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The petrophysical properties can be proper indicators to identify oil and gas reservoirs,

since the pore fluids have significant effects on the wave response. We have performed

ultrasonic measurements on two sets of tight siltstones and dolomites at partial

saturation. P- and S-wave velocities are obtained by the pulse transmission technique,

while attenuation is calculated using the centroid-frequency shift and spectral-ratio

methods. The fluid sensitivities of different properties (i.e., P- and S-wave velocities,

impedances and attenuation, Poisson’s ratio, density, and their combinations) are

quantitatively analyzed by considering the data distribution, based on the crossplot

technique. The result shows that the properties (P- to S-wave velocity and attenuation

ratios, Poisson’s ratio, and first to second Lamé constant ratio) with high fluid-sensitivity

indicators successfully distinguish gas from oil and water, unlike oil from water. Moreover,

siltstones and dolomites can be identified on the basis of data distribution areas.

Ultrasonic rock-physics templates of the P- to S-wave velocity ratio vs. the product of first

Lamé constant with density obtained with a poroelastic model, considering the structural

heterogeneity and patchy saturation, are used to predict the saturation and porosity,

which are in good agreement with the experimental data at different porosity ranges.

Keywords: tight rocks, experimental observation, petrophysical properties, fluid sensitivity, rock physics template,

attenuation

INTRODUCTION

The rock-physics properties are affected by the reservoir characteristics (i.e., lithology, porosity,
permeability, and pattern) and the presence of pore fluids. Understanding the corresponding
variations is essential for seismic exploration. Although these variations have been extensively
investigated for intermediate- to high-porosity fluid-saturated rocks, the effects of partial saturation
on low-porosity tight rocks are not well-understood and a fluid-sensitivity analysis can be useful to
interpret the porosity-based saturation logs and related seismic data.

A set of fluid-sensitive identification factors (rock-physics properties and their combinations)
have been proposed to identify pore fluids (e.g., Fatti et al., 1994; Smith and Sutherland, 1996;
Goodway, 2001; Dillon et al., 2003; Qiao and An, 2007; Qi et al., 2017; Zeng et al., 2017). For
example, Ostrander (1984) and Carcione and Cavallini (2002) showed that Poisson’s ratio of gas-
saturated rocks is lower than those of brine- and oil-saturated ones. Zhou and Hilterman (2010)
used three seismic attributes to predict pore fluid and lithology and showed that their sensitivities
are not significantly affected by the scale factors. Moreover, Pei et al. (2010) proposed a new fluid
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identification factor, which is more effective than the amplitude
versus offset (AVO) attributes in low-porosity reservoirs.
However, these methods are incomplete due to the lack of
statistical analysis of data distribution, and most of the methods
have been applied to detect gas reservoirs.

The problem is that a single physical property is insufficient
to predict the reservoir features and fluid content, especially
for the tight rocks. A set of properties should be used,
because P and S waves respond differently to variations in fluid
saturation. Previous studies show that P- and S-wave velocity
and attenuation ratios (and Q−1

P /Q−1
S ) are more sensitive to

partial gas–water saturation (Murphy, 1982; Winkler and Nur,
1982; Klimentos, 1995; Chichinina et al., 2009; Qi et al., 2017).
For example, Murphy (1982) showed that P-wave attenuation
is more robust than S-wave attenuation in partially saturated
Massillon sandstone, but the difference is small at full water
saturation. Winkler and Nur (1982) found that the ratio of
P- to S-wave attenuation is more sensitive to gas saturation
than the P- to S-wave velocity ratio, showing that Q−1

P /Q−1
S ≤

1 for water-saturated rocks and Q−1
P /Q−1

S > 1 for gas-
saturated rocks. These relations can be useful, but they have
been applied to intermediate- and high-porosity rocks. Only
a few studies deal with tight-rock reservoirs (e.g., Pei et al.,
2010; Xue et al., 2013; Han et al., 2017; Qi et al., 2017;
Pang et al., 2019). They mainly distinguish gas from liquid-
saturated rocks for sandstone and shale reservoirs. However,
the relations were hardly analyzed for tight siltstone and
dolomite reservoirs.

The challenge is to propose a suitable theoretical model
that can predict the elastic properties and wave response
characteristics in partially saturated rocks. Seismic wave velocity
dispersion and attenuation are considered to be caused by the
wave-induced fluid flow mechanism (Mavko and Nur, 1979;
Murphy, 1982; Winkler and Nur, 1982; Müller et al., 2010).
Different poroelastic models have been developed to predict
the velocity and attenuation observed in the laboratory and
in the field data (Biot, 1956; White, 1975; Pride et al., 2004;
Gurevich et al., 2010; Ba et al., 2017; Guo and Gurevich, 2020).
Based on these models, rock-physics templates (RPTs) can be
used to estimate porosity and saturation (Liu et al., 2015; Pang
et al., 2019, 2020). Studies showed that RPTs, built with acoustic
impedance and P- to S-wave velocity ratio, serve as tools for
lithology and fluid identification (Chi and Han, 2009; Datta
Gupta et al., 2012; Ba et al., 2013). RPTs based on seismic
attenuation also describe the effect of partial saturation, porosity,
and permeability (Dvorkin and Mavko, 2006; Picotti et al.,
2018). The Gassmann’s equation is mainly used to conduct fluid
substitution in generating RPTs and obtain the elastic modulus of
the saturated rock, but neglecting the effect of patchy saturation.
The tight-rock reservoirs usually have complex structures and
highly variable saturation due to the complex rock patterns, and
we used a double double-porosity (DDP) model, considering the
structural heterogeneity and the uneven patchy saturation, for
fluid substitution in the RPTs.

The rock-physics properties and ultrasonic waveforms can
be obtained at different fluid-saturated conditions from the
laboratory measurements. In this study, we performed ultrasonic

measurements on tight siltstones and dolomites, where the P-
and S-wave velocities and attenuation are obtained at in situ
confining pressure. These properties and their combinations are
then evaluated by means of fluid-sensitive indicators (FSIs) and
crossplots are shown to validate their effectiveness. Finally, RPTs
are built by using the DDP model of Ba et al. (2017) to match the
experimental data.

EXPERIMENTS

Two sets of tight rocks are collected from the reservoirs. One
set of 12 siltstones are collected from the oil reservoirs of the
Qingshankou Formation, Northeast China, whereas another set
of 13 dolomites are collected from Ordovician and Cambrian
Formations, West China. The porosities and permeabilities of
siltstones range from 2.88 to 13.97% and 0.0045 to 0.39 mD and
those of dolomites from 4.99 to 16.87% and 0.075 to 162.753 mD,
respectively. The corresponding parameters are listed inTables 1,
2, sorted from smallest to largest based on porosity. The low
permeability in siltstones is due to the high clay content and
fine texture, while the highly variable permeability in dolomites
indicates the presence of fractures. More details on the rock
properties can be found in the study by Ba et al. (2019).

The systematic ultrasonicmeasurements have been performed
on the two sets of rocks at different saturations and in situ
confining pressure. Siltstones were measured at a confining
pressure of 50 MPa and a pore pressure of 25 MPa, whereas
dolomites at 80 and 10MPa, respectively. The adopted saturation
method is described in the studies by Ba et al. (2017) and Ma
and Ba (2020). The partially gas–water and oil–water saturation
tests were performed on the dolomites, but we conducted these
tests only in five siltstones, and we set full saturation in others
(gas, water, and oil, respectively). The waveforms of P and S

TABLE 1 | Rock properties for tight siltstones.

Samples Lithology Porosity

(%)

Permeability

(mD)

Dry

density

(g/cm3)

Clay

volume

content (%)

A Muddy

siltstone

2.88 0.0045 2.61 2.8

B Muddy

siltstone

4.6 0.38 2.56 8.2

C Siltstone 5.2 0.019 2.58 1.9

D Silty

mudstone

5.56 0.011 2.53 12.5

E Siltstone 5.6 0.017 2.52 2.4

F Siltstone 5.79 0.035 2.41 3.9

G Siltstone 5.8 0.02 2.55 3.0

H Siltstone 6.45 0.097 2.38 5.5

I Siltstone 10.87 0.39 2.29 5.5

J Muddy

siltstone

12.75 0.17 2.3 4.4

K Siltstone 13.09 0.08 2.28 5.5

L Siltstone 13.97 0.084 2.26 5.5
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waves were recorded by the pulse transmission technique, and
the corresponding velocities were calculated on the basis of
the arrival time of the first high-amplitude signals. P- and S-
wave attenuation were estimated by using one wave period with
the centroid-frequency shift and spectral-ratio methods (Toksöz
et al., 1979; Quan and Harris, 1997). The detailed measuring
procedures and error analysis are given in the study by Ma and
Ba (2020).

FLUID-SENSITIVE INDICATOR AND
PETROPHYSICAL PROPERTIES

To quantitatively evaluate the sensitivity when the rocks are
saturated with different fluids, an indicator (I) has been

TABLE 2 | Rock properties for carbonates.

Samples Lithology Porosity

(%)

Permeability

(mD)

Dry density

(g/cm3)

DO1 Dolomite 4.99 1.34 2.67

DO2 Clean dolomite 5.10 0.091 2.69

DO3 Clean dolomite 5.34 0.458 2.66

DO4 Clean dolomite 5.47 0.174 2.67

DO5 Dolomite 6.08 0.130 2.65

DO6 Dolomite 6.93 0.601 2.64

DO7 Dolomite 10.37 1.430 2.52

DO8 Dolomite 11.63 0.661 2.45

DO9 Dolomite 11.73 0.138 2.51

DO10 Dolomite 11.75 0.075 2.45

DO11 Dolomite 11.63 0.661 2.45

DO12 Clean dolomite 12.08 162.753 2.41

DO13 Dolomite 16.87 3.31 2.32

introduced by Pei et al. (2010) and Guo et al. (2015):

I =

∣

∣

∣

∣

Xi − Xw

Xw

∣

∣

∣

∣

, (1)

where Xi and Xw are the average values of measured data at
gas/oil and water saturations, respectively. A high I indicates
that the property is more sensitive to the change of pore fluid.
However, I values of different rocks can be similar and the
data distribution pattern must be considered. A coefficient of
dispersion (CD), which reflects the distribution range, is given
by the following equation:

CD = SDi/Xi, (2)

SDi =

√

∑n

i=1

(

Xi − Xi

)2
/n, (3)

where SDi denotes the standard deviation for the gas/oil-
saturated rocks and n is the number of samples. For rocks with
partial saturation, Xi and SDi are the average and standard
deviations, respectively. A small CD indicates that the data
distribution is focused around the average value. Thus, the FSI
is defined as follows:

FSI = I/CD. (4)

The larger the FSI value, the higher the fluid detection capability.
Both the pore fluid and the characteristics of the rock frame

affect the bulkmodulus, while the fluid has almost no effect on the
shear modulus. P- and S-wave velocities (VP, VS), attenuations
(Q−1

P , Q−1
S ), and density (ρ) are obtained from the laboratory

measurements. Other properties can be obtained from these
properties described above, such as VP/VS, impedances Zp and
Zs, Poisson’s ratio ν, Young’s modulus E, first and second Lamé
constants λ, µ, λρ, λ/µ, and Q−1

P /Q−1
S . These 14 properties,

except µ, are used for the fluid-sensitivity analysis.

TABLE 3 | Fluid-sensitivity indicators for tight rocks.

Property Siltstones (gas) Siltstones (oil) Dolomites (gas) Dolomites (oil)

I CD FSI I CD FSI I CD FSI I CD FSI

VP 0.030 0.090 0.333 0.004 0.079 0.051 0.028 0.086 0.329 0.005 0.080 0.06

VS 0.010 0.073 0.143 0.002 0.075 0.027 0.010 0.071 0.148 0.002 0.072 0.031

P 0.023 0.087 0.258 0.006 0.078 0.081 0.034 0.087 0.386 0.007 0.074 0.094

VP/VS 0.041 0.020 2.063 0.006 0.009 0.683 0.070 0.018 2.150 0.014 0.012 0.650

ZP 0.050 0.166 0.300 0.010 0.146 0.068 0.059 0.170 0.349 0.012 0.151 0.078

ZS 0.012 0.150 0.080 0.004 0.144 0.029 0.023 0.155 0.146 0.005 0.144 0.032

ν 0.086 0.048 1.790 0.012 0.018 0.664 0.104 0.054 1.904 0.019 0.028 0.662

E 0.091 0.257 0.354 0.015 0.221 0.070 0.102 0.263 0.389 0.020 0.234 0.086

λ 0.172 0.304 0.566 0.028 0.231 0.120 0.200 0.317 0.629 0.040 0.258 0.154

λρ 0.183 0.371 0.493 0.032 0.294 0.108 0.220 0.395 0.556 0.045 0.326 0.137

λ/µ 0.187 0.105 1.785 0.030 0.044 0.670 0.201 0.111 1.806 0.040 0.064 0.625

Q−1
P 0.154 0.614 0.250 0.155 0.432 0.359 0.038 0.740 0.051 0.017 0.982 0.017

Q−1
S 0.078 0.559 0.139 0.069 0.601 0.116 0.074 0.593 0.125 0.218 1.157 0.188

Q−1
P /Q−1

S 0.500 0.960 0.521 0.429 1.074 0.399 0.085 0.811 0.105 0.297 0.852 0.348
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RESULTS

The I, CD, and FSI values of the above-mentioned properties are

reported in Table 3. Figure 1 shows the indicators for siltstones,

where it can be seen that I corresponding to Q−1
P /Q−1

S is the

most sensitive and those of λ, λρ, λ/µ, and attenuation are high

(Figure 1A). This is due to the fact that attenuation is more
sensitive to the changes in fluid properties and saturation. The
FSI values of VP/VS, ν, and λ/µ are the highest when their CD
values are the lowest (Figures 1B,C), i.e., the most sensitive to
fluid-type variations. Since P and S waves respond differently to
the variations of rock and fluid properties, the S-wave properties

FIGURE 1 | (A) I, (B) CD, and (C) FSI for siltstones at full saturation. The brown and blue rectangles denote the values of fluid sensitivity to distinguish gas from water

and oil from water, respectively.
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can be used as normalization quantities with which we compared
P-wave properties, to remove in part the effect of rock frame.
Moreover, they can better distinguish gas from water than oil
from water. Although the I values of Q−1

P /Q−1
S are the highest,

the data distribution is scattered due to the complex fluid
distribution, resulting in low FSI values. Figure 2 shows the I,

CD, and FSI values for the dolomites, which are similar to those
of siltstones.

The crossplot technique is used to verify the fluid
identification capability of the properties with the high
indicators I and FSI. Figures 3A,B shows the crossplots between
λ vs. λρ in siltstones and dolomites, respectively, indicating

FIGURE 2 | (A) I, (B) CD, and (C) FSI for dolomites (see Figure 1 for the explanations).
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FIGURE 3 | Crossplots of λρ –λ, λ/µ –λρ, and Q−1
P /Q−1

S –λ/µ for siltstones (A,C,E) and dolomites (B,D,F). The brown, red, and blue points denote the data at full

gas, oil, and water saturation, respectively. The units of λ and λρ are kg/m3
× (m/s)2 and (kg/m3

× m/s)2, respectively.

that the fluid discrimination is difficult. Figures 3C,D, which
displays crossplots of λρ vs. λ/µ, shows that the gas-saturated
samples can be identified from those saturated with water and
oil, but the water and oil cannot be distinguished. In fact, λ/µ

has smaller values and significant variations with gas saturation,
from 1 to 1.4 for siltstones and ∼from 0.8 to 1.1 for dolomites.
Figures 3E,F shows the similar trends of λ/µ and Q−1

P /Q−1
S as

Figures 3C,D, but the data points are widely distributed and
have poor convergence. Figure 4 shows the crossplots of ν, λ/µ,

Q−1
P /Q−1

S , and VP/VS with high FSI values. There is a linear
relation between ν, λ/µ, and VP/VS (Figures 4A–D), indicating
that these properties have a similar variation trend when the
pore fluid changes. Gas saturation can be identified from water
saturation, while the data for full oil and water saturation are
mixed. Figures 4E,F indicates that the crossplots of VP/VS

and Q−1
P /Q−1

S discriminate between gas and water or oil. The
properties with high FSI values show a better fluid identification
capability than those with high I values, showing that the data
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FIGURE 4 | Crossplots of ν –VP/VS, λ/µ –VP/VS, and Q−1
P /Q−1

S –VP/VS for siltstones (A,C,E) and dolomites (B,D,F) (see Figure 3 for the explanations).

distribution characteristic is important when quantifying the
fluid sensitivity.

Next, we studied the fluid sensitivity in partially saturated
rocks (gas–water or oil–water). Figure 5 shows that VP/VS, ν,
and λ/µ are high, in agreement with the full saturation case.
Since these properties have a similar variation trend, we only
obtained the crossplots of VP/VS and λ/µ, and are shown
in Figures 6A,B. They decrease with increasing gas saturation
and distinguish between partial and full saturation. However,
the data cannot reflect the petrophysical property variation
with the variations in reservoir property (i.e., porosity). The
λρ and Q−1

P /Q−1
S are used, which have been verified at full

saturation. Figures 6C,D shows thatVP/VS vs. λρ decreases with
gas saturation, while Q−1

P /Q−1
S increases (Figures 6E,F). Similar

results have been obtained in the studies by Murphy (1982)
and Winkler and Nur (1982). Figure 7 shows the crossplots for
partially oil–water saturated rocks. These properties have smaller
variations with oil saturation than in the case of gas, and it
is difficult to distinguish oil from water. However, the data of
siltstones and dolomites have different distribution areas, which
can be well-discriminated using the crossplots.

The RPTs are the useful tools in petroleum exploration,
relating reservoir, fluid, and petrophysical properties. In this
study, we used the DDP model developed by Ba et al. (2017) (see
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FIGURE 5 | FSI for siltstones (A) and dolomites (B) at partial saturation.

Appendix A), which considers the fabric structure heterogeneity
and uneven patchy saturation to build the templates at ultrasonic
frequencies. Siltstones mainly consist of feldspar, quartz, and
clay, and we considered clay with intragranular pores as the
inclusion with a mean radius of 40µm embedded in the host
medium. Porosity and saturation are set as independent variables.
The grain bulk and shear moduli are set to 39 and 31 GPa,
respectively, estimated by the average Voigt–Reuss–Hill equation
(Hill, 1952; Picotti et al., 2018), while the grain density is 2.6
g/cm3. The dry-frame and inclusions moduli vs. porosity are
calculated by the differential effective medium model (Mavko
et al., 2009). The fluid properties at the experimental conditions
are obtained by the equations from Batzle and Wang (1992),
which are reported in the study by Ba et al. (2019), and the
permeability is given by the Kozeny–Carman relation (e.g.,
Mavko et al., 2009). Figure 8 shows the template at 1 MHz,
compared with the measured data of VP/VS and λρ. The
black and red curves denote the isolines of constant saturation
and porosity, respectively. The figure shows that the predicted
porosities (red lines) agree with the sample porosities. For

samples I–L with relatively high porosities (10.87–13.97%), the
data agree well with the predicted saturation (black lines) at high
gas saturations, but the predictions underestimate the data at
low gas saturation. The data corresponding to sample H do not
match the gas saturation, which may be due to the fact that frame
properties of this sample (6.45% porosity) have a significant
difference from those of samples I–L.

The dolomites contain cracks and intergranular pores. Soft
cracks are inclusions and have a mean radius of 80µm. The
density, bulk modulus, and shear modulus of the mineral
grains are 2.7 g/cm3, 78 and 52 GPa, respectively. Figure 9A
shows the ultrasonic template compared with the experimental
data, from which it can be noted that the porosities and
saturation of samples DO2–6 (4.99–6.93%) agree with the
template predictions. However, samples DO7–13 with a porosity
ranging from 10.37 to 16.87% are outside the template even if the
predicted porosities match the data. The data between samples
DO1–6 and DO7–13 are dissimilar, and the reason may be the
different frame properties at relatively high porosities compared
with the low porosity case. Then, we recalculated the template
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FIGURE 6 | Crossplots of λ/µ –VP/VS, λρ –VP/VS, and Q−1
P /Q−1

S –VP/VS for siltstones (A,C,E) and dolomites (B,D,F) at partial gas–water saturation. The color from

green to blue denotes gas saturation increasing from 0 to 100%.

by changing the bulk and shear moduli of the mineral grains to
55 and 50 GPa, respectively (Appendix B). The results show that
the porosities and saturations of samples DO7–13 agree with the
template in Figure 9B. Some data points are outliers owing to
the complex pore structures and fluid distribution. Nevertheless,
the present template describes the general trends of porosity
and saturation.

Other models (e.g., White, 1975; Pride et al., 2004; Gurevich
et al., 2010; Müller et al., 2010) can also be used to build
RPTs, but most of them only consider the fabric (pattern)
or fluid heterogeneity. Our model considers the effect of the
two heterogeneities. Based on the templates of VP/VS and λρ

combined with the experimental data, gas can be identified from
oil and water at the ultrasonic frequency band. However, the
templates of Q−1

P /Q−1
S and VP/VS cannot be built because S-

wave attenuation is not predicted by the model. Moreover, we
have to consider an upscaling of attenuation to lower (seismic)

frequencies. In practical applications, the seismic template can be
obtained by combining the laboratory, sonic, and seismic data
(e.g., Pang et al., 2019, 2020).

CONCLUSION

We have studied the fluid sensitivity of petrophysical properties
based on the experimental data by calculating fluid indicators
and using crossplots. The FSI considering the data distribution
in quantifying the sensitivity is better than the I indicator.
The crossplots of ν, λ/µ, Q−1

P /Q−1
S , and VP/VS discriminate

well between gas and liquids (i.e., water and oil). The
siltstone and dolomite data can be identified based on the
data distribution areas. As a prediction tool, a DDP theory
has been used to build RPTs between VP/VS and λρ and
to obtain gas saturation and porosity from the ultrasonic
data. Moreover, the frame properties of dolomites may greatly
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FIGURE 7 | Crossplots of λ/µ –VP/VS, λρ –VP/VS, and Q−1
P /Q−1

S –VP/VS for siltstones (A,C,E) and dolomites (B,D,F) at partial oil–water saturation. The color from

yellow to purple denotes oil saturation increasing from 0 to 100%.

FIGURE 8 | Comparisons between the ultrasonic template and measured data for siltstones.
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FIGURE 9 | Comparisons between the ultrasonic template and measured data for dolomites. (A) Template for samples DO1–6 with low porosities (4.99–6.93%). (B)

Template for samples DO7–13 with relatively high porosities (10.37–16.87%).

Frontiers in Earth Science | www.frontiersin.org 11 May 2021 | Volume 9 | Article 652344

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Ma et al. Petrophysical Properties for Fluid Identification

vary at relatively high porosities compared with the low
porosity case.
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