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Abstract: Forest fires have become a major concern in the northern parts of Morocco, particularly
in the Tangier-Tetouan-Al Hoceima (TTA) region, causing significant damage to the environment
and human lives. To address this pressing issue, this study proposes an approach that utilizes
remote sensing (RS) and machine learning (ML) techniques to detect burned areas in the TTA region
within the Google Earth Engine platform. The study focuses on burned areas resulting from forest
fires in three specific locations in the TTA region that have experienced such fires in recent years,
namely Tangier-Assilah in 2017, M’diq Fnideq in 2020, and Chefchaouen in 2021. In our study, we
extensively explored multiple combinations of spectral indices, such as normalized burn ratio (dNBR),
normalized difference vegetation index (dNDVI), soil-adjusted vegetation index (dSAVI), and burned
area index (dBAI), in conjunction with Sentinel-2 (S2) satellite images. These combinations were
employed within the Random Forest (RF) algorithm, allowing us to draw important conclusions.
Initially, we assess the individual effectiveness of the dNBR index, which yields accuracy rates of
83%, 90%, and 82% for Tangier-Assilah, Chefchaouen, and M’diq Fnideq, respectively. Recognizing
the need for improved outcomes, we expand our analysis by incorporating spectral indices and
S2 bands. However, the results obtained from this expanded combination lack consistency and
stability across different locations. While Tangier-Assilah and M’diq Fnideq experience accuracy
improvements, reaching 95% and 88%, respectively, the inclusion of Sentinel bands has an adverse
effect on Chefchaouen, resulting in a decreased accuracy of 87%. To achieve optimal accuracy, our
focus shifted towards the combination of dNBR and the other spectral indices. The results were truly
remarkable, with accuracy rates of 96%, 97%, and 97% achieved for Tangier-Assilah, Chefchaouen,
and M’diq Fnideq, respectively. Our decision to prioritize the spectral indices was based on the
feature importance method, which highlights the significance of each feature in the classification
process. The practical implications of our study extend to fire management and prevention in the TTA
region. The insights gained from our analysis can inform the development of effective policies and
strategies to mitigate the impact of forest fires. By harnessing the potential of RS and ML techniques,
along with the utilization of spectral indices, we pave the way for enhanced fire monitoring and
response capabilities in the region.

Keywords: burned areas; feature importance; Google Earth Engine; random forest; Sentinel-2;
spectral indices
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1. Introduction

Forests are precious assets that provide us with valuable resources, such as wood, and
support more than half of all species, playing a vital role in regulating the global climate
and preventing soil erosion [1]. Despite their importance, forests are facing various threats,
including natural disasters such as forest fires, which not only destroy vegetation cover
and impact biodiversity [2,3], but also have significant economic and physical impacts on
humans, such as respiratory diseases [1]. Fires have long been an important component
of ecosystems and have been used for many years to regulate their functioning; they also
contribute to mineralization and nutrient release [3]. However, lately, with climate change
and the increase in human activities, the intensity of forest fires is causing more damage
than benefits [1,3]. The main causes of forest fires are human, such as smoking, the use of
explosives, and sparks in power lines; and natural, such as lightning [4], dry seasons, or
temperature conditions [5].

The spread of forest fires is influenced by various forest characteristics, including
the density and height of trees, the amount of dead wood and debris, and the amount of
moisture present in the vegetation. To effectively manage forest fires, it is crucial to identify
burned areas accurately and monitor their temporal progression [5]. In this context, RS and
ML techniques have proven to be effective for monitoring burned areas, providing accurate
and cost-effective data over large areas with high temporal resolution [5–8].

RS-based forest fire monitoring has been used for different purposes, such as fire area
detection, smoke detection, and burned area recovery [4,9,10]. In [11], the authors used
remote sensing techniques to detect and track wildfires in Greece. Specifically, they used
data from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor onboard the
Meteosat Second Generation (MSG) satellite to detect and track active fires in near real-time.
Ref. [12] used high spatial resolution satellite imagery to estimate the burn severity of the
vegetation at multiple spatial scales, ranging from individual trees to the entire ecosystem.
The study aimed to evaluate the potential of using remote sensing data to improve post-fire
management and restoration efforts. Many studies have relied on the calculation of spectral
indices to study forest fires. For example, in [13], a new approach for detecting burned areas
using a fire index-based method with Landsat-8 OLI data is discussed. The article explores
the calculation of various spectral indices and their potential for identifying changes in
burned regions. In the article [14], a study was conducted to assess various spectral indices
for detecting burned regions in the savannas of southern Burkina Faso through Landsat
time series imagery.

Combining RS and ML using cloud computing can improve image processing speed
and avoid cloud cover bias [15]. ML algorithms provide optimal results by selecting im-
portant features [4]. Many studies have mapped burned areas on this basis. For example,
Ref. [16] discusses the development and testing of an artificial neural network (ANN) for
mapping burned areas on a regional scale in the Iberian Peninsula using MODIS (Mod-
erate Resolution Imaging Spectroradiometer) imagery. Ref. [17] compares two machine
learning classification methods, RF and Support Vector Machine (SVM), for remote sensing
predictive modeling of forest fires in northeastern Siberia. Ref. [18] used three different
machine learning algorithms, namely RF, SVM, and ANN, along with remotely sensed
data, to predict the likelihood of wildfire occurrence in the Adana and Mersin provinces
of Turkey.

Our research addresses a research gap existing in the northern region of Morocco,
specifically focusing on the accurate identification of areas that have been burned. This
gap becomes evident within the delicate forests that are subjected to changing climate
patterns and human influences. In particular, there is an opportunity to enhance detection
capabilities by combining spectral indices with machine learning techniques. In light of this,
our study’s objective is to identify burned areas in this region by employing S2 imagery,
machine learning, and the GEE platform.

The study’s context underscores the importance of forests and their vulnerability to
wildfires, which have become more frequent due to climate change and human activities.
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To enhance the accuracy of detecting burned areas, our study presents a methodology that
integrates various spectral indices and machine learning algorithms, with a specific focus
on Random Forest (RF). Additionally, the article investigates how the accuracy of RF is
affected by the combination of multiple spectral indices. The technical development of the
study involves using RS data to map burned areas by identifying changes in vegetation
indices before and after a fire event. The study employs ML algorithms to analyze the
spectral indices and classify the burned areas. The combination of spectral indices and an
RF algorithm enhances the accuracy of burned area detection, providing a cost-effective
and efficient way to monitor forest fires. The findings have significant implications for
forest management and conservation efforts, as accurate and timely monitoring of forest
fires is critical for protecting these vital ecosystems.

Overall, this study contributes to the development of more effective methods for
identifying and monitoring burned areas using RS and ML techniques. By improving the
accuracy of burned area detection, this research can help forest managers and conserva-
tionists take proactive measures to mitigate the impact of forest fires and preserve these
invaluable ecosystems.

2. Materials and Methods
2.1. Study Areas

This study was conducted in the TTA region, which is one of the twelve regions of
Morocco and located in its northernmost part [19]. It is a diverse region, both geologically
(coastal areas such as Tangier and Tetouan, mountain ranges such as Chefchaouen) and
environmentally due to the variety of its climate, ranging from humid Mediterranean to
sub-humid. It is bounded by the Mediterranean Sea to the north, the Rabat-Sale-Kenitra
region to the south, the Oriental region to the east, and the Atlantic Ocean to the west [20].

Our first region is Tangier-Assilah, located in the northwest of Morocco. It is the
second economic center of Morocco and the capital of the TTA region [21]. We will mainly
focus on the Cap Spartel area, one of the most famous forests in northern Morocco, located
in Jbel Kebir, west of Tangier, in northern Morocco. Cap Spartel serves as the meeting point
between the Mediterranean Sea and the Atlantic Ocean, located about 300 m above sea
level, 14 km west of Tangier [22]. The forests of Cap Spartel are known for their density
and are located on the coastal area of Tangier, with cliffs, beaches, and forests with native
vegetation that are part of the Cape Spartel Nature Reserve [22] (Figure 1).
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The second region is Chefchaouen, which is located in the Rif Mountains in northwest
Morocco [23]. It is bounded on the northwest by Tetouan, on the northeast by the Mediter-
ranean Sea, on the east by Al Hoceima, on the southeast by Taounate, on the southwest by
Ouezzane, and on the west by Larache [24]. The climate is Mediterranean: pre-humid in
the mountainous areas, humid in winter, and dry in summer in the plain [25]. One of the
most remarkable places in Chefchaouen is Jbel Sougna, which is known for its cork oak
forest [26] (Figure 2).
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Our third area is in M’diq Fnideq. It is located 7 km from Tetouan and is bordered to
the north by Fnideq, to the south by Mallaliyine, to the west by the municipality of Alleyine,
and to the east by the Mediterranean Sea [27]. In general, the climate is characterized by
hot and dry summers and sometimes very cold winters [28]. It has two different forest
ecosystems (cork oak and cedar) and a very rich fauna [29] (Figure 3).
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2.2. Data and Processing Tools
2.2.1. Harmonized Sentinel-2

For the present study, we used the Harmonized S2 MSI: Multispectral Instrument,
Level-2A collection. S2 was developed by the European Space Agency (ESA) for Earth
observation as part of the Copernicus program [30]. The Multi-Spectral Instrument (MSI)
bands have different spatial resolutions between 10 and 20 m, depending on the band
considered [30] (Table 1). S2 has high resolution, a large field of view, and multispectral
bands [31]. S2 bands are suitable for fire monitoring; short-wave infrared bands (SWIR)
are particularly instructive because the energy in the wavelength can penetrate moderate
smoke [32].

Table 1. Spectral bands of the Sentinel-2A multi-spectral instrument (MSI) [33].

Band Number Band Name Central Wavelength (nm) Bandwidth (nm)

1 Coastal aerosol 443.9 27
2 Blue 496.6 98
3 Green 560.0 45
4 Red 664.5 38
5 Red Edge 1 703.9 19
6 Red Edge 2 740.2 18
7 Red Edge 3 782.5 28
8 NIR 835.1 145

8A Narrow NIR 864.8 33
9 Water vapor 945.0 26

10 SWIR-Cirrus 1373.5 75
11 SWIR 1 1613.7 143
12 SWIR 2 2202.4 242

2.2.2. Google Earth Engine (GEE) Platform

GEE is an open-source cloud computing platform for processing satellite imagery [15]
(Figure 4). It uses the Google cloud and JavaScript and takes advantage of Google’s computing
infrastructure to speed up time-consuming processing tasks [34]. GEE is widely used due to
its access to satellite image time series from multiple sources, including Sentinel 1, 2, and 3, the
Landsat series, MODIS, and vector data, as well as its software and algorithms for processing
these data [35]. GEE is used in various fields, including land cover classification and forest
monitoring [36]. Additionally, GEE enables users to perform analyses and interpretations
without the need to download the data by calling available functions [2]. The link to GEE is
https://code.earthengine.google.com/ (accessed on 10 July 2023).
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2.2.3. Random Forest Classifier

The RF algorithm is a non-parametric, supervised ML classifier [2]. RF classifiers are
constructed from multiple aggregated random decision trees to classify a dataset using the
prediction mode of all decision trees [37]. This classifier is often used in RS applications,
such as the forest fire field, due to the accuracy of its classifications compared to simple
decision trees [32,37]. The RF algorithm is optimized according to the number of regression
trees and the number of predictors at each split [2]. RF classification can be performed
in GEE. It uses six input parameters: the number of classification trees, the number of
variables used in each classification tree, the minimum leaf population, the bagged fraction
of input variables per decision tree, the out-of-bag mode, and the construction of random
seed variable decision trees [37].

2.2.4. Fire Information for Resource Management System (FIRMS)

FIRMS data are based on MODIS and VIIRS (Visible Infrared Imaging Radiometer
Suite) products, providing near-real-time active fires/hotspots in over 160 countries through
an interactive Web GIS [38]. It was initially developed by the University of Maryland with
funding from NASA’s Applied Science Program and the Food and Agriculture Organization
of the United Nations [39]. The four primary applications of FIRMS are Online Mapping
Services, MODIS Active Fire Datasets, MODIS Image Subsets, and Email Fire Alerts [40].

2.2.5. Global Land Analysis and Discovery (GLAD)

Global Land Analysis and Discovery (GLAD) is developed at the University of Mary-
land. It is used to generate maps of forest cover, i.e., trees at least 5 m tall, at 30 m spatial
resolution from the year 2000 to 2020 [41,42]. GLAD forest cover products are mainly
intended to serve as a near-real-time indicator of areas of forest loss [41]. They are free and
widely available [43]. GLAD uses satellite imagery to collect weekly data on deforestation
in all areas and compares it to historical data to determine where trees have been lost [44].
We can access GLAD data directly on GEE [44].

2.3. Data Processing
2.3.1. Spectral Indices

In this study, we used four spectral indices. Their descriptions are given below.

1. Normalized burn ratio (NBR): The NBR is an index used to measure the severity of a
fire based on the reflectance of the NIR and SWIR bands. For S2, we calculate it using
the wavelengths of bands B8 and B12 [45]. A high NBR value generally indicates
good vegetation, while a low NBR value indicates empty land and recently burned
sites, as burned areas have high reflectance in the SWIR band and low reflectance in
the NIR band [46,47]. It is calculated using Equation (1):

NBR =
NIR − SWIR
NIR + SWIR

(1)

dNBR is the differenced normalized burn ratio. It is calculated to estimate the severity
of the fire [46], by subtracting the post-fire NBR image from the pre-fire NBR image,
as follows:

dNBR = PrefireNBR − PostfireNBR (2)

Burned areas have positive dNBR values, while unburned areas have negative or near
zero values [48].

2. Normalized difference vegetation index (NDVI): The NDVI index is the best known
and most widely used vegetation index to quantify green vegetation in the near-
infrared wavelength region and chlorophyll absorption in the red wavelength re-
gion [49]. The NDVI always varies between −1 and +1. Negative values usually
indicate the presence of water, while values close to +1 indicate dense green leaves [50].
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NDVI uses the NIR and red bands, with healthy vegetation reflecting more in the NIR
but absorbing more in the red [50].

NDVI =
NIR − RED
NIR + RED

(3)

dNDVI represents the subtraction of the Post-fire NDVI from the Pre-fire NDVI and it
is calculated as follows:

dNDVI = PrefireNDVI − PostfireNDVI (4)

3. Soil adjusted vegetation index (SAVI): SAVI is similar to NDVI but with the addition
of a “soil brightness correction factor” [51].

SAVI =
NIR − RED

(NIR + RED + L)
∗ (1 + L) (5)

where L is the soil adjustment factor of SAVI. The SAVI index ranges from −1.5 to 1.5
(Table 2) and was developed as a modification of the NDVI to correct for the effect
of soil brightness when vegetation canopy is low [52]. Recent studies have revealed
that the soil adjustment factor employed in the SAVI formula can occasionally take on
negative values, particularly in instances of dense vegetation that exhibits resistance
to saturation effects. In light of this observation, it is important to recognize that
extreme conditions involving a negative soil adjustment factor can lead to alterations
in the conventional SAVI index ranges. Similarly, like dNDVI, dSAVI is calculated by
subtracting the post-fire SAVI from the pre-fire SAVI using the following equation:

dSAVI = PrefireSAVI − PostfireSAVI (6)

Table 2. SAVI classification by soil salinity level [52].

Range SAVI Classification

−1.5–0 Water
0.01–0.37 High salinity
0.38–0.76 Moderate salinity
0.77–1.10 Weak salinity
1.11–1.50 No salinity

4. Burn Area Index (BAI): By analyzing the spectral distance between each pixel and a
reference spectral point, this index is able to highlight the charcoal signal present in
the red and near-infrared bands of post-fire images. This approach is effective because
recently burned areas tend to exhibit distinct spectral characteristics [53–55]:

BAI =
1

(0.1 − RED)2 + (0.06 − NIR)2 (7)

We also calculated the difference between the Pre-fire BAI and the Post-fire BAI
following the Equation (8):

dBAI = PrefireBAI − PostfireBAI (8)

2.3.2. Processing Steps

The S2 product images available on GEE are already radiometrically and geometrically
corrected [56]. However, some standard pre-processing is required on the images, such
as identification of study areas, date filtering to match dates of interest, cloud masking,
and reduction.



Remote Sens. 2023, 15, 4226 8 of 25

The first step is to identify the study areas, which are Tangier-Assilah, Chefchaouen,
and M’diq Fnideq in this case, as they are highly vulnerable to forest fires. These regions
have a Mediterranean climate characterized by hot, dry summers and mild, wet winters.
The vegetation in these regions is dominated by forested areas consisting of conifers, cork
oak, and eucalyptus, among other species. The dry and hot climate, coupled with the
presence of highly flammable vegetation such as pine trees, further increases the risk of
forest fires. These forests are often located on steep slopes, which can create challenging
terrain for firefighters and hinder firefighting efforts. Furthermore, these regions have a
high incidence of forest fires due to a combination of factors, including human activities
such as agricultural burning and negligence, as well as natural causes such as lightning
strikes [57,58]. Additionally, the proximity of human settlements to forested areas increases
the risk of fires caused by human activities such as cigarette smoking, campfires, and
agricultural activities. Climate change is also expected to exacerbate the risk of forest fires
in these regions, as rising temperatures and changes in precipitation patterns can increase
the frequency and severity of droughts. All these factors contribute to the high vulnerability
of the Tangier-Assilah, Chefchaouen, and M’diq Fnideq regions to forest fires, making them
an ideal area of focus for this study.

Using the geometry option of GEE, we create or download the geometry directly [59].
This step enables us to determine the relevant satellite images for our study areas.

Next, we filter the S2 images based on dates to select the pre- and post-fire images for
each area. The data used in this study include S2 images from 2017 for Tangier, 2020 for
M’diq Fnideq, and 2021 for Chefchaouen, as mentioned in Table 3.

Table 3. Pre-fire and Post-fire dates for study areas.

Area Pre-Fire Start Pre-Fire End Post-Fire Start Post-Fire End

Tangier 01-06-2017 20-06-2017 01-08-2017 30-08-2017
M’diq Fnideq 01-07-2020 30-07-2020 01-10-2020 30-10-2020
Chefchaouen 01-07-2021 30-07-2021 01-10-2021 30-10-2021

The reason we chose these dates is that in Tangier, a massive fire ravaged 215 hectares
of forest in Mediouna from 30 June to 4 July 2017 [60]. It was even worse in 2020, when
fires destroyed 1024 hectares of forest in M’diq Fnideq on 1 August 2020 [61]. In 2021,
Chefchaouen suffered the greatest damage in Morocco, caused by the worst forest fire of
the year at Jbel Sougna in the rural community of Derdara, which burned about 1100 ha in
August 2021 [62].

S2 products do not incorporate a cloud mask, which can disturb the quality of the
results [32]. To improve image quality and avoid spectral confusion, we applied a cloud
mask function. The QA60 binary mask band of S2 contains information about whether the
pixels are cloudy or not, and GEE contains a predefined function to mask opaque clouds
and cirrus clouds using this band [63].

Our next step consisted of calculating the NBR for the pre-fire and post-fire periods
in each area using Equation (1). To emphasize the burned areas, we computed the differ-
enced dNBR and applied the United States Geological Survey (USGS) wildfire severity
classification system based on the dNBR values [64], as shown in the following Table 4.

We marked sample points in areas that experienced vegetation changes based on
pre- and post-fire image visualization, as well as FIRMS data, GLAD data, and USGS
classification in Tangier. Subsequently, we used 60% of the sample points from Tangier
for training and 40% of the remaining data for validation. The classification is based on
the ‘Intensity’ label, representing three classes: ‘Unburned’, ‘Low severity’, and ‘High
severity’, assigned to each sample point. We then trained the model using the RF classifier
ee.classifier.smileRandomForest() predefined in GEE and generated a three-class image.
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Table 4. USGS classification of dNBR severity levels [65].
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To assess the performance of the models, the main metrics used are as follows:

• The Confusion matrix: Presents a cross-tabulation of the class labels assigned by the
classification of the map data against the reference data [66].

• Overall Accuracy: Determines the proportion of the total reference sites that were
mapped correctly. This is usually presented as a percentage [67].

• Kappa coefficient: Compares the performance of the classification conducted to a
random assignment of values [67].

• Producer’s Accuracy: Represents the degree to which the reference pixels are classified
from the point of view of the map maker [67,68].

• Consumer’s Accuracy: Indicates how often the class shown on the map will actually
occur in the field [67].

Our study focused on evaluating the influence of spectral indices and S2 bands on
classification accuracy. To accomplish this, we retrained the RF classifier by incorporating
the dNDVI, dSAVI, and dBAI bands, along with the twelve S2 bands, in addition to dNBR.
This allowed us to examine the individual contribution of each variable to the classification
process and assess its impact on accuracy. To determine the importance of each variable, we
employed feature importance techniques. These techniques assign scores to input features,
reflecting their relative significance in the model’s predictions for a specific variable [69]. By
considering feature importance, we gained valuable insights into the relative importance
of each variable and prioritized them accordingly. This approach enabled us to focus on
the variables that played a significant role in influencing the classification process, thereby
enhancing the accuracy and relevance of our findings. For assessing variable importance,
we utilized the “ee.classifier.explain” algorithm within the Google Earth Engine platform.
This algorithm provides us with insights into the results obtained from the trained classifier,
allowing us to identify the variables that exerted a substantial influence on the classification
process. By incorporating this approach, we were able to select and prioritize the variables
that had a notable impact on the classifier’s performance, deepening our understanding of
their significance within our study. The selection of the dNBR, dSAVI, dBAI, and dNDVI
indices was based on their relevance to vegetation and forest fires. These indices have
been widely used in previous studies and are sensitive to changes in vegetation cover
and condition, making them useful for detecting burn severity and mapping fire extent.
For instance, the dNBR index is highly sensitive to changes in vegetation cover and is
commonly used to estimate fire severity. The dSAVI index, which accounts for the influence
of soil reflectance on vegetation indices, is well-suited for detecting vegetation damage
and recovery after fires. The dBAI and dNDVI indices, on the other hand, are sensitive to
changes in vegetation density and greenness, respectively, which are important factors in
determining fire risk and severity. Therefore, using these indices in our study will provide
more relevant results compared to using other indices.
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3. Results and Discussion
3.1. NBR and dNBR Processing

The results of Equation (1) applied to the pre- and post-fire images for each area, as
well as the results of Equation (2) of dNBR based on USGS classification, are as follows
(Figures 5–7):

1 
 

 

(a) 

(b) (c) 

Figure 5. (a) Pre-fire NBR of Tangier area grayscale; (b) Post-fire NBR of Tangier area grayscale;
(c) USGS dNBR Classification of Tangier area.
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3.2. Sample Point Determination

Based on FIRMS and GLAD data, as well as significant changes observed in pre-
and post-fire images, we selected 258 sample points for Tangier, 150 sample points for
Chefchaouen, and 180 sample points for M’diq Fnideq. The sample points were evenly
distributed among the three classes: Unburned, Low severity, and High severity, as demon-
strated in Figures 8–10.
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3.3. Random Forest Classification

The RF classifier is performed on GEE using the dNBR band; we will call this model
“Model A”. Based on the ee.Classifier.smileRandomForest function, the classification result
is as follows (Figure 11):
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In our study, we aimed to assess the impact of combining different variables and RF on
the accuracy of fire-burned area detection. To achieve this, we introduced “Model B” as an
additional approach, specifically developed to enhance the discrimination of burned areas.
Model B incorporated the normalized difference of four vegetation indices (dNBR, dNDVI,
dSAVI, and dBAI) along with the twelve bands from the post-fire image of S2 as input
variables (Figure 12). This integration allowed us to leverage relevant bitemporal images,
covering both pre- and post-fire conditions [63]. Our objective was to investigate how the
combination of spectral indices, S2 bands, and RF influences the accuracy of fire-burned
area detection.
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Figure 12. Random Forest Classification Model B for the Tangier-Assilah area.

In our study, gaining insights into the data inputs for the model was a crucial aspect.
To accomplish this, we employed feature importance analysis, which aided us in under-
standing the relevance of different features. By assessing the scores derived from feature
importance, we were able to reduce the model’s dimensionality. Typically, features with
higher scores were retained as they played a more significant role in the model, while those
with lower scores were deemed less important and subsequently excluded [69].
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To achieve this, we employed the “ee.classifier.explain()” method on the Model B
classifier (Table 5). This method allowed us to obtain insights into the relevant features that
significantly influenced the classification process. By identifying and excluding unnecessary
data, we mitigated the potential bias that could impact the final results of our machine
learning analysis. This approach ensured that our model was focused on the most valuable
and informative features, leading to more accurate and reliable outcomes.

Table 5. Feature Importance of Model B bands.

Band Feature Importance Score Feature Importance Score % Cumulative Importance

nd 17,689 16% 16%

dbai 12,809 11% 27%

dsavi 10,605 9% 36%

dndvi 8908 8% 44%

B7 7869 7% 51%

B4 7579 7% 58%

B8 7473 7% 65%

B8A 5995 5% 70%

B12 5641 5% 75%

B2 5136 5% 80%

B3 4151 4% 83%

B1 4098 4% 87%

B5 4092 4% 90%

B6 3809 3% 94%

B9 3651 3% 97%

B11 3323 3% 100%

To provide a clearer understanding of the relative contributions of each feature, we
utilized a chart (Figure 13) to visualize the feature importance scores. This graphical
representation facilitated a more intuitive interpretation of the results. By examining the
chart, we observed that the bands nd (referring to dNBR), dbai, dsavi, and dndvi accounted
for a significant portion, comprising 44% of the overall feature importance. These features
played a pivotal role in influencing the model’s predictions and were deemed highly
influential in the classification process.
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It is important to note that the importance scores represent the relative contribution or
influence of each feature within the context of the random forest classifier. Higher scores
indicate features that have a stronger impact on the classifier’s predictions, while lower
scores indicate features with lesser influence. Therefore, while feature importance scores
are informative for assessing the significance of features, they do not have a specific unit or
direct interpretation in terms of a measurable quantity [69].

Based on the insights derived from the feature importance analysis, our study put
forth the hypothesis that the combination of the random forest (RF) algorithm with the
four indices (dNBR, dSAVI, dBAI, and dNDVI) would yield the highest accuracy in fire
burned area detection (Table 6). To test this hypothesis, we introduced “Model C” as an
additional classifier (Figure 14). Model C was specifically designed to incorporate these
key variables and evaluate their impact on the accuracy of the classification process. By
including the most important variables identified through feature importance, we aimed
to thoroughly assess their individual contributions and determine their influence on the
overall performance of the RF classifier. The creation of Model C allowed us to gain a
deeper understanding of the specific influence of these bands and their overall impact on
the classification process.

Table 6. Model components by indices.

Model Number of Indices

Model A 1 (dNBR)
Model B 16 (dNBR, dNDVI, dSAVI, dBAI, twelve bands of S2)
Model C 4 (dNBR, dNDVI, dSAVI, dBAI)
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In general, the results obtained in the classification can be considered good if the value
of the accuracy is higher than 85% [65].

Based on the findings presented in Table 7, Model C, which incorporates the bands (nd,
dbai, dsavi, and dndvi) in combination with the random forest (RF) algorithm, demonstrates
improved performance.

Table 7. Accuracy by model calculated in GEE for Tangier-Assilah.

Overall Model A Overall Model B Overall Model C Kappa Model A Kappa Model B Kappa Model C

83% 95% 96% 75% 92% 94%
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3.4. Test and Validation

For validation purposes, we applied Model A, Model B, and Model C to Chefchaouen
and M’diq Fnideq and obtained the following results (Figures 15–20):
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Figure 20. Random Forest Classification Model C for the M’diq Fnideq area.

Samples from Chefchaouen and M’diq Fnideq, consisting of 150 and 180 in each class
(high severity, low severity, and unburned) respectively, were used to calculate model
accuracy and validate the results of Table 7.

Based on the accuracy analysis (Tables 8–10), it was observed that Model C, which
utilizes only the spectral indices (dNDVI, dBAI, dNBR, and dSAVI), achieved the highest
accuracy levels. In contrast, Model B, which incorporates all spectral indices and S2 bands,
exhibited inconsistent and unstable results. Furthermore, Model A, which solely relies
on the dNBR index, demonstrates relatively poor accuracy. These findings highlight the
superior performance of Model C in accurately detecting fire-burned areas, emphasizing
the importance of the selected indices in enhancing the classification accuracy.



Remote Sens. 2023, 15, 4226 19 of 25

Table 8. Accuracy Model A calculated in GEE.

Area Overall Accuracy Kappa Accuracy

Chefchaouen 90% 85%
M’diq Fnideq 82% 73%

Table 9. Accuracy Model B calculated in GEE.

Area Overall Accuracy Kappa Accuracy

Chefchaouen 87% 81%
M’diq Fnideq 88% 82%

Table 10. Accuracy Model C calculated in GEE.

Area Overall Accuracy Kappa Accuracy

Chefchaouen 96% 94%
M’diq Fnideq 97% 95%

3.5. Results of Mapping the Burned Area on GEE

We extracted the diverse results of the burned area classification in Tangier-Assilah,
Chefchaouen, and M’diq Fnideq from the website that we developed using Google Earth
Engine (GEE). The website allows us to visualize graphs displaying the variations of
spectral indices such as NBR, NDVI, SAVI, and BAI for any selected point, as long as it falls
within one of the three regions of interest (Figure 21).
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3.6. Discussion

In this study, RF, which is a ML classifier, was used to detect the burned area caused
by forest fires in Tangier-Assilah, Chefchaouen, and M’diq Fnideq, North Morocco. The
MSI sensor of the S2 satellite was used for the pre- and post-fire images. Three models,
each composed of different combinations, were assessed. Based on the accuracy evaluation,
the most suitable model for the detection of burned areas was identified. In all sites, Model
C shows a higher overall accuracy than Model A and Model B.

To explain this result, we chose a point that was considered low severity with Model
A and unburned with Model B (Figures 22 and 23).
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We can observe that the selected point was classified differently in the three models.
With Model A, the point was weakly burned (yellow color), whereas with Models B and
C, it was classified as unburned (green color), which seems more logical as the point is
located in the middle of a road. Furthermore, it can be observed that with Model A, a large
portion of the road was considered weakly burned, as can be seen in Figures 22 and 23. The
misclassification can be attributed to the fact that in Model A, only dNBR was used, which
has a positive value indicating a burned area. In contrast, with Models B and C, the addition
of other spectral indices resulted in more accurate classification results. This observation
is consistent with previous studies that have found that incorporating multiple spectral
indices in the classification process improves the accuracy of machine learning techniques.
For instance, the study conducted by [70] used machine learning algorithms, including
Support Vector Machines (SVM) and Random Forest (RF), to classify the land cover using
both the aerial imagery and vegetation indices such as NDVI and the Enhanced Vegetation
Index (EVI), concluding that incorporating the vegetation indices with the multispectral
aerial imagery improved the accuracy of the land cover classification. These findings
highlight the importance of using multiple spectral indices to improve the accuracy of
ML algorithms.

The instability observed in the accuracy of Model B, which incorporated all spectral
indices and S2 bands, can be attributed to the inclusion of less important or noisy variables
in the dataset. The presence of irrelevant information or noise may have introduced incon-
sistencies in the model’s classifications, resulting in unstable accuracy. In contrast, Model
C focused on utilizing only the essential variables identified through feature importance
analysis, namely the dNDVI, dBAI, dNBR, and dSAVI bands. By selectively including these
significant variables, Model C achieved higher accuracy levels and demonstrates more
stability compared to Model B. The improved performance of Model C can be attributed to
its reduced dimensionality and the emphasis placed on the most influential variables. By
incorporating only the key bands that carry relevant information for fire-burned area detec-
tion, Model C effectively captured the important patterns and made accurate classifications,
leading to its high accuracy.

4. Conclusions

This study introduces a novel and deductive approach to identify the optimal com-
bination of variables in the random forest (RF) algorithm for improving the accuracy of
burned area detection. Through a comparative analysis and systematic investigation, the
research explores the effectiveness of different models. Three models were evaluated:
Model A, which solely utilized the dNBR index; Model B, incorporating additional spectral
indices (dNDVI, dBAI, and dSAVI) along with the twelve bands of S2 imagery; and Model
C, focusing exclusively on the selected spectral indices (dNDVI, dBAI, dSAVI, and dNBR).

The results demonstrate that incorporating multiple variables significantly enhances
the accuracy of the RF classifier in detecting burned areas. However, it is worth noting
that Model B exhibited varying performance across different regions, suggesting that an
excessive number of variables can introduce bias and impact the classification outcomes.
While Model B shows promising improvements in accuracy for Tangier-Assilah (from 83%
in Model A to 95%) and M’diq Fnideq (from 82% in Model A to 88%), its accuracy was
comparatively lower in Chefchaouen (from 90% in Model A to 87%). On the other hand,
Model C consistently outperformed both Model A and Model B in all regions, achieving
high accuracies of 96% for Tangier-Assilah, 96% for Chefchaouen, and 97% for M’diq Fnideq.
These results underscore the effectiveness of the selected combination of spectral indices
bands (dNDVI, dBAI, dSAVI, and dNBR) in Model C, leading to improved accuracy and
reliability in detecting burned areas. The identification of the suitable bands for Model C
was based on the feature importance analysis of Model B, which revealed the four spectral
indices (dNBR, dSAVI, dBAI, and dNDVI) as the most valuable variables.

In conclusion, this research offers valuable insights through a comparative and de-
ductive study, identifying the optimal combination of variables within the random forest
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algorithm for accurate burned area detection. The findings emphasize the significance of
selecting appropriate variables to achieve superior performance in fire monitoring and
management applications.

Future Work

In this work, this model requires sample points, which were manually selected based
on data such as FIRMS, GLAD, and the visual difference between pre- and post-fire images.
It would have been more reliable if the selection of sample points for training the model
had been based on a reference map for fire severity.

It may be considered a future perspective to generate the model over all of northern
Morocco to produce a reference map that will help decision-makers control fire damage.
We used spectral indices to improve the accuracy of the classification, but we believe that
other variables should be taken into account, including topography-related variables such
as elevation and slope, since fire moves more rapidly over topographically high terrain
than over flat terrain, and meteorological factors such as temperature, air humidity, wind
speed, and others. A possible next step would be to go beyond mapping burned areas to
predicting areas vulnerable to wildfire, which would be of great use for countries frequently
affected by wildfire, such as Morocco.
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