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Robert May famously used random matrix theory to predict that large, complex systems cannot
admit stable fixed points. However, this general conclusion is not always supported by empirical
observation: from cells to biomes, biological systems are large, complex and, often, stable. In this
paper, we revisit May’s argument in light of recent developments in both ecology and random matrix
theory. We focus on competitive systems, and, using a non-linear generalization of the competitive
Lotka-Volterra model, we show that there are, in fact, two kinds of complexity-stability relationships
in disordered dynamical systems: if self-interactions grow faster with density than cross-interactions,
complexity is destabilizing; but if cross-interactions grow faster than self-interactions, complexity is
stabilizing.

I. INTRODUCTION

Few mathematical arguments have influenced biolog-
ical thinking like May’s prediction that large, complex
ecosystems cannot be stable [1]. It is, on the face of it,
a perplexing conclusion. On the one hand, May’s math-
ematical argument is simple and seemingly model-free,
suggesting universal applicability, also beyond biology
[2, 3]. On the other hand, it is clear that at least some
large, complex systems are stable—else which regulari-
ties would biology be studying in the first place? In fact,
empirical observation suggests the opposite relationship
between complexity and stability: species-rich, strongly-
coupled communities such as rainforests tend to be stable
over time, while sparser ones, for instance arctic commu-
nities, often exhibit large fluctuations, extinctions, and
invasions [4–6]. The tension between May’s theoretical
argument and observation is at the center of the long-
standing “diversity-stability debate” in ecology [7–9].

May’s argument can be summarized as follows [1].
Consider a system with N populations xi, character-
ized by an equilibrium point x∗. Near that equilibrium
x = x∗ + δx, the dynamics of the system is described
by linear equations d(δx)/dt = A(δx), and the stabil-
ity of these equations requires that all eigenvalues of A
have negative real part. But if A can be represented as
A = B − I, where B consists of random, independent
interactions (with zero mean and variance σ2), and −I
corresponds to stabilizing self-interactions on some nat-
ural timescale, the circular law of random matrix theory
implies that all eigenvalues of A will have negative real
part only if σ2N < 1. This condition places a sharp
constraint on both diversity N and interaction strength
σ, often referred to as “complexity begets instability”.
(This argument generalizes to ⟨Bij⟩ ≠ 0, incomplete con-
nectivity, or correlated interactions [10].)

Many authors have sought to ease the tension between
May’s prediction and empirical observation by invoking
effects not captured by dynamical systems with random

coefficients [7, 11–15]. In this Letter, we use recent re-
sults in the physics of disordered systems [16, 17] to show
that May’s argument itself is incomplete: in random dy-
namical systems, stability does not necessarily decrease
with dimensionality and interaction strength—the oppo-
site behavior is also possible, without the need for special
or additional structure. For an in-depth discussion of the
ecological implications of our result, see our recent paper
[9].

II. MODEL

Consider the dynamical system in N variables

ẋi = f(xi)−
∑
j

Aijg(xi)h(xj) . (1)

Here f(xi) represents the self-dynamics of a population i
(growth and self-regulation), while g(xi) and h(xj) cap-
ture the cross-interaction of i with other populations.
That interaction is weighted by a coefficient Aij > 0,
such that it implies a negative effect of j on the growth
of i. Non-zero diagonal elements Aii accounts for ad-
ditional self-interactions with the same functional form
as cross-interactions. We refer to f as the “production
function” and g as the “coupling function”.
This general setting has been used to study universal-

ity in network dynamics [18] and to construct minimal
models of complex dynamics [19], with applications rang-
ing from biological [20, 21] to social [22–24] systems. In
particular, the classic generalized Lotka-Volterra (GLV)
model studied by Bunin and collaborators [25, 26], when
constrained to competitive interactions, corresponds to
f , g, h all linear. However, it is natural both phys-
ically and biologically to consider more general func-
tions, including power laws f(x) ∼ xα, g(x) ∼ xβ ,
h(x) ∼ xγ . From a physical perspective, we can imagine
populations xi forming three-dimensional clusters whose
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growth is limited to their two-dimensional surface, lead-
ing to a production function f(x) ∼ x2/3. Biologically,
at the individual organism level (populations of cells),
growth has long been known to scale like f(x) ∼ xk with
k ≃ 3/4 [27], which can be understood in terms of hy-
drodynamic constraints on vascular and pulmonary net-
works. For reasons that are not currently understood, a
similar pattern of growth appears to recur at the level
of ecological communities [9, 28]. In a different direc-
tion, it has been recently suggested that predator-prey
interactions can be modelled with a square root law, i.e.
g(x) ∼ h(x) ∼ x1/2 [29, 30].

III. RESULTS

A. Homogeneous interactions

Under what condition does (1) admit a (linearly) stable
equilibrium? We begin with the simple case where all
self-interactions have the same strength Aii = µs, and
similarly for cross-interactions Aij = µ (i ̸= j). Defining

ψ(x) ≡ (µs − µ)−
(
f ′(x)

f(x)
− g′(x)

g(x)

)
f(x)

g(x)h′(x)
, (2)

an elementary calculation shows that stability of
the homogeneous equilibrium x∗i = x∗ requires
ψ(x∗)g(x∗)h′(x∗) > 0, or ψ(x∗) > 0 if we assume that
g and h are positive, increasing functions. This stability
condition involves the relative strength of diagonal and
off-diagonal interactions (µs − µ), but also on the rela-
tive growth rate of the production and coupling functions
near the equilibrium (f ′(x∗)/f(x∗)− g′(x∗)/g(x∗)).
With power laws, the condition ψ(x∗) > 0 evaluates to

(α− β)(N − 1) < γ(µs/µ− 1)− (α− β)(µs/µ), (3)

leading to three different regimes:

• If α = β, stability requires µs > µ, i.e.
self-interactions must be stronger than cross-
interactions. This is the usual conclusion drawn
from the Lotka-Volterra model.

• If α > β, stability places an upper bound on N :
the more complex the system, the less likely to be
stable. We can call this “May” behavior.

• If α < β, stability places an lower bound on N :
the more complex the system, the more likely to be
stable. This is “anti-May” behavior.

B. Random interactions: stability condition

We now consider the case of random interactions.
Specifically, we assume that interaction coefficients Aij

are drawn independently from a distribution with mean

FIG. 1: The equilibrium distribution for the case of
power-law self- and cross-interactions is accurately repro-
duced by Eq. (11). For simulations (in green) we used
α = 1, β = 3/2, γ = 1, N = 100, µ = µs = σ = 10−2.

µ and standard deviation σ. We assume the diagonal el-
ements Aii have a mean value µs (possibly different from
µ) and standard deviation σ.
We compute the Jacobian matrix at equilibrium

J∗
ij = −Aijg(x

∗
i )h

′(x∗j ) for i ̸= j (4)

J∗
ii = f ′(x∗i )− g′(x∗i )f(x

∗
i )/g(x

∗
i )−Aiig(x

∗
i )h

′(x∗i ) ,
(5)

where we used
∑

j Aijh(x
∗
j ) = f(x∗i )/g(x

∗
i ). In order

to investigate the spectral properties of J∗, we follow
Stone [31] in using a recent generalization of the circular
law in random matrix theory [16].
In Ref. [16], Ahmadian et al. consider matrices of the

formM+LSR, whereM , L and R are deterministic ma-
trices, and S is a random matrix with i.i.d. coefficients,
zero mean and variance σ2. They show that eigenvalues
of large matrices of this form are contained in the com-
plex domain D = {ζ ∈ C, Tr[(Ψ(ζ)Ψ(ζ)†)−1] ≥ σ−2},
where Ψ(ζ) = L−1(M − ζI)R−1. If L, R and M are all
diagonal N ×N matrices, the equation of D simplifies to

N∑
i=1

∣∣∣Mii − ζ

LiiRii

∣∣∣−2

≥ σ−2. (6)

To use this result, we decompose the interaction ma-
trix as A = µ1+ (µs − µ)I + S, with 1 the matrix with
all entries equal to 1 and S a random matrix as defined
above. Up to the rank-one perturbation µ1 which does
not affect stability properties [31], we can write the Ja-
cobian (4) as J =M + LSR with diagonal matrices

Mij = −g(x∗i )h′(x∗i )ψ(x∗i )δij ,
Lij = g(x∗i )δij , Rij = h′(x∗i )δij , (7)

where δij is the Kronecker delta and ψ(x) is the function
defined in (2). Stability of the equilibrium requires that
D be entirely contained in the left half-plane (all eigen-
values have negative real part). For this to hold, it is no
longer sufficient that ψ(x∗i ) > 0 for each i: we must also
have that 0 /∈ D, hence from (6):

N∑
i=1

( σ

ψ(x∗i )

)2

< 1. (8)
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FIG. 2: For a system in the “anti-May” phase, an in-
crease in N , corresponding to moving along

√
N in the

(σ
√
N,µN) plane (green dashed line), will be stabilizing

rather than destabilizing. Here we show results from the
numerical resolution of the dynamical system (1). Sta-
bility is defined as full stable coexistence. The red line is
computed using the cavity solution and the generalized
stability condition N⟨(σ/ψ)2⟩ < 1. Parameters values
are α = 1, β = 3/2, γ = 1, N = 50 and 10 replicates
for the simulations. The green line is plotted for µ = 0.1
and σ = 0.75.

In the GLV model, ψ(x) = µs − µ (independently of x)

and we recover the classical condition σ
√
N < µs − µ

[32]. In general, however, the dependence on equilibrium
values x∗i (which in turn depends on N) does not cancel
out, and one must gain information about the distribu-
tion of equilibrium values P (x∗i ) to assess the stability
condition (8).

C. Random interactions: equilibrium distribution

Henceforth we assume f(xi) = xαi , g(xi) = xβi , h(xi) =
xγi . (Any coefficients can be reabsorbed in the statistics
of A and by a rescaling of time.) Following e.g. Ref. [17],
we can derive from Eq. (1) a cavity solution that describes
the ensemble of the stationary solutions of the system by
means of a single representative random variable x∗

0 = xα∗ −Asx
β+γ
∗ − xβ∗

(
µN⟨xγ∗⟩+ σ

√
N

√
⟨x2γ∗ ⟩ξ

)
, (9)

where As is a random variable with the statistics of Aii

and ξ is a standard normal random variable. We are in-
terested in the case in which the number of degrees of
freedom N is the only parameter changing in the system
and the strength and heterogeneity of the interactions are
fixed [33, 34]. Compared to the case where µ and σ scale
with N , our choice reflects a strong-interaction regime;
it has been employed, for example, to study ecological
scenarios with large differences in species abundance and
chaotic turnover [35]. As we show below, the cavity ap-
proximation does a good job at describing the effects of
heterogeneity in the interactions as long as σ

√
N is not

negligible relative to µN , at which point we recover the
homogeneous case.

The equation above can be solved for x∗ for specific
values of (α − β)/γ, or if As = 0. (In the following we
show that neglecting As, when it is of the order of µ, does

FIG. 3: The “May” and “anti-May” phases derived in
the case of uniform interactions (σ = 0) are robust with
respect to random interactions (σ > 0). Here we simu-
lated system (1) in the power law case for a fixed value of
µ = µs = 10−2, γ = 1, N = 100 and 100 replicates, and
we evaluated σc, defined here as the value above which
full stable coexistence is less probable than 50%, at vary-
ing α and β. No amount of heterogeneity is allowed in
the bottom right triangle because we have set µ = µs,
while an increasing value of σc is found as β becomes
larger than α. We stress that the existence of a finite
σc
√
N above which instability is triggered also in the up-

per triangle, does not imply that increasing N , at fixed
µ and σ, will destabilize the system, because µN would
also change.

not affect noticeably the quality of the approximation.)
In this case the stationary solution is given by

x∗ =

(
µN⟨xγ∗⟩+ σ

√
N

√
⟨x2γ∗ ⟩ξ

)1/(α−β)

. (10)

The equilibrium distribution P (x∗) can then be obtained
as the pushforward of the distribution of ξ:

P (x∗) =
|α− β|xα−β−1

∗√
2πσ2N⟨x2γ∗ ⟩

exp

{
− (xα−β

∗ − µN⟨xγ∗⟩)2

2σ2N⟨x2γ∗ ⟩

}
,

(11)
defined from 0 to ∞, and where the expectation values
must be computed self-consistently.
Let us focus on the choice α = 1, β = 3/2 and γ = 1,

with As = 0. In this case the system is always feasible,
and the distribution can be normalized. However, the
first and second moments formally diverge. This problem
can be overcome by considering that we are dealing with
a large, but finite, number of degrees of freedom. We
are therefore interested in predicting the sample mean
and variance for a given N . Consider the sample mean

x̄N ≡
∑N

i xi/N . We can approximate it with x̄N ≈
⟨x∗⟩Λ ≡

∫ Λ

0
dx∗x∗P (x∗), where the cut-off Λ depends on

N in such a way that
∫∞
Λ
dx∗P (x∗) = 1/N , i.e., such that

there is statistically less than 1 variable out of N with
value above Λ; see Appendix A.
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Following, e.g., [9, 36] we can compute self-consistently
Λ, ⟨x∗⟩Λ and ⟨x2∗⟩Λ:∫ Λ

0

dx∗P (x∗) = 1− 1

N
, (12)

⟨x∗⟩Λ =

∫ Λ

0

dx∗x∗P (x∗), (13)

⟨x2∗⟩Λ =

∫ Λ

0

dx∗x
2
∗P (x∗). (14)

The resulting distribution is plotted against simulations
in Fig. 1. Simulations correspond to As = µ, showing
that neglecting the As term in analytical expressions does
not introduce a significant error. Notice that the same
“renormalization” procedure described above can be ex-
tended to other choices of the exponents α, β, and γ, if
needed, to compute ⟨xγ∗⟩, and ⟨x2γ∗ ⟩.
Equipped with the equilibrium distribution P (x∗), we

can compute, for given N and µ, the maximal hetero-
geneity σc compatible with the linear stability condition
N⟨(σ/ψ(x∗))2⟩ < 1.

The properties of large random dynamical systems are
often portrayed in the (σ

√
N,µN) plane [25]. If we keep

the mean µ and standard deviation σ of interactions
fixed, an increase in the number of degrees of freedom
N moves the system along a square-root trajectory in
that plane. In the GLV model, the boundary between
the stable and unstable parameter regions is the horizon-
tal line σc

√
N = µs − µN/N ≈ µs [25], hence stability is

never possible at large N .

In Fig. 2 we plot the stability condition
N⟨(σ/ψ(x∗))2⟩ < 1 for α = 1, β = 3/2 derived
from (11) (solid line) together with results from simu-
lations (shading). Here, because the boundary between
the stable and unstable phases is a straight line with
positive slope, increasing N will eventually bring the
system in the stable region. This behavior corresponds
to the “anti-May” phase defined previously.

Fig. 3 shows results of simulations for σc
√
N in the

(α, β) plane, at fixed µN and γ = 1. (Numerically, we
define σc as the value of σ above which full stable co-
existence has a probability lower than 50%.) In these
simulations, we use µs = µ, which would never be stable
in the GLV model. Fig. 3 illustrates the transition be-
tween a “May” phase for α ≥ β and an “anti-May” phase
for α < β, showing that our analytical results are robust
to heterogeneous interactions.

Finally, we check the robustness of our findings in the
scenario in which the exponents are not the same for
every variable xi. As a test, we can sample exponents
from different Gaussian distributions: αi ∼ N (α, σe),
βi ∼ N (β, σe) and γi ∼ N (γ, σe), respectively with mean
α, β and γ, and, for simplicity, all with the same standard
deviation σe. Simulations show that our results hold as
long as σe is small enough, in particular, we observe a
loss of stability when mini βi > maxi αi (Appendix B).

IV. DISCUSSION

The relationship between complexity and stability in
high-dimensional dynamical systems has been a long-
standing puzzle, in ecology and other fields. In this Let-
ter, we have shown that the condition σ

√
N < µs does

not provide a complete picture of the relationship be-
tween complexity and stability. In particular, we have
seen that the competitive Lotka-Volterra model, often
cited in support of May’s general prediction, exemplifies
a special cancellation in the more general stability con-
dition N⟨(σ/ψ)2⟩ < 1. In models where self-interactions
grow slower than cross-interactions [9, 37], the opposite
behavior is observed: stability becomes more likely with
increasing diversity N .

A modification of our model (1) of general ecological
relevance describing the case in which per capita growth
rates depend on a linear combination of the densities is
ẋi/xi = 1 − F (

∑
j Aijxj), where the function F char-

acterizes the effects of competition. General models of
this kind are used, for example, to study the growth
of a clonal population in the presence of a limiting fac-
tor [38]. All the models in this class are destabilized
by diversity. (The Jacobian matrix at equilibrium is
J∗
ij = −Aijx

∗
iF

′(
∑

j Aijx
∗
j ), leading to the same sim-

plification of the stability condition (8) as in the GLV
model.)

Future work can look at the case where two-body in-
teractions are not separable, or include higher order in-
teraction to generalize the results in Ref. [39] based on
the GLV model.

The Julia code used for simulations is available at www.
github.com/msmerlak/beyond-may.
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APPENDIX A: CUT-OFF

In this appendix we consider a case amenable to ana-
lytical treatment to exemplify the argument behind the
cut-off Λ introduced in the main text to deal with diverg-
ing moments distributions.

www.github.com/msmerlak/beyond-may
www.github.com/msmerlak/beyond-may


5

Consider the case of a power law distribution

P (x) =
x−β

Z
, (A1)

defined from 1 to ∞ and with

Z =

∫ ∞

1

dxx−β . (A2)

Let us choose β = 3/2. Notice that this power law
describes the behavior of the distribution we consider in
the main text for our example with α = γ = 1 and β =
3/2. The distribution is normalized with Z = 2, but
the mean diverges. However, we would like to be able to
describe the behavior of the sample mean

x̄N ≡ 1

N

N∑
i=1

xi, (A3)

where the xi are extracted from P (x). For this pur-
pose, we can define the quantity

⟨x⟩Λ ≡
∫ Λ

1

dxP (x)x, (A4)

with the cut-off Λ defined such that
∫∞
Λ
dxP (x) = 1/N ,

i.e., such that there is statistically less than 1 variable
with value above Λ out of N extracted variables. For the
case β = 3/2 we have

1

2

∫ ∞

Λ

dxx−3/2 = Λ−1/2, (A5)

and therefore Λ = N2. We have for the mean

⟨x⟩Λ =
1

2

∫ N2

1

dxx−1/2 = N − 1. (A6)

The result is plotted in Fig. 4, alongside the sample mean
for extractions of N = 10, 102, 103, 104, 105, 106.

APPENDIX B: HETEROGENEOUS EXPONENTS

In this appendix we explore the robustness of our find-
ings in the case in which the exponents characterizing the
dynamics of each degree of freedom xi are not identical
for all i.
Consider the system

ẋi = xαi
i −

∑
j

Aijx
βi

i x
γi

j (B1)

where the exponents αi, βi, γi, are extracted from Gaus-
sian distributions: αi ∼ N (α, σe), βi ∼ N (β, σe) and

γi ∼ N (γ, σe), respectively with mean α, β and γ, and
with the same standard deviation σe. The interaction
coefficients Aij are drawn independently from a distribu-
tion with mean µ and standard deviation σ. Our results

FIG. 4: Analytical prediction for the sample mean in
Eq. (A6) as a function of the number of extractions,
N , compared with the results from random extractions
(dots).

are robust when σe is small enough and we observe a loss
of stability when mini βi > maxi αi. As an example, we
show in the plot in Fig. 5 the probability of stability vs.
σe for a system with S = 100, µ = σ = 0.01, α = γ = 1
and β = 3/2. The probability of stability is obtained as
the fraction of stable systems out of 100 realizations for
each value of σe.

FIG. 5: Probability of stability vs. σe for a system with
S = 100, µ = σ = 0.01, α = γ = 1 and β = 3/2.
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