However, for
the determination of the anisotropic parameters, the effect may have
a negative effect on our final maps. Synthetic tests of Kästle et al.
(2016) for a typical situation in the Alpine region indicate that the
bias from non-homogeneous source distribution varies with a �4

periodicity with an amplitude of 0.5 per cent. We therefore assume
that the bias on the discussed �2 anisotropy is low compared to the
observed anisotropic amplitudes. The observed amplitude of the �4

anisotropy is always about 30–50 per cent smaller compared to the
�2 anisotropy at periods up to 25 s (Table 1). At longer periods
the difference approaches zero. Also in the synthetic example, the
amplitudes of the �4 anisotropy are non-negligible and about 70
per cent smaller than those of the �2 anisotropy. Our synthetic tests
indicate that the spurious �4 anisotropy is not confined to the region
of the anisotropic patches so that we can exclude a mapping of the
�2 anisotropy into the �4 anisotropy. We can also exclude any bias
from a non-homogeneous noise source distribution in the synthetic
example. Thus, we infer that part of the �4 anisotropy is caused
by errors in the reconstructed traveltime field, related to data errors
and to the sparse sampling of the traveltime field.

5.3 �1 anisotropy

Tests for the herein presented data set indicate that the �1 anisotropy
appears at all periods and concentrates around certain areas such
as the Ivrea zone in the western Alps, the sedimentary basins, and
the borders of the mapped region (Fig. 10). The model-averaged
amplitude of the �1 anisotropy is slightly smaller than that of the
�2 anisotropy below 40 s and equal or larger above; the variation
is small, however (Table 1). Lin & Ritzwoller (2011b) propose that
a strong amplitude of the �1 anisotropy can be taken as proxy for
a bias in �2. They find in a synthetic test that the spurious �1

component is strongest at the border of low-velocity zones with
their fast-axis pointing towards the fast velocity region. The same
is true for the real-data example shown at 8 s period in Fig. 10(a).
The synthetic tests of Lin & Ritzwoller (2011b) further show that
the spurious �2 component, tends to be strongest inside the low-
velocity regions, aligned with the major elongation axis of the low-
velocity patches, similar to Fig. 7(b). We infer that this spurious �2

component leads to an increase in the A2 standard deviation. This
can be seen from Figs 10(e) and (f) which exhibit both a strong �1

component but also a larger scatter in the mapped phase velocities,

compared to the points in Figs 10(c) and (d). This justifies our
choice of basing our rejection scheme in Fig. 9 on the uncertainty
in the amplitude of the �2 anisotropy which is spatially better
correlated with the spurious �2 component. Different from Lin
& Ritzwoller (2011b), we find that the �1 anisotropy is already
pronounced at short periods (Fig. 10 at 8 s period). This may be due
to the strong velocity contrasts from the sedimentary basins in our
model area which did not play an important role in the studies of Lin
& Ritzwoller (2011a, b) that only consider periods ≥40 s. It further
indicates that the effect from undersampling of the traveltime field
has a similar influence on the mapped anisotropic bias (in �1, �2

and �4) as from finite-frequency effects.

5.4 Sources of anisotropy

Different mechanisms can cause the azimuthal anisotropy in the
crust and it is not easy to distinguish between these processes
when interpreting the imaged structures. Laboratory experiments
on rock samples show that at shallow depth, down to about 200 MPa
(∼5 km), the bulk anisotropy is dominated by microcracks (Kern
1990; Kern & Schmidt 1990). These (fluid filled) cracks are ex-
pected to be aligned perpendicular to the minimum stress direction
and thus approximately parallel to the maximum horizontal stress
and the anisotropic fast axis (Crampin 1994). An alignment of the
fast axis is also expected with structures such as rock foliation
(Lüschen et al. 1991), faults, folds or inclusions. All of these ef-
fects can be summarized as shape-preferred orientation (SPO) of
the anisotropic fast axis. In contrast, the alignment of anisotropic
crystals such as olivine (e.g. Nicolas & Christensen 1987), mainly
in the mantle, or amphibole and biotite (Barruol & Mainprice 1993)
which are also abundant in the lower crust, is classified as lattice-
preferred orientation (LPO) and is the main source of anisotropy at
greater depths. The named minerals show an alignment of their fast
axis parallel to the main strain direction, however, other minerals
such as pyroxene can have an opposite effect (fast axis perpendicular
to the strain direction) and thus lower the observed bulk anisotropy
(Barruol & Mainprice 1993; Silver 1996). In this work, we will
apply the simplified assumption that the bulk LPO, and thus the
anisotropic fast axis, is aligned parallel to the main strain direction.

5.5 Tectonic interpretation of the anisotropy pattern

The methodological uncertainties described above demand caution
when interpreting the �2 anisotropic pattern. We will thus focus
on areas where the potential bias is low (yellow bars in Fig. 9).
Our results indicate that in the valid model regions, the entire crust
and uppermost mantle is affected by moderate levels (1–4 per cent)
of azimuthal anisotropy. This is different from recent results of
the radially anisotropic structure which show anisotropy mostly
underneath the Alpine and the Apenninic orogens (Alder et al.
2021). A comparison between our results and this study is difficult
because of methodological differences and the different sensitivities
of azimuthal and radial anisotropy to vertically/horizontally aligned
fast axis.

The average principal stress direction in the Alps is N–S ori-
ented except for the northern part of the western Alps and transition
from eastern Alps to the Pannonian basin where an E–W orientation
dominates (Fig. 1). According to the discussion above, we expect
a parallel alignment of the fast axis direction with the principal
stress direction at shallow depth. The shortest-period anisotropic
measurements (3–5 s) have large uncertainties due to a stronger
bias that make a conclusive comparison with the stress direction
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(a)
(c) (d)

(f )(e)
(b)

Figure 10. Azimuthal anisotropy at selected locations for the phase-velocity map at 8 s period. (a) Amplitude of the �1 anisotropy and its direction. (b):
Standard deviation of A2. (c)–(f) Mean velocities obtained in different azimuthal directions (black dots) and the regression fit (red line). The anisotropic
parameters shown at the bottom of each panel correspond to those in eq. (2). The data for the panels (c)–(f) were taken from circular regions with 30 km radius
as indicated in panels (a) and (b).

difficult. An agreement between principal stress direction and fast
axis orientation is only visible in few parts of the map such as in
parts of the central Alps and at the eastern edge of the eastern Alps.
This may be due to the discussed methodological uncertainties, but
the anisotropy may also be dominated by fault and fold structures
instead of the stress field. In the eastern Alps, we infer from the
higher phase velocities that the depth sensitivity of the Rayleigh
waves should be deeper (Fig. S1) and thus the peak sensitivity
may already lie below the 5 km estimate for the stress dominated
anisotropic fast-axis alignment. A stress-related fast axis orientation
at short periods is also proposed by Schippkus et al. (2018, 2019)
who study the anisotropy in the Vienna basin region (Fig. S12).
A direct comparison between the studies is not possible, because
Schippkus et al. (2019) use group velocities that have a differ-
ent depth sensitivity; the strong velocity contrast to the adjacent
low-velocity basin and the position at the edge of our model area
limits the interpretability of the results in our study. The observed
anisotropic fast axis curve around the low-velocity Vienna basin
and are aligned in SW–NE direction within the basin correspond
very well to the bias modeled in Fig. 7 and are accordingly greyed
out in Fig. 9.

For the mid-to lower crustal depths, we can compare our results
to the study of Fry et al. (2010) who image the azimuthal anisotropy
in Switzerland at periods between 8 and 40 s (Fig. 11). Both the
isotropic and the anisotropic part are highly compatible between
the two models up to a period of 24 s. In this period range, the
fast axis are aligned roughly parallel to the arcuation of the Alpine
orogen. Also in the western and northwestern foreland, this orien-
tation can be observed (Fig. 9). This may be due to major thrust

faults that formed the Alpine edifice but also other major linea-
ments such as the Periadiatic line (Fig. 1). Alternatively, LPO of
crustal minerals due to compression (Fry et al. 2010) could cause
this pattern. From 8 to 24 s period (transition from mid to lower
crust in the Alps), a change in fast axis orientation from arc-parallel
to arc-perpendicular can be observed (Fry et al. 2010). The northern
limit of the arc-perpendicular orientation at 16 and 24 s coincides
spatially with the Alpine front. It is interpreted by Fry et al. (2010)
in terms of lower European crust which is uplifting in slices after
European slab break-off and following slab retreat. In their model,
this results in two displacement components, a vertical one, which
is not imaged by the azimuthal anisotropy, and a northward one,
which gives the arc-perpendicular orientation. This mechanism has
been thermomechanically modeled showing both a northward and
vertical component of the lower crustal stress tensor (Singer et al.
2014). According to our results, this process would be limited to the
central Alps, as we do not observe a clear arc-perpendicular fast-
axis orientation in the eastern or western Alps at periods between
20 and 30 s. This would be in agreement with models that suggest
an attached slab in the central, but detached subduction slabs in the
western and eastern Alps (Kästle et al. 2020; Paffrath et al. 2021;
Handy et al. 2021).

In the eastern Alps, we expect to see an imprint of the eastward
extrusion (Frisch et al. 1998) in the anisotropic fast-axis directions.
Indeed, we observe higher, E-W oriented, anisotropic amplitudes
between 3 and 20 s, compared to the rest of the Alps. The SEMP
fault to the north, and the Periadriatic line to the south (Fig. 1)
limit the extrusion area in agreement with the highest observed �2

amplitudes at 8 and 12.5 s. We infer that the E–W pattern may be
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(a)

(b)

(c)

(d)

Figure 11. Comparison of the isotropic and anisotropic phase-velocity maps in Switzerland between this work (left-hand panels) and the one of Fry et al.
(2010, right-hand panels) at four different periods (a) 8 s, (b) 16 s, (c) 24 s and (d) 34 s. The colour model and the length of the anisotropic bars have been
adapted to provide comparability between the models.

due to LPO of the minerals, parallel to the eastward motion. Above
12.5 s period, the E–W orientation is most prominent around the
Periadriatic Fault zone which thus seems to affect the structure down
to the lowermost crustal depths.

The measured Rayleigh waves start sampling the uppermost,
lithospheric mantle above periods of about 20 s in the forelands,
and 40 s in the Alps (sensitivity kernels in Fig. S1). This is largely
controlled by the crustal thickness variations as can be seen from the
lower velocities underneath the Alps, for example at 20 s period. Fry
et al. (2010) find that at these periods, the fast axis in Switzerland
orient consistently in N–S direction. We do not observe the same
pattern, instead the images in Fig. 11 suggest a continuation of

the arc-parallel anisotropic fast axis orientation in the western and
northern Alpine foreland up to approximately 50 s. The arc-parallel
foreland structure can be followed eastwards to about 13◦E where
they turn northwards. This coincides spatially with the border to
the Bohemian Massif (Fig. 1). We infer thus that there may be LPO
orientation in the uppermost, lithsopheric mantle in the European
plate. The herein presented results are compared to those obtained
with Pn waves (sensitive to the uppermost mantle; Diaz et al. 2013)
and a compilation of SKS results (most sensitive to the upper mantle;
Wüstefeld et al. 2009,and references therein) in Fig. 12. At 20 s
period, the fast axis orientations in the northern Alpine foreland are
highly compatible between Pn- and surface-wave results, including
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Figure 12. Comparison between Pn anisotropy from Diaz et al. (2013, blue bars), a compilation of SKS fast propagation directions (SKS FPD, light red bars)
modified from Wüstefeld et al. (2009); Diaz et al. (2013) and the anisotropic fast-axis results from this work (yellow bars) at 20 and 50 s period. The red lines
indicate major tectonic lineaments (Fig. 1).

the arc-parallel flow that turns northward at approx. 10◦E. Within
the Alps, the 20 s surface waves are mostly sampling the lowermost
crustal structure and therefore Pn results and those from this work
do not match well. SKS waves are sensitive to deeper structure and
thus we see the best compatibility for long periods surface waves
(Fig. 12). Both methods show the well known flow field around
the western Alps and the arc-parallel orientation under the Alps
and underneath both southern and northern forelands (Wüstefeld
et al. 2009; Barruol et al. 2011; Salimbeni et al. 2018; Petrescu
et al. 2020). The herein presented surface-wave results thus help to
better understand the depth-sensitivity of SKS splitting studies in
the Alpine region.

6 C O N C LU S I O N S

We extract phase-dispersion curves from ambient-noise cross cor-
relations for 2 yr of AlpArray data. The resulting Rayleigh-
wave phase-velocity measurements are used to obtain azimuthally
anisotropic maps at periods between 3 and 80 s with the eikonal
tomography method.

Through a suite of synthetic tests, we illustrate how strong veloc-
ity variations may bias the mapped anisotropy. We attribute the bias
to two mechanisms: (1) finite frequency effects that directly affect
the phase velocity measurements between station pairs. These are
caused by low-velocity zones that can produce a secondary wave
front downstream from the velocity anomaly and interference be-
tween direct and reflected/refracted and/or multiple waves. These
produced artefacts are period-dependent and can be significantly re-
duced if the amplitude information is taken into account (Helmholtz
tomography). This is, however, only possible if good amplitude in-
formation at densely spaced sample (i.e. station) locations is avail-
able. (2) Artefacts due to incomplete sampling of the traveltime
field. This problem is most pronounced at short periods where the
wave front is very complex and thus only a smoothed and distorted
traveltime field can be recovered. We show that at short periods
(relative to the interstation spacing and the strength of the wave-
field distortion due to velocity heterogeneities), the undersampling
is responsible for most of the reported bias.

The spurious �2 anisotropy appears most prominent within low-
velocity regions and at the borders of large velocity contrasts. For
the shown application to the AlpArray network with typical station
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spacing of 50 km, a bias from velocity heterogeneities of ±10
per cent and less seems negligible, at the herein studied periods.
In the isotropic velocity distribution, most of the bias cancels out,
given that there is good azimuthal coverage.

We find that the anisotropic bias has a rough spatial correlation
with the amplitude of the �1 anisotropy and the mapped uncertainty
in A2, with the latter being more consistent. We therefore use the A2

uncertainty as indicator for potentially biased regions in our final
maps and we exclude anisotropy estimates for those regions from
our final maps. For the remaining regions in the real data maps we
interpret the anisotropic structures as follows:

(i) At mid-crustal depths, an E–W orientation of the anisotropic
fast axis is observed in the entire Alpine arc. This could be explained
with the orientation of major faults and lineaments and the LPO of
crystals due to compression as proposed by Fry et al. (2010).

(ii) In the lower crust, an arc-perpendicular pattern emerges in
the central Alps. In the eastern Alps, the pattern remains rather
E–W oriented. We interpret the consistent E–W orientation in the
eastern Alps as imprint of the eastward extrusion and find the most
pronounced effect on the anisotropic fast axis around the eastern
Periadriatic Fault zone.

(iii) In the northern Alpine foreland a simple, arc-parallel pattern
of fast axis becomes visible at lower crustal and uppermost mantle
depths, limited in the east by the Bohemian Massif. This orientation
is similar to the one observed from Pn waves and in SKS studies
and is probably related to the Alpine orogeny.
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S U P P O RT I N G I N F O R M AT I O N

Supplementary data are available at GJI online.

Figure S1: Rayleigh fundamental mode phase sensitivity kernels
for three different shear-velocity profiles, representative of different
map regions. The period for each kernel is indicated next to black
dot which marks the sensitivity peak. The kernel amplitude indicates
which depth levels are sampled by a Rayleigh wave of certain period.
The shape of the kernel is strongly influenced by the location of the
velocity jumps between sedimentary cover and underlying crustal
rocks, as well as between crust and mantle. The shear-velocity
profiles are extracted from the model of (Kästle et al. 2018).
Figure S2: Comparison of different traveltime interpolation meth-
ods. The results are very similar between linear radial basis func-
tion (RBF) interpolation, spline-in-tension interpolation (Smith &
Wessel 1990), linear and cubic interpolation. Linear interpolation
results in a more blocky model. Cubic interpolation can yield very
high spurious amplitudes in case of data errors. The amount of re-
jected model points, because of the velocity deviation threshold (see
method part in the main document), can be very different between
these methods.
Figure S3: Comparison between phase-velocity maps at two se-
lected periods from the eikonal tomography method and a linearized
inversion approach.
Figure S4: Illustration of the appearance of a secondary wave front
downstream from the edge of a low-velocity zone. Synthetics are
calculated with a Finite Difference simulation and a source wavelet
with a dominant period of 30 s. The panels at the top show the
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input velocity field and three wavefield snapshots at 150, 224 and
300 s. The bottom plots illustrate the obtained waveforms (blue)
at five selected locations with increasing distance to the source.
The receiver numbers correspond to the numbers in the map plots.
The orange dashed line shows the source waveform shifted to the
approximate time of first arrival for comparison.
Figure S5: Synthetic test in which the traveltime field from a
single source (red dot) to all grid points (perfect sampling) is
calculated with the fast marching method (FMM). The middle
panel shows the recovered velocity field after application of
the eikonal tomography method and the right panel the residual
between input and recovered models. White dashed lines show
iso-contours of the traveltime field.
Figure S6: Synthetic test based on a finite difference (FD) simula-
tion. The input model is identical to the one shown in Fig. S5. The
source wavelet has a dominant period of 6.5 s. The panels in the
middle column show the recovered velocity field without amplitude
correction (top) and with amplitude correction (bottom). It can be
seen that the amplitude correction significantly reduces the bias.
In the upper panel, the λ/2 bias (Bodin & Maupin 2008; Lehujeur
& Chevrot 2020) is clearly visible. As in Fig. S5, the sampling is
‘perfect’, that is there is a receiver every 3 km (minimum expected
wavelength is 13 km).
Figure S7: Same as Fig. S6 but picking the traveltimes and the
amplitudes from the first arrival in the time domain. This eliminates
most of the bias in the first place, especially the λ/2 periodic effect
is not visible anymore. However, the error in areas of a strongly
distorted wavefield remain. These can be significantly reduced by
the amplitude correction.

Figure S8: Same as Fig. S6, but in the FD model a source signal
with a dominant period of 50 s is used. The λ/2 periodic effect is
much clearer and the associated error in the phase velocities more
significant. The amplitude correction very effectively removes this
bias.
Figure S9: Same as Fig. S6 but for the FD model a source signal
with a dominant period of 50 s is used and the traveltimes and
amplitudes are picked from the first arrival in the time domain. This
eliminates the λ/2 periodic bias from the phase interactions.
Figure S10: Same as Fig. 7 of the main document, but instead
of a finite difference simulation, the synthetics are calculated with
the FMM method so that no finite-frequency effects appear (no
reflection, no secondary wave front, etc.). The bias in the recov-
ered, anisotropic map is almost identical to the one for the FD
simulation in Fig. 7 of the main document. This shows in junc-
tion with Fig. S11 that the bias is mostly caused by insufficient
sampling.
Figure S11: Same as Fig. S10 but with ‘perfect’ sampling, that is a
receiver at every point of the grid.
Figure S12: Comparison of the work of Schippkus et al. (2018, top),
Schippkus et al. (2019, left) and this work (right) for the Vienna
basin region. The studies of Schippkus et al. (2018, 2019) are based
on group velocity measurements as opposed to phase velocities in
this work.

Please note: Oxford University Press is not responsible for the con-
tent or functionality of any supporting materials supplied by the
authors. Any queries (other than missing material) should be di-
rected to the corresponding author for the paper.
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