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Abstract In this study we combine seismological and petrological models with satellite gravity gradient
data to obtain the thermal and compositional structure of the Antarctic lithosphere. Our results indicate that
Antarctica is largely in isostatic equilibrium, although notable anomalies exist. A new Antarctic Moho
depth map is derived that fits the satellite gravity gradient anomaly field and is in good agreement with
independent seismic estimates. It exhibits detailed crustal thickness variations also in areas of East
Antarctica that are poorly explored due to sparse seismic station coverage. The thickness of the lithosphere
in our model is in general agreement with seismological estimates, confirming the marked contrast between
West Antarctica (<100 km) and East Antarctica (up to 260 km). Finally, we assess the implications of the
temperature distribution in our model for mantle viscosities and glacial isostatic adjustment. The upper
mantle temperatures we model are lower than obtained from previous seismic velocity studies. This results
in higher estimated viscosities underneath West Antarctica. When combined with present‐day uplift rates
from GPS, a bulk dry upper mantle rheology appears permissible.

Plain Language Summary The solid Earth structure of the Antarctic continent is still poorly
explored due to the coverage of up to 4‐km‐thick ice sheets and its remote location. Robust knowledge of
its characteristics is, however, essential to understand the Earth's response to ice mass changes (glacial
isostatic adjustment). Of particular interest are the depth and geometry of the main subsurface boundaries,
which are the interface between crustal and mantle rocks (Moho discontinuity) and the base of the rigid
tectonic plate (lithosphere). Since both of them are accompanied by changes in rock density, we used
gravimetric data from the Gravity Field and Steady‐State Ocean Circulation Explorer satellite to build a 3‐D
model of Antarctica's deep structure. Rock composition according to temperature and pressure is taken
into account. Rock composition according to temperature and pressure is taken into account and the model
as a whole is internally consistent. As a result, we present a continental‐scale Moho depth map that
shows novel details. From the temperature distribution in our model, we derive present‐day uplift rates of
the solid Earth's surface, which are a key parameter in estimating the future ice sheet evolution.

1. Introduction

The structure of the Antarctic lithosphere is still less known than that of other continents. Agreement exists
on a difference in lithospheric structure between West Antarctica (WANT) and East Antarctica (EANT)
divided by the Transantarctic Mountains (TAM) and the Antarctic Peninsula (e.g., Torsvik & Cocks, 2013;
Figure 1). WANT comprises several distinct Paleozoic to Mesozoic fore‐arc and magmatic‐arc terranes
(Dalziel & Elliot, 1982) and the Ellsworth‐Whitmore terrane with Grenville‐age crust (Craddock et al.,
2017). Multiple phases of rifting took place from Cretaceous to Cenozoic times in the West Antarctic Rift
System (WARS; e.g., Fitzgerald, 2002; Jokat & Herter, 2016) and earlier rifting commencing in the
Jurassic in the Weddell Sea region (e.g., Jordan et al., 2017). The tectonic history of EANT is characterized
by several phases of accretionary or collisional events in the Precambrian (Boger, 2011). Thus, EANT is
now widely recognized to comprise several lithospheric provinces of different origin and age, ranging from
Archaean and Paleoproterozoic to Cambrian (Boger, 2011; Elliot et al., 2015; Ferraccioli et al., 2011; Harley
et al., 2013; Torsvik & Cocks, 2013, and references therein).

Seismological methods are well suited for assessing the internal structure of the lithosphere. However, the
remoteness and the harsh environment of the Antarctic continent make seismic experiments logistically
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and technically challenging. Recently, a number of seismological models for the Antarctic continent (e.g.,
An et al., 2015a; Hansen et al., 2014; Heeszel et al., 2016; Ramirez et al., 2016) or with focus on WANT
and TAM have been published (Graw & Hansen, 2017; Hansen et al., 2016; Lloyd et al., 2015; O'Donnell
et al., 2017; Ramirez et al., 2017; Shen et al., 2018; White‐Gaynor et al., 2019), which show the clear
differences in crustal thickness between EANT and WANT and to a notable extent the heterogeneous
nature of the upper mantle. However, density models derived from seismic observations generally lead to
predicted gravity anomalies that differ greatly from observed values (Pappa et al., 2019) and therefore
exhibit significant inconsistencies. Beyond that, gravity data or combinations of gravity and seismic data
have been used to estimate the crustal thickness for the entire Antarctic continent (Baranov et al., 2018;
Block et al., 2009; O'Donnell & Nyblade, 2014). Even though the main features are similar in these
models, considerable disagreement exists in some regions, for example, in Wilkes Land or eastern
Dronning Maud Land (DML) where seismic and gravity estimates of crustal thickness differ by over 10 km.

Alternatively, satellite gravity gradient data can be used in combination with seismological models to derive
lithospheric models. The potential of satellite‐based gravity gradients to establish regional models, which
can be used as a background for local interpretations, has been demonstrated (Bouman et al., 2015;
Holzrichter & Ebbing, 2016) and is especially useful for large, inaccessible areas such as the Antarctic con-
tinent (Ebbing et al., 2018). Since the gravity gradients possess different sensitivities for different depth
ranges (Bouman et al., 2016), they are particularly suited to investigate the mass distribution within the
lithosphere. Still, gravity gradient data alone are not sufficient to uniquely constrain density.

Few studies so far have tried to jointly investigate the crust and upper mantle (e.g., An et al., 2015a, 2015b;
Haeger et al., 2019) of EANT, which is needed to better understand the fundamental structure of the litho-
sphere as a whole. Seismic velocities and rock densities depend on temperature and composition, which can
be modeled by minimizing the Gibbs energy or described in simplified terms by other petrophysical para-
meters such as thermal expansion and compressibility. An et al. (2015b) estimated the temperature of the
Antarctic lithosphere and upper mantle through conversion of seismic velocities (An et al., 2015a) by using
a homogeneous noncratonic mantle composition. However, uncertainties caused by the potential presence
of melt or fluid or linked to the choice of the anelasticity model adopted are higher than those arising from
compositional variations within the lithosphere and remain difficult to fully resolve. The resulting tempera-
ture model was however an important step toward a better understanding of the state of Antarctica's litho-
sphere. Haeger et al. (2019) compiled existing seismological crustal thickness estimates and used satellite

Figure 1. (left) Bedrock topography of Antarctica. AP = Antarctic Peninsula, ASB = Aurora Subglacial Basin, ASE = Amundsen Sea Embayment, BM=Beardmore
Microcontinent, DML = Dronning Maud Land, EL = Enderby Land, EwL = Ellsworth Land, GSM = Gamburtsev Subglacial Mountains, LG = Lambert
Graben, LV= Lake Vostok, PM= PensacolaMountains, RS = Ross Sea, SR = Shackleton Range, TA= Terre Adélie, VD=Valkyrie Dome, VH=VostokHighlands,
WARS = West Antarctic Rift System, WSB = Wilkes Subglacial Basin, WSR = Weddell Sea Rift. (right) Sediment thickness data compilation used in this study.
Sources are described in the main text. EANT = East Antarctica, WANT = West Antarctica.
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gravity data to isolate the gravity signal from the lithospheric mantle. By also utilizing seismological velocity
models, they iteratively derived a density, temperature, and compositional model of the Antarctic litho-
sphere. Their methodology, however, relies on the validity of the crustal model adopted, which is subject
to high uncertainties.

An alternative approach is to incorporate the whole lithosphere and sublithospheric upper mantle in one
model. In addition, integrated modeling of both geophysical and petrological properties of rocks in a self‐
consistent framework can help to reduce the uncertainties associated with modeling the observables sepa-
rately (Fullea et al., 2012). This approach has proved valuable for investigation of the lithospheric structure
in several studies (e.g., Fullea et al., 2015; Jones et al., 2014). The inferred temperature structure of a litho-
spheric model obtained by this process can also be used to also estimate sublithospheric upper mantle visc-
osity. Seismological models are typically used to derive a 3‐D Earth viscosity structure. Nield et al. (2018)
explored the effect of applying 3‐D viscosity distribution instead of classical 1‐D models on Antarctica and
have shown that such models are crucial to obtain more accurate spatial patterns of glacial isostatic adjust-
ment (GIA). However, deriving 3‐D viscosity from seismological models introduces uncertainties from the
seismological data and from the conversion methodology.

In this study we use satellite gravity gradient data, the principle of isostasy, and thermodynamic modeling of
mantle petrology to derive a self‐consistent 3‐D lithospheric density and temperature model of the Antarctic
continent. New crustal and lithospheric thickness estimates are obtained and compared with previous stu-
dies. The modeled upper mantle temperature field is then used to derive viscosity values and to compute
present‐day uplift rates due to GIA.

2. Data

The gravity gradients are the second derivative of the gravitational potential. They are generally more sen-
sitive to shallower structures than the vertical gravity field, which makes them a useful tool to study the den-
sity structure of the lithosphere (Bouman et al., 2016). During the years 2009–2013 European Space Agency's
satellite mission Gravity Field and Steady‐State Ocean Circulation Explorer measured the gradients of the
Earth's gravity field at an average altitude of 255 km at the beginning of the mission and 225 km at the
end of the mission. For our study we use the gravity gradient grids at 225‐km height (Figure 2) from
Bouman et al. (2016). Commonly, gravity gradient data are expressed as tensor components in a North‐
West‐Up frame, which is suitable for regions of intermediate latitudes, but leads to unintuitive maps in polar
regions. By performing a tensor basis change, we adopt a local reference system for Antarctica. In this new
IAU reference frame, the directions of derivation point to India (I; 90°E) and to the Atlantic Ocean (A; 0°E),
that is, right and top in an Antarctic polar stereographic map, while the vertical axis (U; upward) remains
unchanged. The components of the gravity vector T are rotated as a function of the longitude λ according
to the following:

Ti
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sinλ −cosλ 0

cosλ sinλ 0

0 0 1
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Tw
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A complete derivation of equation (1) is presented in the supporting information.

To isolate the gravity gradient signal from the lithosphere, we first need to correct for the effect of topo-
graphy, water, ice, and sediments. To achieve this, we use density values for water (ρwater = 1,028
kg/m3), ice (ρice = 917 kg/m3), and bedrock (ρtopo = 2,670 kg/m3). The values adopted for ice thickness
and topography were derived from the Bedmap2 Antarctic compilation (Fretwell et al., 2013). The
Bedmap2 model describes the ice thickness and the bedrock topography (Figure 1) of Antarctica up to lati-
tude 60°S and is mainly based on airborne radar surveys. Even though some areas are not well covered
and exhibit large uncertainties up to >1,000 m, it is the most accurate ice thickness model currently avail-
able for Antarctica. (The effect of the uncertainty in the Bedmap2 model on the gravity gradients at satel-
lite altitude is shown in supporting information Figure S4.) The gravity gradient effect of the individual
units for the reduction is computed by discretization in tesseroids of ~11‐km edge length south of 60°S
and 0.5° edge length north of 60°S. A tesseroid is a segment of a sphere, delimited by upper and lower
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meridians and parallels plus by its top and bottom radii (as distance from the Earth's center). In addition
to assessing the gravity effect, the topographic data are used as a constraint for isostasy in our modeling.
Regarding this issue, the model does not explicitly include an ice layer, which is why we use the rock‐
equivalent topography, in which the ice layer is converted into a mass‐equivalent layer of rock density
(e.g., Hirt et al., 2012), to evaluate the isostatic state.

Several low‐lying sectors of the Antarctic bedrock host major sedimentary basins, which can cause signif-
icant gravity anomalies, depending on their thickness and the density and porosity of the infill. To assess
the effect of sedimentary thickness on the gravity gradient signal over Antarctica, we compiled available
models and data (Figure 1). Few studies exist for onshore areas of the continent (e.g., Aitken et al.,
2014; Frederick et al., 2016), where relatively high sediment densities are to be expected due to additional
compaction from the thick ice sheet. Because the density is close to that of the surrounding crystalline
rock, we do not include sedimentary basins in onshore areas to avoid inducing regional inconsistencies,
which would emerge from omission of relatively unexplored basins. In offshore areas, we use National
Geophysical Data Center's global 5‐arc min grid (Whittaker et al., 2013), which provides ocean sediment
thickness estimates up to 70°S. We complement these with the more detailed model from Wobbe et al.
(2014), which also covers the Ross Sea, the Amundsen Sea, and the Bellinghausen Sea. A sedimentary
thickness map for the Weddell Sea is available based on the magnetic data presented by Golynsky et al.
(2001) and suggests up to 15‐km‐thick sediments there. Although it is difficult to derive the crystalline
basement depth reliably from magnetic anomalies, we include this data set due to the lack of alternative
areal sediment thickness information for the Weddell Sea. A potential overestimation may lead to erro-
neously low densities in the upper crust that would have to be compensated by modeled higher densities
at greater depths. Further analyses of newly compiled Antarctic magnetic anomaly data (Golynsky et al.,
2018) may help enhance our current knowledge of sedimentary basin thickness within the Weddell Sea
and other interior parts of the continent.

For the sediment density, we use a simple exponential compaction model (e.g., Chappell & Kusznir, 2008).
Thus, the sediment density ρ is related to the depth z in km from the sediment top as follows:

ρ ¼ ρg þ ρw−ρg
� �

Φe−λz; (2)

where ρg is the grain density (set to ρg = 2,670 kg/m3), ρw is the water density (set to ρw = 1,028 kg/m3), Φ is
the porosity of the uppermost sediment, and λ is the exponential decay constant. We use data from Sclater
and Christie (1980), who provide Φ = 0.55 and λ = 0.4 km−1 as representative values for mixed or unknown
marine sediments. Global far‐field gravitational effects are accounted for water and rock topography, using
ETOPO1 topography (Amante & Eakins, 2009), which seamlessly extends the Bedmap2 model, with the
same values for ρwater and ρtopo as indicated above. Offshore sediments up to 30°S are also taken from the
National Geophysical Data Center grid (Whittaker et al., 2013).

After subtraction of the effect of ice, water, bedrock topography, and sediment density anomaly from the
observed gravity gradient data, a signal is obtained that should mainly reflect subsurface density variations
in the crystalline crust and in the mantle (Figure 2). However, the remaining signal may still contain effects
of an imperfect topographic reductionmodel or effects of deepmantle density heterogeneities. Moreover, the
lithosphere may be in a state of isostatic disequilibrium due to ice mass changes in the past (O'Donnell et al.,
2017). This GIA‐induced displacement of the solid Earth can cause a gravity signal that should be considered
if it is significant. The effect on the gravity gradients at satellite altitude (225 km), however, accounts at max-
imum for ~25 mE (Figure S6), corresponding to less than 1% of the total signal, and is thus small enough to
be neglected.

3. Modeling Methods
3.1. Lithospheric Modeling

A combined modeling framework of multiple geophysical quantities of the lithosphere and the sublitho-
spheric upper mantle is provided by the forward modeling software LitMod3D (LIThospheric MODelling
in a 3‐D geometry; Fullea et al., 2009). It solves the equations for heat flow, thermodynamic properties of
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rocks, gravitation, and isostasy simultaneously in a finite differences method. Output quantities are density,
temperature and pressure fields, surface heat flow, seismic body wave velocities, geoid, gravity anomalies,
and isostatic elevation (topography). The underlying material properties are functions of temperature,
pressure, and composition. LitMod3D uses a combined petrological (compositional), rheological (isostatic)
and thermal (1315 °C isotherm) definition of the lithosphere‐asthenosphere boundary (LAB).

Generally, the LAB is defined as the boundary between the rheologically strong lithospheric mantle and the
rheologically weak asthenospheric upper mantle, where partial melting occurs (Artemieva, 2009, and refer-
ences therein). Laboratory experiments indicate a sharp change in rheology and elastic properties of olivine‐
rich rocks at temperatures between 85% and 100% of the solidus temperature (Sato et al., 1989; Sato & Sacks,
1989) and thus connect the rheological definition with a thermal boundary in the range of 1250–1350 °C.
Different geophysical methods can be used to detect the LAB, depending on the according definition, which
with their pitfalls are discussed in detail in Artemieva (2009) and Eaton et al. (2009). For example, from seis-
mic methods the LAB can be defined as a change in anisotropy or as the boundary between a (Swave) high‐
velocity lid and low velocities in the asthenosphere. For GIA modeling, the transition from purely elastic to
viscoelastic behavior on glacial time scales determines the bottom of the lithosphere (Nield et al., 2018, and
references therein), which does not necessarily coincide with any of the previously mentioned LAB defini-
tions (Artemieva, 2009). This transition is governed by viscosity, which is the crucial parameter for GIA stu-
dies (Paulson et al., 2005; Wu, 2005) and can be derived through conversion of temperatures by using power
law rheology (Nield et al., 2018).

In the following, we provide a short overview of the methodology of LitMod3D (for more details, the reader
is referred to Fullea et al., 2009). The specific values of the modeling parameters such as densities will be pre-
sented in the subsequent section.

The model space is discretized into a regular Cartesian grid, and cells are assigned to specific layers. Thus, a
geometry and geophysical parameters need to be predefined. In the simplest case, a model may consist of a
crust, a lithospheric mantle, and a sublithospheric mantle layer. Each cell inherits the layer‐specific geophy-
sical parameters: bulk density, compressibility and thermal expansion coefficient, thermal conductivity, and
radiogenic heat production. For computing heat transfer, LitMod3D assumes a conduction‐dominated

Figure 2. (left) GOCE derived gravity gradients at 225‐km altitude (Bouman et al., 2016). (right) The same data after reduction for effects of water, ice, rock topo-
graphy, and sediments. Note the change of signal amplitude. GOCE = Gravity Field and Steady‐State Ocean Circulation Explorer.
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lithosphere, where the thermal structure is calculated with the common steady‐state (time‐invariant) heat
equation. While the thermal conductivity of the crust is constant, the thermal conductivity in the mantle fol-
lows the temperature‐ and pressure‐dependent model of Hofmeister (1999). The upper and lower thermal
boundary conditions of the conduction‐dominated region are defined by a constant surface temperature
and a constant temperature at the LAB, respectively. Below the LAB, a buffer layer is modeled to represent
both conduction and convection in a rheologically active layer between the lithosphere and the sublitho-
spheric mantle down to a depth where the temperature reaches 1400 °C. Further down, convectional heat
transfer is simulated by an adiabatic gradient between the temperature at the bottom of the model at 400
km and 1400 °C isotherm. The bottom temperature is set to 1500 °C, which is consistent with high‐pressure
and high‐temperature experiments (Fullea et al., 2009, and references therein).

The in situ density in crustal layers follows the formula for thermal expansion and compression:

ρ T; Pð Þ ¼ ρ0−ρ0α T−T0ð Þ þ ρ0β P−P0ð Þ; (3)

in which ρ0 is the bulk density, α the thermal expansion coefficient, and β the compressibility. In subcrustal
layers, densities are calculated with the thermodynamic modeling software Perple_X (Connolly, 2005) for
given geochemical mantle compositions in the CaO, FeO, MgO, Al2O3, and SiO2 scheme under mantle pres-
sure and temperature conditions. Since more than 98% of the mantle is made up of these oxides (e.g.,
McDonough & Sun, 1995), they are considered to be a good basis for modeling mantle phase equilibria
(Afonso et al., 2008). By minimization of the Gibbs free energy, the stable mineral phases and the consequent
bulk rock densities can be computed according to several thermodynamic databases, which are based on
laboratory experiments. We use the formalism and database for peridotites from Stixrude and Lithgow‐
Bertelloni (2005).

For Airy‐type local isostasy, the pressure corresponding to the overlying density column is calculated for
every node at the bottom of the model space (compensation level). The resulting elevation due to buoyancy
forces is obtained from comparison with a reference density column at a mid‐oceanic ridge and can be used
as a quantity to fit the model to the actual topography in the study area. The reference at the mid‐oceanic
ridge is chosen because average elevations, petrogenetic processes, and lithospheric structures are better
known there than in other tectonic settings (Afonso et al., 2008). Dynamic loads associated with sublitho-
spheric mantle flows are neglected. Likewise, the error for Airy‐type isostasy emerging from the planar
approximation of the Earth is negligibly small due to the relatively thin lithosphere compared to the
Earth's radius (Hemingway & Matsuyama, 2017). To take into account the rigidity of the lithosphere, regio-
nal (flexural) isostasy is modeled on the basis of the local isostasy, the pressure at the compensation level,
and the assumed elastic thickness (Te) of the lithosphere with the software TISC (Garcia‐Castellanos,
2002). For our modeling we choose a value of Te = 30 km.

Although LitMod3D is capable of calculating gravity gradients, this is still done in a Cartesian coordinate
system. To account for the large extension of Antarctica, a spherical geometry should be used to avoid biased
results. We thus use the software Tesseroids (Uieda et al., 2011), which can compute the gravitational poten-
tial, the gravity, and the gravity gradient effect caused by tesseroids with certain densities. We transform the
lithospheric density model from LitMod3D into a spherical tesseroid model. An equiangular discretization
in polar regions, however, would lead to very small tesseroids near the pole and bigger tesseroids at higher
latitudes. A discretization into metrically equal sized tesseroids is a better choice, considering both numer-
ical precision and computational effort. To avoid edge effects, we extend the model up to latitude 30°S. From
the Cartesian LitMod3D model, an inner high‐resolution (~25‐km edge length) model is created up to a lati-
tude of 60°S. Beyond that, coarser tesseroids (0.5°) are built. If a tesseroid of the extension model lies outside
the original LitMod3D model space, the density of the particular depth layer is extrapolated and assigned to
the tesseroid. A piece‐wise linear reference model (Figure 3) with density increasing with pressure in the
crust (above 30 km) and the mantle (below 30 km), is subtracted from the modeled in situ
(absolute) densities.

3.2. GIA Modeling

For the GIA response a model is used that is based on the finite element software ABAQUS™, which com-
putes the deformation for certain surface loads. Iterative calculations are required to account for changing
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noneustatic sea level and the gravitational potential, which result in a new load to be applied at boundaries
(Wu, 2004). Density and rigidity are derived from volume averaging of Preliminary Reference Earth Model
(PREM) (Dziewonski & Anderson, 1981). Three‐dimensional density structure, mainly the difference
between EANT and WANT, could influence results, but our method requires 1‐D density. Earlier work
that included variation of 1‐D density profile suggests limited effects for spatial wavelengths above 700 km
(Vermeersen & Sabadini, 1997). Three‐dimensional variation in elastic parameters was found to introduce
small effects on elastic response (Mitrovica et al., 2011) and is therefore not included. The finite element
model uses a stress‐strain‐rate relation for composite rheology (van der Wal et al., 2010; van der Wal
et al., 2013). The composite rheology is based on experimental flow laws for olivine of Hirth and
Kohlstedt (2003), which are assumed to be valid for the upper 400 km where olivine is the dominant
mineral. The lithosphere our GIA model is implicitly defined in the model as that part of the top of the
Earth model that does not deform viscously in the time scale of glacial loading. Barnhoorn et al. (2011)
derived that this cutoff viscosity of 1025 Pa·s, above which no viscous deformation takes place, would be
detectable in GIA measurements.

Viscosity, ηeff, is computed as in van der Wal et al. (2015):

ηeff ¼
1

3Bdiff þ 3Bdislqn−1
(4)

with q as the von Mises stress, n as the stress exponent (set to 3.5), and Bdiff and Bdisl contain all rheological
parameters from the creep law for diffusion and dislocation creep in olivine:

B ¼ Ad−pfH2O
reαφe−

EþPV
RT ; (5)

in which A and α are constants, d is the grain size, fH2O is water content, Φ is melt fraction, E is activation
energy, P is pressure, V is activation volume, R is the gas constant, T is absolute temperature, p is the grain
size exponent, and r is the water fugacity exponent, respectively. Except for grain size and water content, all
values are taken from Hirth and Kohlstedt (2003, Table 1). Pressure is calculated as a function of depth and
density as obtained from PREM; temperature is taken from the LitMod3D model interpolated on the 2° × 2°
grid of the finite element model using triangular based linear interpolation. The viscosity in equation (4) is
stress dependent. That means that there is a weak dependence on the ice load, for which we use the W12
model (Whitehouse et al., 2012). O'Donnell et al. (2017) suggested GIA and sublithospheric tectonic stress

Figure 3. (left) A step‐wise linear reference density model is used to compute relative density anomalies and gravity gra-
dient anomalies. (right) Relative depth sensitivity of vertical gravity GZ and gravity gradients for the final model.
Horizontal lines mark the thickness of the contributing depth interval. The gradients generally show high sensitivity at
depths above 100 km. TIA, TIU, and TAU obtain their largest contribution from the uppermost 25 km, reflecting the
density variation across continent‐ocean transitions. Compare Figure S11 for absolute root‐mean‐square (RMS) values.
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levels to be of the same order of magnitude, which means that the viscosity will also depend on the tectonic
stress. We neglect the influence of background stress here, as accurate predictions requires the stress tensor
from both processes to be known.

Bdiff below 400 km is set to 1.1·10−21 Pa−1·s−1 (corresponding to a viscosity of 1.1·1021 Pa·s). Outside the
LitMod3D space, the top 100 km is taken to be elastic close to the value obtained in global GIA model
(Peltier, 2004). Below 100 km, a diffusion creep parameter is used that corresponds to a viscosity of
1·1021 Pa·s. To reduce edge effects, creep parameters across the boundary are smoothed by applying a
moving average to the log base 10 values of the creep parameters in a range of 8° before and after
the boundary.

Applying an olivine flow law to derive viscosity introduces many uncertainties. Here we consider water
content and grain size as unknown parameters as they have a large effect on viscosity for values that
are still within their uncertainty bounds. In principle, those quantities can be measured in xenoliths
but they do not provide a single, typical grain size. Furthermore, it is not certain how well the grain size
and water content of the surfaced rocks represent conditions at depth. Also, the scarcity of xenolith sam-
ples in Antarctica makes it difficult to use them as constraints for flow law parameters. Hence, we opt to
use values for grain size and water content that result in acceptable viscosities as determined from their
good fit to GIA observations in other regions (van der Wal et al., 2013). Uncertainty in other parameters is
absorbed by the grain size and water content. We do not include the influence of partial melt as
O'Donnell et al. (2017). Viscosity and present‐day uplift rates are shown for our temperature model for
dry rheology and 4‐mmgrain size (4d, the preferredmodel in van derWal et al., 2015), while uplift rates from
wet rheology (1,000‐ppm water content) and varying grain sizes are also investigated. It is important to note
the Antarctic‐wide loading model that we use here does not include recent ice load changes, which are
expected to dominate present‐day uplift rates in some regions in Antarctica (e.g., Barletta et al., 2018;
Nield et al., 2014).

4. Model Setup

To cover the whole Antarctic continent at a reasonable resolution, our model extends over 6,620 km × 6,620
km with a lateral resolution of 50 km. Vertically, the model extends down to 400 km, and a smaller vertical
discretization of 2 km is chosen for reasons of numerical precision in computing the heat transfer. An initial
structure is needed to start the model, ideally solely based on seismic estimates to be independent from our
gravity gradient modeling. We use the continental‐scale crustal thickness model AN1‐CRUST (An et al.,
2015a) since it is not a compilation of different regional studies but derived from Rayleigh wave analyses,
constrained by Moho depth estimates from studies using receiver function techniques. The crustal thickness
values from AN1‐CRUST are the distance from the solid surface to the Moho, so we subtracted the surface
elevation data from Bedmap2 in order to obtain the Moho depth with respect to the WGS84 reference ellip-
soid and refer to the product as AN1‐Moho (Figure 4). A continent‐wide estimate of the lithospheric thick-
ness is provided by themodel AN1‐LAB (Figure 4) fromAn et al. (2015b). The authors inverted temperatures
from mantle S wave velocities (An et al., 2015a) and defined the LAB as the shallowest position with a tem-
perature crossing the 1330 °C adiabat. As described in section 1, the inferred mantle temperatures of this
model may be overestimated due to omission of potential presence of melt or water. However, we regard
the AN1‐LAB to be a good initial geometry for our modeling. The An et al. (2015b) temperature model will
be used for comparison with our final lithospheric model.

Given the lack of knowledge about characteristics of the lithosphere for large parts of Antarctica, particularly
the interior of EANT, we take general (global) geophysical and petrophysical properties for crustal and litho-
spheric mantle rock parameters, but we distinguish between different domains vertically and horizontally
(Table 1). Both the crust and the lithospheric mantle in our models are divided into an oceanic and a con-
tinental part. Since the actual ocean‐continent transition at Antarctica's margins is still ill constrained in
some regions, we use bathymetric data from the Bedmap2 and the ETOPO1 data sets to determine the con-
tinental shelf line (taken at 2,000‐mwater depth) and take this as a proxy for the boundary of the continental
lithosphere. We divide the continental crust into three layers of equal thickness (upper, middle, and lower
crust). In this way we are able to model the thermal field more realistically by introducing differentiated
radiogenic heat production rates and thermal conductivity, and we can vary the vertical density
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distribution within the crust. We use the same values as An et al. (2015b) for the thermal parameters, such
that our modeled heat flow can be compared to their estimates.

To define different lithospheric mantle domains, we followed overviews of the Antarctic tectonic provinces
(e.g., Boger, 2011; Goodge & Fanning, 2016; Harley et al., 2013), which rely on petrological evidence. The
subcontinental lithospheric mantle is divided into three major domains (Figure 4): EANT, WANT, and
the two major rift systems: the WARS (Bingham et al., 2012) and the Weddell Sea Rift (Jordan et al.,
2017). We use representative lithospheric mantle compositions of Phanerozoic age for WANT and
Proterozoic age for EANT (Table 2). Peridotitic xenolith samples from the WARS indicate a very heteroge-
neous lithospheric mantle structure (e.g., Armienti & Perinelli, 2010; Storti et al., 2008; Wörner, 1999), partly
characterized by metasomatic processes and reenrichment of depleted lithospheric mantle. Since our model
is not supposed to account for such localized variations, we assume a primitive upper mantle composition
(McDonough & Sun, 1995) for the rift systems. Parts of EANT are assumed older than Proterozoic (Elliot
et al., 2015; Goodge & Fanning, 2016; Ménot et al., 2007). For these regions, we implement an Archaean
lithospheric mantle composition in some of our models as explained later on. Yet since such a depleted com-
position leads to very low densities, we implement it only in the upper lithosphere, accounting also for
potential refertilization by postdepletion metasomatism of the lower lithosphere (e.g., Beyer et al., 2006).
In oceanic areas, the lithospheric mantle is modeled in two layers in order to represent the vertically varying
chemical composition and density due to differences in the degree of melt depletion in the mantle material
generated at the mid‐ocean ridge (e.g., Afonso et al., 2007; Ji & Zhao, 1994). The lower layer of oceanic

Figure 4. Initial model geometry for Moho and LAB depth is taken from seismological estimates: AN1‐Moho (left, An et al., 2015a), AN1‐LAB (center, An et al.,
2015b). The right map shows the subdivision of lithospheric mantle domains in the model based on previous studies on tectonic provinces of Antarctica. EANT =
East Antarctica, OLM=Oceanic lithosphericmantle, WANT=West Antarctica, WARS=West Antarctic Rift System,WSR=Weddell Sea Rift; LAB= lithosphere‐
asthenosphere boundary.

Table 1
Petrological Parameters of Crustal Layers in the Final Model (Model 3)

Type Heat production (μW/m3) Thermal conductivity (W/mK) Density (kg/m3) Thermal expansion (K−1) Compressibility (GPa−1)

Sediments 0.5 1.85 2,300 1E−5 8E−10
Upper crust 1.0 2.35 2,670 1E−6 1E−10
Middle crust 0.4 2.25 2,670 1E−6 1E−10
Lower crust 0.4 2.0 2,800 1E−6 8E−11
Oceanic crust 0.1 3.0 2,950 0 0
Mantle layers 0.01 5.3 — — —

Note. The in situ density is computed as a function of thermal expansion and compression according to temperature and pressure conditions. The thermal con-
ductivity within the mantle follows the equations from Hofmeister (1999). The denoted value represents thermal conductivity at standard temperature‐pressure
conditions (Fullea et al., 2009).
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lithospheric mantle makes up two thirds of the total lithospheric mantle thickness in our model and has a
lherzolithic composition, while the upper layer (one third of the total thickness) is modeled as harzburgite.

5. Results and Discussion

An iterative process was adopted to fit the model outputs to the observational data sets, that is, the rock‐
equivalent topography and the gravity gradient anomaly field at satellite height. The simple starting model
with the initial geometry based on seismological data turns out to be far from isostatic equilibrium and does
not satisfy the gravity gradient observations. Therefore, we proceed from this simple starting model and
refine it in three subsequent stages:

1. Model 1 keeps the petrological parameters and the lithospheric domains from the initial model. The
depths of the Moho and LAB interfaces are iteratively changed in the model in order to fit the isostatic
elevation to the observed rock‐equivalent topography. For this purpose, in each iteration step the current
elevation misfit between the model and the data is multiplied with a factor that relates the topographic
load with the mass deficit or surplus, respectively, at the interface through simple Airy isostasy. A
detailed description of the method is given in the supporting information (Text S1). The resulting model
is not a unique solution because, theoretically, isostatic equilibrium can be achieved with a variety of
pairs of factors for adjusting the Moho and the LAB depth. However, the internal modeling processes,
which determine the density in each cell of the model, significantly narrow the set of solutions (e.g.,
Afonso et al., 2013). After achieving isostatic equilibrium in Model 1 in this way, high residuals of more
than ±1 E are still present in the gravity gradients in some areas (Figure S8), which is ~25% of the ampli-
tude of the topography‐reduced input data. As an explanation, this misfit could be related to an improper
vertical density structure of the model's lithosphere. For isostasy, only the mass integral is relevant. The
gravity gradient components, on the other hand, have different depth sensitivities.

2. In Model 2, we account for these gravity gradient residuals by refining crustal and lithospheric
domains while still maintaining isostatic equilibrium. Additional blocks of Archaean mantle litho-
sphere are introduced and the density parameters of the overlying crust are changed in regions with
large misfits (Figure S9). The vertical density distribution is modified in such a way that the upper
lithospheric mantle is less dense (depleted Archaean composition), whereas the crustal density is
increased. Simultaneously, the Moho boundary and the LAB are shifted again to achieve isostatic equi-
librium with the result that the crust is thinned and the lithospheric mantle is thickened, and thus,
crustal material is replaced by denser mantle peridotite. Moreover, by shifting the isotherm that defines
the LAB to greater depths, the middle to lower lithospheric mantle becomes denser due to temperature
decrease. As a result, the gravity gradient response of Model 2 is improved by a few tenths of eötvös in
the respective regions. It was, however, not possible to fit both the isostatic equilibrium and the gravity
gradient field simultaneously.

3. Model 3 builds uponModel 2, but the previous constraint of isostatic balance of the Antarctic continent is
discarded. Instead, the depth of theMoho discontinuity and LAB is adjusted based on the gravity gradient
residual with accordingly different factors but in principle the same procedure as described for the iso-
static fitting. As a result, the residual of the gravity gradients is generally less than ±0.2 E (Figure 5), thus
less than 5% of the topography‐reduced signal. In turn, the root‐mean‐square (RMS) misfit between

Table 2
Oxide Composition of Lithospheric Mantle Peridotites Used for the Modeling

wt % PUMa Lherzoliteb Harzburgitec Phanerozoicd Proterozoicd Archaeand

SiO2 45.45 45.08 43.48 44.99 45.19 46.08
MgO 38.18 42.70 46.26 40.24 43.16 45.88
Al2O3 4.55 2.42 1.96 3.54 1.93 1.00
FeO 8.18 8.44 7.80 8.09 8.00 6.45
CaO 3.64 1.36 0.50 3.13 1.72 0.59
Mg# 89.27 90.02 91.36 89.87 90.58 92.69

Note. PUM = primitive upper mantle.
aMcDonough and Sun (1995). bMaaløe and Aoki (1977). cIrifune and Ringwood (1987). dFullea et al. (2009) and references therein.
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modeled and observed topography is 389 m (Figure 5). The patterns of the residual topography correlate
with the gravity gradient (TUU) residuals in Model 2 since the mass change in the subsurface is reflected
by an increased or decreased isostatic elevation, respectively. These adjustments have implications for
the isostatic state of different parts of Antarctica. In the following subsections, we will discuss and inter-
pret the particular characteristics of the models in terms of crustal and lithospheric thickness, density,
and temperature.

5.1. Topography Misfit in Gravity Gradient Fitted Model

By establishing isostatic equilibrium, a first‐order fit of the gravity and gravity gradient field can usually be
achieved (e.g., Braitenberg et al., 1997). This approach indeed reduces the gradient misfit of Model 1 signifi-
cantly compared to the initial model, which was not in isostatic balance. It is, however, uncertain to what
extent the Antarctic continent actually is in isostatic equilibrium. If sublithospheric forces generate a non-
isostatic component in the present topography, fitting the observed gravity gradient field is a better option
than fitting the isostatic elevation, because the gradients are most affected by near‐surface density

Figure 5. Residual analysis Model 2 (left) and Model 3 (right). (top) Topography misfit map and histogram. (bottom) Misfit of gravity gradient signal. Note the dif-
ferent value ranges. The gravity gradient misfit is reduced significantly from Model 2 (±1 E) to Model 3 (±0.2 E), though at the expense of the fit of perfectly iso-
statically compensated topography. The difference in elevation of ~250 m, mostly emerging in East Antarctica, may point to an imperfect topographic gravity
correction model, flexural compensation, or dynamic forces that support the topography.
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variations. Furthermore, given the high accuracy and the homogeneous covering of the gravity gradient data
over Antarctica, we consider Model 3 as our preferred model for a representation of the continent's litho-
spheric density structure. However, because the condition of perfect isostatic equilibrium is released, it
shows a mismatch with the actual (rock‐equivalent) topography (Figure 5). While no clear contrast is appar-
ent between WANT and EANT in the residual map, Wilkes Land shows a distinctly different (negative) sig-
nature from the rest of EANT. Yet some parts of Wilkes Land still show positive residuals, specifically where
the Archaean to Mesoproterozoic Terre Adélie Craton is located (e.g., Lamarque et al., 2015; Ménot et al.,
2007) and where the inferred Paleoproterozoic Beardmore Microcontinent (Boger, 2011; Borg et al., 1990)
is thought to underlie parts of the Wilkes Subglacial Basin (e.g., Ferraccioli et al., 2009; Ferraccioli &
Bozzo, 2003) region (Figure 1).

In summary, these topography residuals are not explained by the gravity gradient signal. Their large‐scale
variations may be induced by sublithospheric forces like mantle upwellings or downwellings, which provide
dynamic support of the topography. Short‐wavelength residuals could originate from imperfect topographic
or ice correction models onshore or sediment models in offshore areas. It is also possible that they represent
topographicmasses that are not in local isostatic balance but compensated regionally due to lithosphericflex-
ure (e.g., Paxman et al., 2019). However, the RMS misfit of ~380 m is still small compared to the correspond-
ing crustal thickness variation that would be needed to compensate such a topographic load. Assuming a rock
density for the topography of 2,670 kg/m3 and a density contrast at the Moho of 400 kg/m3, a 2.5‐km‐thicker
crust would compensate 380 m of topography. This is below the uncertainty of most seismic‐inferred Moho
depth estimates even in well‐studied areas.

5.2. Density Structure

A main advantage of using the full gravity gradient tensor in lithospheric modeling is the potentially differ-
ent depth sensitivity of the individual components. The theoretical sensitivity kernels for the gravity gradi-
ents show a large response for near‐surface mass anomalies (Martinec, 2014). However, the actual
contribution of each depth interval depends on the location of the sources in the respective study area. An
appropriate way to quantify this contribution is to compute the relative RMS of the signal of density varia-
tions with respect to the reference model (Bouman et al., 2016). For every single component of the gravity
gradient tensor—and the vertical gravity GZ, respectively—the contribution of a particular depth interval
is given in percentage of the total RMS integral over the depth. Figure 3 (right) shows the relative RMS signal
contribution from different depth ranges computed for our lithospheric Model 3. (For absolute values see
Figure S11.) For the vertical gravity and all gradient components, the strongest signal originates from a depth
range of 10 to 25 km, which reflects the density variations at the continent‐ocean boundaries. Horizontal and
mixed components are more sensitive to signals at this depth than the vertical gradient TUU and the vertical
gravity GZ. From 25‐ to 40‐km depth, the contrast between EANT andWANT affects the gradients more than
the vertical gravity, resulting in a smoother decrease of the RMS with depth. In particular, the horizontal
component TIA, which is commonly considered to be most sensitive to very shallow structures, is still
remarkably strong at this depth. Clearly, this reflects the sharp transition at roughly 45°W/135°E between
WANT and EANT. Furthermore, a noticeable divergence of the TAU and TAA components is present at
~60‐km depth. This means that a marked density variation exists with an orientation perpendicular to the
0° meridian (pointing toward the Atlantic), which is the Pacific‐Antarctic Ridge north of the Ross Sea region.
The density of the upper mantle is decreased to 3,200 kg/m3 here in order to fit the bathymetry, whereas
other regions in the model show 3,300 kg/m3 and more in ~60‐km depth. In summary, for almost every sin-
gle layer above 100‐km depth, the relative RMS contribution is higher in the gravity gradients than in the
vertical gravity, even below the Moho.

The modeled densities of the upper mantle in our Model 3 are shown in Figure 6. At depths of 50 to 80 km
the topography of the LAB is dominating the patterns in WANT with rather low densities in the coastal
areas. In EANT the deep crustal root of the Gamburtsev Subglacial Mountains (GSM) stands out in the
50‐km depth slice, whereas at 80‐km lower density is present in areas where our model features Archaean
lithospheric mantle composition. Down to 150 km, the mantle density is lower beneath WANT due to the
higher temperature compared to cratonic EANT (Figure 6e). However, this relation is reversed below 150
km. At this depth, relatively low density values are present beneath EANT (Figure 6f), and the deep litho-
spheric mantle of EANT is notably less dense than the sublithospheric mantle of WANT, particularly at
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its edges where it is hotter than in the interior. A cross section through the model is shown in Figure 6a that
spans from the West Antarctic coast of Marie Byrd Land (MBL) across the WARS, the TAM, the GSM, and
the Lambert Graben to the Indian Ocean coast, thus covering key elements of Antarctica's lithospheric
structure over a distance of 5,500 km. It reveals another interesting feature: At the depth of the shallow
LAB beneath WANT almost no density contrast is present between lithosphere and asthenosphere since
the lithospheric mantle is relatively fertile, hot, and at low pressure. On the other hand, the density
contrast at the deep lithospheric base of EANT adds up to several tens of kilograms per cubic meter and
thus contributes to the lithosphere's buoyancy and the gravitational field anomalies. However, we note
that our model does not include potential density variations in the asthenosphere due to temperature
anomalies, as one would expect in case of a (WARS) mantle plume (e.g., Seroussi et al., 2017).

Figure 6. (a) Cross section through ice, topography, crust, and mantle of our Model 3. The profile is shown in the slices below. High crustal densities are present
beneath the GSM. The mantle cross section illustrates the different density contrasts at the lithosphere‐asthenosphere boundary beneath WANT and EANT,
respectively. MBL = Marie Byrd Land, WANT = West Antarctica, TAM = Transantarctic Mountains, GSM = Gamburtsev Subglacial Mountains, LG = Lambert
Graben. Dashed horizontal lines indicate depths of mantle density slices: (b) 50, (c) 80, (d) 100, (e) 125, (f) 125, (g) 175, (h) 200, and (i) 250 km.
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Another approach to investigate the lithospheric structure of Antarctica in terms of density, along with tem-
perature and composition, has been recently presented by Haeger et al. (2019). Instead of predefining the
lithospheric mantle composition, that study inverts for composition, density, and temperature while differ-
ent seismological S wave tomography models are used to iteratively reconcile the estimates in a thermody-
namically consistent way. The main difference with our strategy is, however, that Haeger et al. (2019) base
their analysis on a predefinedMoho depth, whereas it is a model result in our study. Vice versa, we predefine
lithospheric mantle compositions in our modeling, while Haeger et al. (2019) invert for these. The degree of
depletion of the lithospheric mantle material is strongly dependent on the selection of the seismic tomogra-
phy model in the inversion of Haeger et al. (2019), demonstrating the need for more seismological surveys
for Antarctica.

5.3. Crustal Thickness

The depths of Moho and LAB result from fitting the elevation (Models 1 and 2) and the gravity gradients
(Model 3), respectively, starting from the initial model based on the seismologically derived geometry from
An et al. (2015a, 2015b). We do not fit our model to seismic data but compare our results with seismic‐
inferred Moho depth estimates. A considerable number of local seismic Moho depth estimates exist, even
though large gaps in the coverage of the Antarctic continent are still present.

Recent continental‐scale Moho depth models (e.g., An et al., 2015a; Baranov & Morelli, 2013; Haeger et al.,
2019) made use of the local Moho studies by application of different techniques to infer the crustal thickness
in poorly covered areas. Several other Moho depth models exist for Antarctica, which are, however, less sui-
ted for the evaluation of our model since they involve the inversion of gravity data (e.g.,Baranov et al., 2018 ;
Block et al., 2009 ; O'Donnell & Nyblade, 2014) or only provide estimates in a limited region (e.g., Chaput
et al., 2014; Shen et al., 2018; White‐Gaynor et al., 2019). In comparison, some of these models show large
discrepancies of more than 10 km in large areas of Antarctica (see Pappa et al., 2019, for detailed discussion).

We evaluate the Moho depth of our models at the same seismic stations that have been used by An et al.
(2015a) and Baranov and Morelli (2013). Figure 7 shows the Moho depth of Model 3 together with the mis-
match to the seismic estimates indicated by colored circles. (For a mismatch histogram see Figure S10.)
Parameter and compositional changes from Model 1 to Models 2 and 3 improved the fit in Moho depth
for WANT and TAM significantly owing to higher densities in the middle and lower crust. The crustal root
beneath areas with high topography is therefore less pronounced. The changes of Moho depth related to the
release from isostatic equilibrium from Model 2 to Model 3 are minor in WANT, but in EANT the crust of

Figure 7. (left) Moho depth of lithospheric model (Model 3). Colored circles show mismatch with respect to seismic estimates from other studies. ASB = Aurora
Subglacial Basin, DML = Dronning Maud Land, EL = Enderby Land, GSM = Gamburtsev Subglacial Mountains, IAAS = Indo‐Australo‐Antarctic Suture, LG =
Lambert Graben, TAC = Terre Adélie Craton, TAM = Transantarctic Mountains, VD = Valkyrie Dome, WSB = Wilkes Subglacial Basin. (right) Lithosphere‐
asthenosphere boundary depth of Model 3. Dashed line A–A′ corresponds to temperature cross sections in Figure 8. Pink‐colored diamonds indicate locations of
vertical temperature profiles in Figure 8.
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Model 3 is thinned compared to Model 2. Areas of relatively thick crust become more pronounced, for
instance, in eastern DML, in Terre Adélie, and west of Lake Vostok.

The RMS misfit at the seismic depth points increased slightly from 6.1 km in Model 2 to 6.9 km in Model
3 (Figure S10). It is difficult to quantify the uncertainty of our Moho depth model in relation to the seis-
mic estimates since disagreements exist between studies even at the same locations (Pappa et al., 2019).
As a measure of discrepancy, one can calculate the deviation D of the RMS misfit M of our model (6.9
km) from the supposed uncertainty U of seismological methods of ~3 km (e.g., Hansen et al., 2009) by

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−D2

p
; (6)

which gives 6.2 km. This is, however, a measure of deviation in terms of seismic Moho depth estimates,
whereas the misfit of the gravity gradients and the topography must also be taken into account.

The Moho depth of our final Model 3 (Figure 7) exhibits detailed patterns in EANT, typical of gravity‐based
or Airy‐isostatic models (e.g., Block et al., 2009; O'Donnell &Nyblade, 2014; Pappa et al., 2019). Although the
AN1‐Mohomodel was used as starting value, distinct differences exist in our Moho depth. DML shows more
variations and can be divided into three parts: (1) the northern mountain ranges with crustal roots that exhi-
bits crustal thicknesses of ~40–45 km, (2) further south western DMLwith a rather thin crust of ~30 km, and
(3) eastern DML as a block with markedly thicker crust of ~40 km. These values and the according subdivi-
sion are consistent with results from Riedel et al. (2012, 2013), who jointly interpreted aeromagnetic and
aerogravity measurements with isostatic modeling of the region. Studies relying on gravity or a combination
of both gravity and seismology also show thicker crust in eastern DML (Baranov et al., 2018; Block et al.,
2009; O'Donnell & Nyblade, 2014), and this is also revealed by the Rayleigh wave‐derived model from An
et al. (2015a). However, in previous Moho depth compilations (Baranov & Morelli, 2013), based on regional
surveys, the opposite was foundwith thicker crust in western DML. Yet as no seismicmeasurements for east-
ern DML were used in that compilation, the thickness values are interpolated in this area and thus subject
to uncertainty.

In the AN1model, a pronounced small patch of very thick crust beneath the Valkyrie Dome (also referred to
as Dome Fuji) is present, but no such feature exists in our results. Instead, the crust there is thinner than at
its surroundings.

Only scarce data exist for Enderby Land further east as well. While crustal thickness estimates exist for west
Enderby Land (Miyamachi et al., 2003; Yoshii et al., 2004) and the Lambert Graben area (e.g., Feng et al.,
2014; Reading, 2006), the interior structure of Enderby Land remains seismically underexplored. Satellite
gravity inversions estimate the Moho depth in this region at ~40 km (Baranov et al., 2018; Block et al.,
2009; O'Donnell & Nyblade, 2014) but can only give a rather blurred image due to the long‐wavelength sig-
nal. As the gravity gradients enhance shorter wavelengths, which correspond to shallower structures, and
our modeling process considers the principle of isostasy, we are able to infer more details in the crustal struc-
ture of Enderby Land. West of the Lambert Graben, the Moho is less than 40 km deep, reaching 30 km in
central Enderby Land and near the coast. We can also see a clear boundary toward eastern DML along
the ~30°N meridian. This is broadly consistent with the models from An et al. (2015a) and O'Donnell and
Nyblade (2014).

The GSM, which are adjacent to the southern part of Enderby Land, have been subject to extensive investi-
gations (e.g., An et al., 2016; Ferraccioli et al., 2011; Hansen et al., 2010; Heeszel et al., 2013; Lloyd et al.,
2013; Paxman et al., 2016). Yet their formation remains unclear. One hypothesis that has been put forward
to explain their uplift is Permian to Cretaceous rifting and strike‐slip faulting followed by Cenozoic peak
uplift due to fluvial and glacial erosion (Ferraccioli et al., 2011; Paxman et al., 2016; Rose et al., 2013) com-
bined with remarkably low erosion rates (Cox et al., 2010). The remarkably thick crust that is still preserved
beneath the GSM has been related to subduction and collision during the late stages of the Pan‐African oro-
genic cycle (~550–500 Ma) by An et al. (2015a) or to much older Grenvillian‐age accretion and possible colli-
sion of terranes against the composite Archean to Mesoproterozoic Mawson Craton by Ferraccioli et al.
(2011). Estimates of crustal root depth values range from more than 60 km in seismic studies (An et al.,
2016, 2015a) to ~50 km (O'Donnell & Nyblade, 2014; von Frese et al., 2009) or less (Block et al., 2009) in
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gravity‐based models. Ferraccioli et al. (2011) have shown, based on gravity modeling, that the density con-
trast between the crustal root of the GSM and the underlying lithospheric upper mantle may be only about
55 kg/m3. More generally, An et al. (2015a) conclude that the density contrast for whole EANT is small from
comparison of their seismic crustal thickness estimates and an Airy‐isostatic Moho depth model. In our
model the Moho shows a maximum depth of 52 km, and the root beneath the GSM is elongated in a
south‐north direction, rather than the more circular‐shaped geometry imaged by An et al. (2015a).
Between the GSM and the Vostok Highlands to the east, which again are underlain by a thick crust of more
than 40 km, a clear lineament of thinner crust is apparent, consistent with seismological estimates (Ramirez
et al., 2016) and the location of the proposed eastern branch of the East Antarctic Rift System (Ferraccioli
et al., 2011).

Further east we can identify a prominent lineament in the region of the proposed Indo‐Australo‐Antarctic
Suture (Aitken et al., 2014), where Indo‐Antarctica and Australo‐Antarctica may have collided either during
the late Mesoproterozoic assembly of interior EANT or as late as the early Cambrian (Boger, 2011; Collins &
Pisarevsky, 2005). However, the exact location of this inferred suture zone cannot precisely be determined
from our model. The Terre Adélie Craton stands out as a block of ~40‐km‐thick crust, consistent with recei-
ver function analyses (Lamarque et al., 2015). It is surrounded by the Aurora Subglacial Basin to the west,
the Sabrina Subglacial Basin to the northwest, and the Wilkes Subglacial Basin to the west, which all are
characterized by a rather shallow Moho at 30 km or shallower. This level of detail in crustal thickness varia-
tion has not been imaged in the region of Wilkes Land so far.

5.4. Lithospheric Thickness

Asmentioned before, different definitions of the LAB exist corresponding to different geological understand-
ing and geophysical methods. In our model the LAB is described by a thermal (1315 °C isotherm), rheologi-
cal (base of rigid layer), and a compositional boundary. Basic assumptions in our modeling, such as
composition and crustal rock parameters, imply some uncertainty due to the lack of reliable local con-
straints. As expressed previously, it should also be noted that the depths of the Moho and the LAB in our
models are nonunique, which is always the case in models based on gravity, particularly because the density
change at the LAB is generally small. Nevertheless, there are additional aspects that help to constrain the
total lithospheric thickness in our model, which are the self‐consistent computation of density due to pres-
sure, temperature, and composition as well as the principle of isostasy. Some information about the robust-
ness of the results can be given by the comparison with the seismologically derived and thus gravity‐
independent LAB depth model AN1‐LAB (An et al., 2015b).

An et al. (2015b) used a mixed LAB definition. They converted the S wave velocity model AN1‐VS into tem-
peratures and defined the LAB as 1330 °C isotherm. The authors state that the vertical resolution of their
seismological LAB should be smaller than 20–50 km. This estimation, however, does not include the uncer-
tainties in the conversion of velocities into temperature due to the choice of composition, grain size, and
water content, which An et al. (2015b) assume to be ~150 °C. Since both our LAB and the AN1‐LAB model
are likewise defined as isotherms that only differ by 15 K, we can compare the depths of the LAB (Figures 4
and 7). Although we used the AN1‐LAB as a starting geometry, the final LAB of our model results from a
completely different methodology. They are markedly similar in most parts of Antarctica, and the differ-
ences are mainly within the range of uncertainty of different methods to assess the LAB depth. Similar to
An et al. (2015b) and other seismological studies (e.g., Ritzwoller et al., 2001; Schaeffer & Lebedev, 2013),
the lithospheric thickness of our final Model 3 shows a strong contrast between WANT where values less
than 100 km are attained and EANT with more than 150 km. While the LAB topography in our model is
rather smooth within both parts of the continent, the transition is very steep, spanning about 100‐km depth
difference over 250‐km horizontal distance. In WANT few regions show a lithosphere thinner than 80 km,
such as MBL, Ellsworth Land, and the Ross Sea front of the TAM. However, we see that a very deep LAB of
~180 km beneath the Weddell Sea emerged in our model, which is not shown by seismological models. This
could be a consequence of an overestimated sediment thickness in this area due to the ambiguity of the
depth to basement estimates from magnetic data, although notably the presence of cratonic lithosphere
beneath the southern part of the Weddell Sea Rift has also been inferred from aeromagnetic studies (e.g.,
Jordan et al., 2017, and references therein).
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In EANT the cratonic nature is clearly reflected by a thick lithospheric root down to ~260‐km depth beneath
the GSM. Thickness values more than 200 km extend westward to the Pensacola Mountains and the
Shackleton Range. To the east we still see 200‐km LAB depth beneath George V Land and Wilkes Land.
Notably, the lithosphere thins more rapidly toward the coast between the longitudes 20°W and 90°E, reach-
ing 150 km beneath Enderby Land and 100 km beneath western DML, respectively.

A major difference between our model and the AN1‐LAB is the lithospheric thickness in the GSM region. In
contrast to the AN1‐LAB, all our models result in a deeper LAB below the GSM in order to compensate the
topographic load. The thickest lithosphere in the AN1 model with more than 230 km is located east of
the GSM, whereas in our models the deepest point lies beneath them at ~260 km. An et al. (2015a)
regard the different locations of the thickest crust and the deepest LAB in their models to be evidence
for a collision belt from the amalgamation of Gondwana during the Pan‐African orogeny (~550–500
Ma). Low erosion rates for at least over 250 Myr (Cox et al., 2010) support the hypothesis that the high
topography of the GSM might have been stable for 500 Myr. However, the whole mass column must
have stayed close to isostatic equilibrium for this scenario. In our model a very thick (thus cold and
dense) lithosphere is required to compensate the thick (less dense) crust beneath the GSM. If the crust
is even thicker, as seen by An et al. (2015a), and the LAB less deep, isostatic equilibrium could only
be achieved by higher densities within the lithosphere, meaning cold temperatures and possibly enriched
mantle composition. Yet our model is even colder than AN1‐T. It therefore seems unlikely that a thinner
and warmer, thus more buoyant, lithosphere could have maintained isostatic equilibrium in the GSM
region for several hundreds of million years.

5.5. Thermal Structure and GIA Response

Following our discussion on crustal and lithosphere thickness variations here, we infer the steady‐state tem-
perature distribution within the lithosphere and the sublithospheric mantle, which allows to estimate

Figure 8. Cross sections show temperature of Model 3 (top) and AN1‐T (below) model from An et al. (2015b). (bottom) Vertical temperature profiles for selective
locations demonstrate the generally higher temperature estimates from conversion from seismic velocity model (AN1‐T). The locations of all profiles are indicated
in Figure 7 (right). Horizontal dashed lines indicate depth of Moho and lithosphere‐asthenosphere boundary, respectively. Note that the Models 1, 2, and 3 feature
steady‐state temperature fields and thus do not include thermal anomalies.
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viscosity values for assessing GIA. It should, however, be kept in mind that our models presume that the
lithosphere is in isostatic equilibrium and the steady‐state temperature field does not include thermal
anomalies. We discuss the thermal structure of our models at five selected points of interest (Figure 8):
the Amundsen Sea Embayment (ASE), MBL, TAM, GSM, and Wilkes Land. Further comparison is made
with the temperature model AN1‐T fromAn et al. (2015b), which results from conversion of the Swave velo-
city model AN1‐VS (An et al., 2015a) into temperatures. The authors point out that a homogeneous mantle
composition and pressure dependency have been considered in the conversion method but not potential
water content or partial melt. They take their estimated mantle temperatures to be the upper bound, and
note that if the converted temperatures for the upper mantle seem unreasonably high, a possible explanation
might be the existence of melt or fluid inclusions (An et al., 2015b). Indeed, the temperature of the AN1
model is slightly higher than ours, and some areas of increased temperature are not visible in our models.

The cross section in Figure 8 demonstrates the striking temperature variations within the upper mantle
between WANT to EANT in both Model 3 and AN1‐T. At the transition from WANT to EANT, the
AN1 model and our model show high temperatures at the steps of Moho boundary and LAB. Although
our model only considers steady‐state conditions and thus no thermal anomalies, the temperature at
the Moho reaches almost 700 °C. Such values would be generally expected in orogenic belts (McKenzie
et al., 2005), while the Moho temperature beneath cratonic shields is estimated to range from 300–500
°C (Archaean) to 450–650 °C (Paleoproterozoic; Artemieva, 2009). The generally higher temperatures of
the AN1‐T model compared to our models, particularly at the crust‐mantle boundary, are also visible
in the vertical temperature profiles (Figure 8), for example, at the TAM profile. Here, the AN1‐T tempera-
tures not only are ~400 K higher in the middle part of the mantle lithosphere (~70‐km depth), but also
our models differ from each other due to variations in lithospheric thickness. The lithosphere is much
thinner (~125 km) in Models 2 and 3 than in Model 1 (>150 km). Consequently, the temperature is
higher within the lithosphere in Models 2 and 3 and approximately 200 K higher at 125‐km depth. Due
to the associated density decrease in the mantle, this generally allows a thinner crust to be in isostatic bal-
ance and does not require a pronounced crustal root. A substantially hotter mantle could potentially
increase this effect to the extent that a much thinner crust can overcompensate the topographic load.
The cross section (Figure 8) also shows the lateral temperature variation of the uppermost lithospheric
mantle between the TAM and the region beneath the GSM. Beneath the TAM, temperatures are high
throughout the lithosphere due to the shallow LAB. The hinterland of the TAM toward the GSM features
rather low temperatures below the relatively thin crust, whereas temperatures rise again beneath the
GSM's crustal root. Here the thick crust provides additional heat from radiogenic decay, which is higher
than in the mantle due to the increased abundance of uranium, thorium, and potassium. Such tempera-
ture variations affect the upper mantle seismic velocities, leading to velocity highs in regions of low tem-
perature and a velocity low beneath the GSM. Such decreased velocities have been observed by Shen et al.
(2018), who, however, hypothesize that they originate from compositional changes. Beneath the GSM, our
models show ~600 °C at the Moho, whereas AN1‐T suggests ~800 °C, which is much higher than generally
expected for cratonic shields. Varying crustal density parameters in our Models 2 and 3 with respect to
Model 1 in the GSM region apparently have no significant effect on the temperature. The same phenom-
enon occurs in the profile for Wilkes Land, where the impact of the implementation of Archaean litho-
spheric mantle on the temperature is also minor, whereas it has a significant effect on the density.

In the ASE in WANT, our models show almost identical values, whereas the Moho in the AN1‐T model is
more than 200 K hotter and exceeds 700 °C. On the other hand, all models have similar temperatures at
the lithospheric base. In the sublithospheric mantle the S wave inferred temperatures of the AN1 model
show a pronounced temperature increase with respect to our models beneath the ASE. This is consistent
with observations of the short‐term interaction between solid Earth movement and ice mass changes in
the ASE, which suggest very low upper mantle viscosities (Barletta et al., 2018). It is also consistent with
seismic low‐velocity zones in other studies (Hansen et al., 2014; Shen et al., 2018). Our models may under-
estimate the temperature because they represent a steady‐state temperature distribution with a lithosphere
in isostatic equilibrium, which might not be the case in the ASE. Similar limitations may apply for MBL.
Here, the changes in crustal parameters from Model 1 to Model 2 led to a shallower Moho and LAB,
resulting in higher temperatures within the lithosphere. As a consequence, lower densities and seismic
velocities can be expected. However, seismological studies inferred significant mantle velocity reduction
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of 1–3% for P waves and 2–5% for S waves beneath MBL (Hansen et al., 2014; Heeszel et al., 2016; Lloyd
et al., 2015; Shen et al., 2018; White‐Gaynor et al., 2019), accompanied by Cenozoic volcanism (e.g.,
LeMasurier, 1990). Such velocity anomalies would correspond to a temperature increase of ~150 K
(Lloyd et al., 2015). If, on the other hand, the upper mantle beneath MBL has an elevated water
content compared to surrounding areas, which could likely be the case due to a history of subduction
in the region (LeMasurier et al., 2016), then partial melts could cause the decrease in seismic velocities
(White‐Gaynor et al., 2019).

The temperature field does not only affect rock densities and hence contribute to isostasy but, in general, also
controls dynamic effects, such as GIA and mantle convection, in which viscosity is the crucial property.
Temperature or viscosity can be derived from seismic velocity anomalies, yet with large uncertainty (Ivins
& Sammis, 1995). Here we take the 3‐D temperature values from our thermodynamically self‐consistent
model to derive mantle viscosities and point out the implications for present‐day uplift rates in Antarctica,
which can be compared with GPS measurements to ultimately constrain past ice thickness.

Viscosity values are computed according to equation (4) with temperatures from Model 3. As stated in
section 3, we compute viscosity for dry olivine rheology and 4‐mm grain size (Figure 9). As a result, viscosity
at 100‐km depth in all of EANT is so high that it is effectively elastic and can thus be considered as part of the
lithosphere for GIA models. The viscosity in WANT is somewhat higher than found in earlier studies
(Barletta et al., 2018; Bradley et al., 2015; van der Wal et al., 2015). Using wet rheology lowers viscosity to
around 1018 Pa·s for large parts of WANT, in agreement with viscosity for water‐saturated peridotite pro-
vided in O'Donnell et al. (2017). Lowering the grain size to 1 mm even reduces viscosity in WANT to below
1018 Pa·s. This corresponds to relaxation times in the order of decades. For these small relaxation times, the
solid Earth response to changes in loading thousands of years ago will have reached equilibrium.

Uplift rates in Figure 9e show twomaxima in location of former ice domes in theW12 ice history model. GPS
uplift rates (Argus et al., 2014; Thomas et al., 2011) and empirical GIA models (Martin‐Español et al., 2017)
prefer somewhat smaller values, but note that no measurements are available in the locations of maximum
uplift rates. Smaller uplift rates can be achieved with lower grain size (1 mm) or a wet rheology in our model,
but these viscosities result in uplift rates of less than 1 mm/year, which is well below observed values.
However, this argument rests on the assumption that all ice loading changes are accounted for, while
Antarctic‐wide ice loading histories such as the W12 model used in this study do not include changes in
ice sheet thickness that occurred in the last centuries, and the response to those changes is absent from
Figure 9e. A low viscosity in combination with recent ice unloading could produce significant uplift rates.
The lowest viscosities obtained for the wet and small grain size rheologies are also below those inferred from
observations of late Holocene ice loading relaxation, including in Iceland (Barnhoorn et al., 2011;
Sigmundsson, 1991) and parts of Antarctica (Barletta et al., 2018). Based on this, our preferred model fea-
tures the dry rheology and 4‐mm grain size. The preference for GIA observations for dry rheology is subject
to the uncertainties introduced by applying the olivine flow law to the upper mantle rheology deficiencies in
the experimental flow law itself and our temperature model. From a petrology point of view, a completely
dry rheology is plausible. The upper mantle contains on average small amounts of water (50–200 ppm;
Hirschmann, 2006). Low hydration in WANT is supported by magnetotelluric measurements
(Wannamaker et al., 2017) and suggested for cratons such as EANT (Peslier et al., 2010). However,

Figure 9. Modeled mantle viscosity (a–d) and resulting uplift rates (e) in a dry olivine rheology and 4‐mm grain size scenario. The depth slices represent values at
100 (a), 150 (b), 200 (c), and 250 km (d).
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possible hydration due to recent subduction inWANT (Emry et al., 2015) and the variation in flow law para-
meters in xenolith findings across Antarctica (see table in van der Wal et al., 2015) suggest the necessity of
regional modeling of flow law parameters.

6. Conclusions

A comprehensive and self‐consistent continental‐scale model of Antarctica's lithosphere is presented in this
study. Satellite gravity gradient data, seismological estimates, thermodynamicmodeling, and the principle of
isostasy are used to infer crustal and lithospheric thickness, density, and temperature distribution. By inte-
grating a variety of geophysical observables and principles, a higher robustness of the result is achieved com-
pared to modeling them separately. A precise quantification of the uncertainties of all individual geophysical
properties can, however, not be obtained because the model is too computationally expensive to follow a
probabilistic approach. Integrated and probabilistic modeling methods of the lithosphere are currently in
development yet still in 1‐D and immature (Afonso et al., 2016). Before applying them on poorly explored
areas like Antarctica, they need to give proof of their reliability and robustness.

Our newMoho depth map provides higher‐resolution estimates for poorly surveyed regions of EANT, where
seismic station coverage is sparse or nonexistent. We find that ~30‐ to 35‐km‐thick crust is present in Wilkes
Land, while the Terre Adélie Craton features distinctly thicker (~40 km thick) crust. The GSM are underlain
by a marked crustal root with a ~52‐km‐deep Moho. Although our model cannot solve the debate about the
origin and evolution of the GSM directly, it indicates that a thick and cold and thus dense lithospheric man-
tle is needed to compensate the thick buoyant crust to maintain isostasy.

The 3‐D temperature distribution from ourmodel is taken to infer mantle viscosity and to model present‐day
uplift rates for Antarctica due to GIA. Viscosity values are computed for dry olivine rheology and moderate
grain size (4 mm). High viscosities imply that the GIA lithosphere is at least 100 km thick in EANT, and
below 150 km in its central part. In WANT, viscosity values are around 1019 Pa·s, slightly above previously
published values. Lowering grain size or assuming wet rheology results in uplift rates well below measured
values. Our modeling prefers a dry rheology and a moderate grain size. A limitation of this estimation is,
however, the absence of ice thickness variations during the last centuries in the used W12 model. Recent
unloading together with low viscosity values could have a strong impact on present‐day uplift rates.
Therefore, future studies should include ice thickness changes in the last decades and centuries as well as
3‐D variations and rheologic parameters below 400‐km depth to estimate the full dynamic effect due to
glacial loading.
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