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Machine learning versus manual earthquake location 
workflow: testing LOC-FLOW on an unusually productive 
microseismic sequence in northeastern Italy

Monica Sugan , Laura Peruzza , Maria Adelaide Romano , Mariangela 
Guidarelli , Luca Moratto , Denis Sandron , Milton Percy Plasencia Linares 

and Marco Romanelli 

National Institute of Oceanography and Applied Geophysics - OGS, Italy 

ABSTRACT 
It is an open question whether machine-learning (ML) methods can 
be trusted in areas where dense and localized seismic networks are 
in operation, and prompt and accurate detection and location of 
earthquakes are essential to guide decision-making processes that 
contribute to seismic-risk-mitigation-strategies, even for very low- 
magnitude events. To address these concerns, we compare the per-
formance of a widely-used ML phase picker, PhaseNet, integrated 
with several popular earthquake location methods (included in LOC- 
FLOW), with the results obtained by the workflow adopted since 
2012 by the Collalto Seismic Network, installed to monitor natural 
and potentially induced microearthquakes nearby an underground 
gas storage. The tested dataset concerns the most populated micro-
seismic sequence observed so far (374 events, ML62.5, August 2021, 
Refrontolo, NE-Italy), as its unusual productivity raised some critical-
ities in the combination of automatic routines, and time-consuming 
manual revision of phase picks adopted by the standard workflow. 
LOC-FLOW is able to detect the majority of the events listed in the 
manually revised catalog, demonstrating its ability to efficiently and 
accurately build earthquake catalogs from continuous seismic data. 
We highlight both the advantages and limitations of the ML-picker 
and recommend the use of template-matching-techniques in the 
final stage of processing to increase the number of events.
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1. Introduction

Earthquake detection and seismic phase picking are the basis of many seismological 
workflows, which are indispensable tools both for seismic monitoring, and detailed 
seismological studies. Recently, machine-learning (ML) techniques have been widely 
applied in earthquake location problems (Kong et al. 2019). In particular, ML-based 
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automatic picking algorithms have shown great potential to significantly speed up the 
process of seismic phase picking while maintaining high accuracy (e.g. Ross et al. 
2018; Zhu and Beroza 2018; Mousavi et al. 2019; Soto and Schurr 2021). The compu-
tational speed of ML algorithms makes them prime candidates also for seismic moni-
toring and real-time applications. The reliability and stability of machine learning 
outputs rely on several factors, such as the quality of the data used to train the model, 
the hyperparameters employed during training, the complexity of the model architec-
ture, and the amount of data used for validation and testing purposes.

In general, it has been demonstrated that ML trained models can be transferred 
between regions with only slight performance degradation, as long as the investiga-
tion distance ranges stay similar (M€unchmeyer et al. 2022). So far, ML models have 
been trained on massive local, regional and teleseismic data, while for very local 
dense networks there are few specific datasets suitable for training ML algorithms, as 
their data are limited due to the short operational time of the network, or for the low 
number of detected earthquakes.

Usually, ML applications in microseismic monitoring are similar to those for 
earthquake monitoring, but deal with weak seismic signals characterized by low sig-
nal-to-noise ratio on individual receivers, or very short target time signals (Anikiev 
et al. 2023 and references therein).

Thus, testing the performance of ML models trained on regional datasets on a 
microseismic sequence could be challenging, but very useful as ML could be crucial 
for seismic monitoring in the field of induced seismicity (e.g. Mousavi et al. 2016) or 
for near fault observatory activities (Panebianco et al. 2023; Scotto di Uccio et al. 
2023). Besides, ML also applied in the post-processing could help in understanding 
the mechanism of the natural and induced seismicity, as well.

In this study, we evaluate the performance, in terms of phase picks accuracy, event 
association, and final earthquake origin time and locations, of the PhaseNet algorithm 
(Zhu and Beroza 2018) trained on California Earthquake Data and considered one of 
the top deep learning models for earthquake phase identification (see M€unchmeyer 
et al. 2022), as a component of the comprehensive LOC-FLOW earthquake location 
workflow (Zhang et al. 2022) on the so-called Refrontolo seismic sequence (Peruzza 
et al. 2022a). This sequence was highly concentrated in space and time, and occurred 
on an antithetic fault segment of the Montello thrust system in the Pedemontana dis-
trict in the Southeastern Alps (Sugan and Peruzza 2011) beneath the village of 
Refrontolo (located between Pieve di Soligo and Conegliano, in northeastern Italy, 
Figure 1a), in August 2021. It was an exceptionally productive but low energy 
sequence (ML2.5 for the main event), with 374 events occurring at about 9 km depth 
in a very small volume. It is the most populated sequence recorded in the last decade 
by the permanent Collalto Seismic Network (RSC), made available as a valuable case 
for testing and refining automated microearthquake ML detection and location proce-
dures (Peruzza et al. 2022b).

The RSC is a local network that thickens the regional one (Sistema di 
Monitoraggio terrestre dell’Italia Nord Orientale - SMINO; Bragato et al. 2011, 2021), 
and it is composed of 10 stations (Priolo et al. 2015a) used for monitoring the 
microseismicity potentially induced by an underground gas storage since 2012. The 
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Figure 1. Tested dataset and logic flow of this study. a) Location map of the earthquakes occurred 
in August 2021 in northern Italy (inset) as given in Peruzza et al. (2022b): a1) map of the stations 
used in this work, red triangles belong to the SMINO network (Bragato et al. 2021), white ones to 
the local Collalto Seismic Network (RSC, Priolo et al. 2015a), color frames indicate respectively the 
plot area represented in a2 (black), the target area of the RSC (orange) and the Refrontolo area 
(near Pieve di Soligo) involved by the unusually productive sequence analyzed (green); a2) epicen-
tral map with main tectonic element taken from Burrato et al. (2008): MT indicates the Montello 
thrust: the epicenters symbol size is proportional to local magnitude ML, depth is color-coded 
according to scale bar (bottom right) for the events occurred in August, transparent circles show 
the location of the seismicity detected from 2012 in the region; the black area with purple contour 
shows the surface projection of the Collalto underground gas storage (UGS); a3) histogram of the 
daily number of events manually located by the RSC network in August 2021, referred to the 
Refrontolo sequence (orange) or to other locations. b) LOC-FLOW processing configuration used in 
this study (modified from Zhang et al. 2022).
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network is managed by the National Institute of Oceanography and Applied 
Geophysics - OGS on behalf of Edison Stoccaggio S.p.A., and provides uniform cata-
log completeness, and a valuable dataset of observations over more than 11 years. To 
date, no earthquakes have been associated with methane storage activities; conversely, 
natural microseismicity has yielded exceptional 3D imaging of the Montello thrust 
(Moratto et al. 2019; Romano et al. 2019; Picotti et al. 2022), a resource not available 
when Galadini et al. (2005) hypothesized the existence of a single fault segment cap-
able of M 6.7 earthquakes with an average recurrence interval of about 700 years.

RSC real-time seismic monitoring is performed with a customized workflow of the 
BRTT Antelope routines (Garbin and Priolo 2013; Moratto and Sandron 2015; Priolo 
et al. 2015a): automatic earthquake detection is based on STA/LTA algorithms, grid- 
search location uses the IASPEI global velocity models and multiscale sized grids to 
discriminate local, regional and teleseismic events, and local magnitude is estimated. 
Alert conditions are set to activate an immediate manual refinement of location and 
magnitude estimation by the seismologist on-call. These alerted events represent a 
small percentage of the final catalog content, because besides the real-time monitor-
ing, a semi-automatic off-line processing takes place daily. It includes: i) recovery of 
data missing in real-time, ii) manual revision of all possible events detected by 
Antelope reprocessing new data, and selection of local earthquakes, iii) manual pick-
ing and absolute location of local earthquakes only, using standard procedures (e.g. 
Hypoellipse, Lahr 1999), iv) re-estimation of local magnitude. As data can sometimes 
be available only several days later, a similar reprocessing is also performed monthly, 
to obtain the final catalog.

This process of manual control of local events and P and S picking revision, 
ensures accurate data and associated metadata, lowers the completeness local 
magnitude to ML�0 in the RSC target area (orange frame in Figure 1a), but it is 
time-consuming, and may face difficulties during highly-populated seismic sequences 
that have to be analyzed in a very short time, as happened during the Refrontolo 
sequence.

Comparing seismic catalogs obtained by associations approved by experienced ana-
lysts and revised manual picks with those derived by applying PhaseNet integrated 
into a high precision earthquake location workflow (LOC-FLOW, Zhang et al. 2022) 
is therefore a unique opportunity to test the performance of ML methods in earth-
quake detection and location for local microearthquakes. Concerning automatic phase 
detection, PhaseNet is trained on a dataset provided by analyst-labeled P and S arrival 
times from the Northern California Earthquake Data Center Catalog (NCEDC 2014).

Implementing a machine learning-based workflow for high-precision earthquake 
location can be strategic in supporting RSC seismic monitoring during seismic crises, 
and could be considered of interest for both the cases of natural and potentially 
induced seismicity. The utilization of a semi-automated workflow (e.g. Panebianco 
et al. 2023) has demonstrated great promise in the field of microseismic detection, 
serving as a crucial starting point towards the subsequent realization of a fully auto-
mated system.

In our study, we test PhaseNet capacity to detect microseismicity in the Collalto 
region, as part of LOC-FLOW. We are particularly interested in: 1) the performances 
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of PhaseNet’s phase picker, compared with the RSC’s manual phase picks; 2) the 
LOC-FLOW-generated earthquake catalogs (origin time and absolute locations) using 
PhaseNet picks or the original manual RSC’s picks; 3) the contribution of template 
matching to the final LOC-FLOW catalog, versus the original RSC dataset. 
Magnitudes in the catalogs are beyond the purposes of this analysis.

We also evaluate the spatio-temporal characteristic of the obtained seismicity, eval-
uating the ability of the customized procedure to identify the tectonic structures acti-
vated during the sequence.

2. Method and results

The original LOC-FLOW workflow incorporates open-source packages for seismic 
data preparation (namely, Step 0), picking strategies (Step 1), phase association (Step 
2), as well as absolute (Step 3) and relative double-difference location (Step 4), 
together with template matching methods. The workflow consists of sequential mod-
ules that are cross-compatible in terms of input/output, making them flexible for cus-
tomized applications. The structure of the code enables users to easily modify the 
workflow by testing and incorporating different packages across various modules; the 
formats of the different steps remain compatible to maintain the workflow’s function-
ality. In our study, we adapt the original version (Zhang et al. 2022) to reproduce as 
faithfully as possible the processing done for obtaining the manual Refrontolo seismic 
sequence catalog (see Figure 1b): for the ‘1-Phase picker’ module, we used two differ-
ent configurations, the original P and S picks listed in the RSC catalog characterized 
by a phase pick weight code [0-3], and the P and S PhaseNet picks characterized by 
phase pick probabilities [0-1]; for the ‘3-Absolute location’ section, we implement and 
use the Hypoellipse code (Lahr 1999), running with an existing velocity model opti-
mized for the area monitored by RSC. Hypoellipse was chosen because it was used to 
locate the events in the reference dataset (Peruzza et al. 2022b). We calibrate the ML 
picking probability estimate provided by PhaseNet with the P- and S-phase weight 
code obtained by manual revision, based on the picking uncertainty.

To prepare the data and estimate the performances of LOC-FLOW, we proceed as 
follows.

First, we collect continuous seismic waveforms from August 2 to 31 for stations 
located at a maximum distance of 50 km from the Refrontolo sequence (0- 
Preparation); this waveform dataset includes 22 stations (all the RSC stations plus 
another 12 belonging to the SMINO Network), shown in Figure 1a1. The seismic 
waveforms are resampled homogeneously at 100 Hz.

At LOC-FLOW Step 1, initially we use the original manually revised P and S picks 
reported in the RSC catalog for the analyzed time period (August 2021), to tune and 
test the performance of the associator (Step 2). We consider this step necessary to 
properly compare these results with the one achievable using the ML picker directly 
in the LOC-FLOW procedure. During the analyzed time span, the RSC catalog con-
tains about 3519 and 2884 picks for P and S seismic phases respectively, for a total of 
407 local events, of which 374 are related to the Refrontolo seismic sequence (green 
frame in Figure 1a, the target area of RSC represented by the orange frame). The 
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other locations (see Figure 1a3) are part of a small cluster that occurred in the 
Belluno-Alpago area (located about 30 km northeast of Refrontolo, with a maximum 
local magnitude of 2.3, near Pieve D’Alpago), and a few ones occurred near 
Valdobbiadene (about 20 km westwards). We include all the available picks in our 
evaluation to assess the performance of LOC-FLOW also at the border of the best- 
monitored region. The RSC picks also include 7 additional stations more than 50 km 
away, for which very few picks were reported for the most energetic events.

After proper format conversion of the RSC P and S arrival time dataset, we pro-
ceed to Step 2 and test the Rapid Earthquake Association and Location code - REAL 
(Zhang et al. 2019). The algorithm REAL associates phases to a seismic event using a 
grid-search method and a travel-time table. REAL initially counts the number of P 
and S picks and then calculates the travel-time residuals. Many constraints can be set 
to enhance association reliability based on station gap, outlier removal based on the 
variation of distance and/or travel-time residual, and the number of stations with 
both P and S picks, among others.

Examining the RSC catalog, we find that the minimum time between events is 
about 3 s and the minimum number of phases used to locate an event is 4, although 
only in one case. Based on this information, and to minimize the discrepancy 
between the number of events associated with REAL and those in the original catalog, 
we set a minimum threshold of 4 arrival times to declare an event with REAL, and 
also adjust the other parameters.

We use a uniform velocity model from Peruzza et al. 2022a (Vp ¼ 5.85 km/s, and 
Vp/Vs ¼ 1.78) and a 10 km search range centered on the station that recorded the 
earliest seismic phase, extended to a maximum depth of 20 km. The search grid was 
set to be approximately 2 km horizontally and in depth.

The chosen REAL parameter’s configuration provides a number of earthquakes equal 
to 100% of the original RSC catalog, using the manual picks and, as a proxy for com-
mon events, a tolerance of 1.5 s in the origin time differences between the two catalogs. 
This large tolerance is appropriate at this stage since we are pairing the preliminary 
REAL earthquake locations with the refined manual ones. In our process, REAL’s pri-
mary function is to associate proper picks, whereas absolute and relative locators 
enhance location accuracy in the following LOC-FLOW steps (3 and 4, respectively).

Some notes on the differences between the number of phases associated with the 
same event by REAL and the one reported in the RSC original catalog are worthwhile 
here. Most of the picks are consistently associated; in particular about 98% of the 
events have þ/-1 phases difference, while 2% differ in 2 or more associated phases, 
up to a maximum difference of 4. In some cases, the REAL algorithm is unable to 
properly associate the correct picks combination due to travel-time residuals at cer-
tain stations that conflict with the imposed constraints. Therefore, minimum differen-
ces exist between a rigorous manual revision procedure (RSC catalog) and an 
unsupervised automatic association of the same picks.

The current test is ideal, since all the RSC picks are true ones, related to certified 
earthquakes. When using REAL on automatic picks (obtained by machine learning), 
a significant number of false picks are introduced, hopefully rejected by the 
associator.
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The subsequent absolute earthquake location (Step 3) is applied using the results 
of REAL RSC phase association. We maintain the original RSC P and S picking 
weights (0-3) using Hypoellipse and utilize the same 1D velocity model and station 
residuals as Peruzza et al. (2022a). The velocity model was obtained using a genetic 
algorithm technique, as described in Romano et al. (2019). The station residuals are a 
combination of two components, i.e. the topographic and the unmodeled velocity 
structure: the first one is computed by Hypoellipse according to the station elevation 
and the velocity values associated to the crustal layer above the sea level (Vp ¼
4.0 km/s, and Vp/Vs ¼ 1.84); the second one was computed based on the statistics of 
the residuals of Hypoellipse run with the option RELOCATE, for the first years of 
RSC monitoring (as in Romano et al. 2019). Figure 2a–c shows a comparison of the 
horizontal and vertical error and rms origin time, as obtained by Peruzza et al. 
(2022b) and in this study at this stage of processing, where the only significant differ-
ence between the two catalogs is related to the picks association procedure. The 
results are consistent, and the location differences are all centered around 0; therefore 
the differences related to the picking association procedure do not alter the spatial 
features that characterize the sequence.

After verifying the workflow performed up to this stage, we restart the procedure 
by activating the ML picker PhaseNet (second branch of Step 1 in Figure 1b), instead 
of using the RSC original manual picks. We apply PhaseNet on daily continuous seis-
mic waveforms using the high-pass filtering (1 Hz) option for data preprocessing, 
which is recommended for microseismicity detection as it improves picking perform-
ance for events with very low signal-to-noise ratios. This setting can be changed for 
real-time applications when we do not know if the system will locate microseismicity 
or major events.

PhaseNet produces probability distributions for P-wave and S-wave arrivals, with 
the probability peak aligned to the corresponding phase arrival time. By default, the 
threshold probability for a potential pick is about 0.3, below this value, noisy signals 
prevail (Zhu and Beroza 2019). We obtain a total of 81645 P and 63560 S picks, of 
which 9046 and 4340 respectively, characterized by a probability value greater than 
0.8 (Figure 3a and b). Using a low probability threshold (e.g. <0.5) inevitably intro-
duces false picks, which could potentially reduce the accuracy of the location 

Figure 2. Absolute location analysis, obtained from steps 1–3 (see Figure 1b) with RSC manuals 
picks. a) Comparison of the horizontal, b) vertical errors and c) rms of origin times for the 
Hypoellipse locations obtained by Peruzza et al. (2022b) and the ones obtained in this study using 
the manual RSC P and S picks, and the REAL associator (in orange and light blue respectively).
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precision, but as previously said, we expect most false picks to be dismissed during 
the association phase since they are inconsistent across multiple stations.

In fact, false positive and false negative phase arrivals are always present in the ML 
output, the former are usually removed when associating phase picks over a seismic net-
work, while the second may result in earthquakes being missed (e.g. Park et al. 2023).

Figure 3c and d shows the distribution of the time difference between PhaseNet 
and manual RSC picks at the same stations for P and S phases, using as a pairing 
rule a window of þ/- 0.5 s for common picks. At this stage, we are comparing only 
the performance of the ML picker. About 79% and 90% of the RSC picks are com-
monly detected for P and S, respectively. The majority of them show PhaseNet prob-
ability values greater than 0.8.

A non-negligible percentage of picks are missed (false negative, as previously 
stated) by the PhaseNet approach, particularly for P phases. Investigating the reason 
for this behavior, we find that in many cases PhaseNet is unable to recognize phases 
associated with almost overlapping events (Figure 3e), that are conversely identified 
by human analysis. In other cases, the ML picker does not perform well due to the 
low signal-to-noise ratio that characterizes low magnitude events. Nonetheless, 
PhaseNet identifies high probability P and S picks (>0.8) that are not listed in the 
manual catalog and that could be potentially associated with true events.

While P pick time differences at common stations are almost centered around 
zero, we observe a systematic delay for PhaseNet S picks (Figure 3d). This may be 
attributed to differences in the manual picking procedures used to train PhaseNet 
compared to those used in our study. The feature is particularly evident as the associ-
ated PhaseNet probability value decreases.

PhaseNet picks are then used as input to the REAL package to associate them into 
individual seismic events. We visually reviewed phase picks and their probabilities 
and determined that all with a probability 0.4 or less should be excluded to limit the 
presence of a large number of inconsistent picks at this stage of the processing. As a 
consequence, the percentage of common P and S picks shown in Figure 3c and d
drop to 76% and 88% respectively (-0.3/-0.2%).

We use almost the same configuration adopted for the association of RSC picks; 
however, when using REAL on ML picks, a significant number of false picks exist 
and some constraints have to be adopted to limit fake events. Therefore, we slightly 
increase the number of associated P and S phases, assuming that each event will have 
a minimum of 3 P picks, 1 S pick, and at least one station with both P and S picks. In 
general, including a minimum number of stations with both P and S picks is crucial 
to avoid regional earthquakes being interpreted as local ones during unsupervised 
processing.

Compared to the original catalog and using 1.5 s in origin time as a proxy for 
common events (just like before), 372 RSC events (�91%) are found, while 35 (�9%) 
are lost, and 192 new potential events are identified. The missing events have, on 
average, a number of associated P phases less than 10 in the RSC catalog. As for the 
new potential events, they are characterized, on average, by a number of phases less 
than 7, and a significant azimuthal gap (>240�). Therefore, we could expect that a 
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Figure 3. PhaseNet picking performances. Top row: a) and b) Number of picks versus time for dif-
ferent PhaseNet probabilities ranges (from 0.3 up to 1.0 using 0.1 interval) for P and S phases 
respectively. Second row: c) and d) show the distributions of the differences between PhaseNet 
and RSC manual picks at the same stations for P and S respectively, using a delay of 0.5 seconds 
for common picks as a proxy. The distributions for different probability ranges (from 0.3 up to 1.0 
using 0.1 interval) are shown. Bottom row: e) An example showing that PhaseNet (original trained 
model) is not able to recognize phases associated with almost overlapping events, using 0.3 prob-
ability threshold. f) Box plot showing the distributions of picks PhaseNet probabilities (in the useful 
range 0.4-1.0) and Hypoellipse RSC pick weight codes (0-3). The colored box shows the quartiles of 
the dataset while the whiskers extending from the box indicate the spread of the rest of the data, 
but they do not include any data points that are considered outliers. These points are plotted indi-
vidually as diamonds beyond the whiskers to indicate that they are not part of the main 
distribution.
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considerable part of them will be discarded in the subsequent absolute and relative 
location steps, with filters based on horizontal and vertical errors, and azimuthal gap.

To address Step 3, devoted to absolute location, before using the Hypoellipse mod-
ule we have to convert the ML picking probability estimation provided by PhaseNet 
into Hypoellipse weights. The choice of weight assignment is critical since it signifi-
cantly impacts the inversion process that minimizes residuals during the earthquake 
location procedure. The lower the phase weight code, the lower the uncertainty of the 
picking time (see Table 1) and the higher the importance attributed to this reading 
by the Hypoellipse code during the inversion process.

We calibrate the conversion by analyzing the distribution of PhaseNet pick prob-
ability and the pick’s weight in the original catalog for common picks (tolerance to 
pair picks lowered to 0.3 s). Figure 3f shows that there is no unique, well-constrained 
correlation, and high probability values (e.g. 0.9) may also be associated with high 
Hypoellipse weights (e.g. 3), and vice versa. Nevertheless, a general trend can be 
defined if we consider the distribution of the useful dataset, estimated in the range 
from 0.4 to 1.0 PhaseNet probabilities. Table 1 shows the values used to correlate 
probabilities and weights, using as a proxy the 1st quartile (25%) distributions for 
RSC weights from 0 to 3. We also test a less conservative probability threshold for 
weight 3, including all the picks associated by REAL in the localization process and 
characterized by a probability value above 0.4. Based on the results shown in Table 1, 
we decide to select the correlation strategy based on quartile values that yields the 
lowest number of false events.

In the end, a final catalog with 421 events is obtained, with 351 events in common 
with the original RSC manual catalog (�86% of the RSC catalog is reached), if we 
use a 1 s tolerance window for origin time, and excluding the events with horizontal 
and vertical error >5 km, and azimuthal gap >300�.

With these quality constraints, about 5% of RSC events are missed, compared to 
the REAL output percentage previously observed (from 91% to 86%), but we are 

Table 1. Corresponding values used between manual time pick uncertainties, Hypoellipse weights 
and PhaseNet probabilities.
Pick uncertainty  
(sec)

Hypoellipse  
weight PhaseNet probability

0.00 − 0.02 0 1.00 − 0.95 1.00 − 0.95
0.02 − 0.05 1 0.95 − 0.86 0.95 − 0.86
0.05 − 0.12 2 0.86 − 0.74 0.86 − 0.74
0.12 − 0.3 3 0.74 − 0.40 0.74 − 0.63
n.d 4 <0.4 <0.63

Total events Total events
464 421

RSC (407)  
Common  

(1s origin time)

New  
false

New  
true

RSC  
(407) Common  
(1s origin time)

New  
false

New  
true

363 (�89% RSC) 18 83 351 (�86% RSC) 2 68

We tested two different configurations for weight 3. One assuming the 1st quantile distribution (conservative), and 
another one including all the picking with a probability value bigger than 0.4, associated by REAL. For each config-
uration, the number of total events characterized by horizontal and vertical error less than 5 km, and gap <300� are 
shown. The number of common events with the RSC catalog is also shown (using as a proxy for common events 1 s 
in the origin time difference), together with a quantification of the new false and new true detected events respect-
ively. Events are classified true or false after visual inspection of the associated seismic waveforms.
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fairly confident about the quality of the dataset, since a negligible number of false 
events is introduced (Table 1).

The LOC-FLOW code performs well also for the events outside the Refrontolo 
area, highlighting the sequence that occurred in the Alpago area during the same 
period. In fact, out of the 421 found events, 41 are characterized by latitude greater 
than 46� N (see the dataset in Figure 1a), and only some events are located westward 
(longitude lower than 12� E).

Figure 4a–c compares some features of the Refrontolo sequence, whose absolute 
hypocenters were fully checked by manual controls in Peruzza et al. (2022a), with the 
ones obtained automatically, using PhaseNet ML picks (weights are assigned as 
described above) and REAL associator. The new catalog shows higher values for hori-
zontal errors for some events, but the general trend is rather similar.

Then, relative locations (Step 4 in Figure 1b) are determined using HypoDD 
(Waldhauser and Ellsworth 2000) with the conjugate gradients method (LSQR), since 
the singular value decomposition (SVD) is only applicable to a limited number of 
events. We make only minor adjustments to the code to ensure proper weighting in 
the input format of the HypoDD phase time file, which matches the Hypoellipse 
weighting for differential travel time. We use both time and cross-correlation mod-
ules, and we complete the HypoDD_dtct procedure before starting HypoDD_dtcc 
one; in fact to have accurate initial locations for dt.cc we use dt.ct locations to update 
the phase file as a strategy.

The HypoDD weights in the cross-correlation mode are estimated based on cross- 
correlation values in the frequency band of 5-15 Hz, using a minimum correlation 
coefficient of 0.6. This frequency band was chosen because of the low magnitude of 
the events and the associated corner frequency estimated in Peruzza et al. (2022a). 
Starting from 421 events, we relocated 341 events with HypoDD.

The final absolute and relative locations of the Refrontolo seismic sequence are 
shown in Figure 5, and compared with those of the RSC. The earthquakes’ cloud 
defined automatically is elongated further south than before, probably an effect of the 
shift for the S phases picking. For the relative locations, the activated structure 

Figure 4. Absolute location analysis, obtained from steps 1 to 3 (see Figure 1b) with PhaseNet 
picks. a) Comparison of the horizontal, b) vertical errors and c) rms origin times for the Hypoellipse 
locations obtained by Peruzza et al. (2022b) and the ones obtained in this study using the 
PhaseNet P and S picks and REAL as associator (in orange and light blue respectively). See Figure 
2 for comparison with the RSC manual picks.
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Figure 5. Manual versus automatic locations for the Refrontolo sequence. Panels a) epicentral 
maps of the original Hypoellipse dataset provided in Peruzza et al. 2022a in a1), transparent circles 
show the location of the seismicity detected from 2012 in the region; a2) dataset obtained with 
ML phase picker PhaseNet, REAL and Hypoellipse; a3) dataset of the LOC-FLOW relative location 
with HypoDD cross-correlation obtained with ML phase picker PhaseNet, REAL and Hypoellipse. 
Panels b) cross sections of the same subsets as before, overlapped, respectively in b1) and b2) 
absolute location; b3) relative location as in a3. The trace of the vertical section is plotted in red, 
the Montello thrust represented by isobaths (white curve lines) is taken from Picotti et al. (2022). 
The intersections of the isobaths with the plane of the vertical section are marked by black 
rhombs. Panel c) comparison between the cumulative number of events over time for the 
Refrontolo sequence (only events of the Refrontolo sequence are considered - inside the green box 
of Figure 1a), original RSC Hypoellipse dataset provided in Peruzza et al. 2022a (blue), Hypoellipse 
LOC-FLOW catalog using the PhaseNet P and S picks and REAL as associator (red), and template 
matching LOC-FLOW catalog using the PhaseNet P and S picks, REAL and Hypoellipse/HypoDD as 
input catalog (magenta).
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appears as an antithetic feature to the main Montello thrust depicted by the previous 
seismicity (black open circles, and black diamonds, in Figure 5b) with an inclination 
perfectly consistent with the one resulting from the focal mechanism of the main 
event of the sequence.

Finally, we also test the template matching module, using the approach included in 
the LOC-FLOW procedure (Zhang and Wen 2015), for the events of the Refrontolo 
sequence only. This reduced the number of usable templates from 421 to 374.

Template matching has been used to improve seismic catalogs since 2006 (Gibbons 
and Ringdal 2006; Shelly et al. 2007), increasing the capability to recognize and ana-
lyze spatio-temporal seismic patterns that characterize seismic sequences both in well- 
instrumented (e.g. Kato et al. 2012; Vuan et al. 2020; Sugan et al. 2023; Sugan et al. 
2019) and remote regions (Cesca et al. 2022). Starting from well-located events, con-
tinuous seismic data are scanned to search for possible similar events. We use the 
absolute/relative location (output of Step 3 and 4, performed with PhaseNet pickings, 
REAL associations and Hypoellipse/HyppoDD locations) as templates in our proced-
ure, using 3 s window length waveforms and the RSC stations only, limiting the 
analysis to the events located in the Refrontolo region. The signal was filtered using a 
5-15 Hz bandpass. The code computes the mean correlation coefficient (CC) value 
and Median Absolute Deviation (MAD) of the stacked cross-correlograms. When the 
mean CC and MAD values exceed the defined thresholds, a positive detection is 
declared, assuming the same location of the event with the maximum mean CC 
value.

We select as positive detections all the events with CC > 0.65 and MAD > 15. 
This last step allows increasing the number of events in the catalog (Figure 5c) for 
the Refrontolo sequence. Starting from 374 templates, we found 60 newly detected 
events. Comparing the new extended catalog (434 events) with the corresponding 
RSC subset (374 events in the region delimited by the green box in Figure 1a) and 
using as a proxy 1 sec in the origin travel time differences, we found that �93% of 
the RSC events are in common.

The cumulative number of events over time shows that the template matching 
recovers the seismicity missed during the most productive days of the sequence 
(August 2 and 3), enhancing the number of detected events with respect to RSC dur-
ing this period. This is not surprising, since the technique itself is able to recognize 
seismic signals hidden in the noise or masked by overlapping events, where P and S 
picks cannot be manually set.

3. Discussion

The use of new ML algorithms to analyze large seismic datasets is critical for moni-
toring the temporal evolution of seismicity in a complex geological system and for 
understanding the physical processes involved in generating moderate to large earth-
quakes that may be anticipated by the occurrence of small seismic events.

ML pickers have great potential for the analysis of microseismicity, but they still 
need to be used with attention. In this study, we applied a machine-learning based 
approach on a microearthquake seismic sequence, with local magnitudes in the range 
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from −0.6 to 2.5. We obtained about 21% less P-wave picks than with manual phase 
picking. This is understandable for quasi-overlapping events, where the coda of the 
preceding event masks the P onset of the following event; the performance of neural 
phase pickers also seems related to the low signal to noise ratio of the microevents. 
Similar to Kim et al. (2023), we emphasize the need to train the ML algorithm 
including overlapping events into the training data to improve the detection perform-
ance when many earthquakes occur in a short period of time. This will require super-
vised training methods where a dataset of manual phase picks have been made for 
overlapping events. In other situations the false negative P phase could be related to 
picks prediction inconsistency. Concerning prediction inconsistency, Park et al. 
(2023) showed that the probability associated with the ML picks can change with 
even a small perturbation of the input waveform. They also highlighted that a high 
value in the picking classification probability does not necessarily imply a reliable 
phase pick. While developers consider these observations to improve neural phase 
pickers, other inputs may come from end users comparing the results of ML picks to 
an overall location process that uses well-suited seismic sequences as a benchmark, as 
done in this study.

Analysis of PhaseNet probabilities also shows that probability values vary com-
pared to pick uncertainties determined by manual revision. Nevertheless, a general 
trend can be identified, and appropriate conversion should be made between 
PhaseNet probabilities, temporal pick uncertainties, and Hypoellipse weights.

In our study, the automatic S picks provided by PhaseNet (Figure 3d) are generally 
delayed compared to the manual S picks. S-arrival times can be difficult to detect, 
especially when the complexity of the structure over which the waves propagate can 
lead to P-S conversion. It is not possible to distinguish converted phases from 
PhaseNet results. Since the manual RSC S-picks were scrupulously reviewed, we 
assume that such features are likely to be found in other case studies. This aspect 
should be kept in mind by developers and end users when testing different ML pick-
ers and models or improving existing ones.

Despite the differences in picking, Figure 5 shows that the seismicity obtained in a 
fully automatic way, with PhaseNet ML picks in the LOC-FLOW procedure, recon-
structs well the geometry of the activated fault, depicted by the manual processing in 
Peruzza et al. (2022a), in agreement with the focal mechanism obtained from the 
polarity for the strongest event of the sequence. These findings enrich the observa-
tions on the active tectonic structure that characterizes the studied area (Restivo et al. 
2016; Sara�o et al. 2021).

LOC-FLOW has also proved useful in correctly identifying and locating events in the 
periphery of the study region, in the Alpago area. Of the total 421 Hypoellipse events, 31 
belong to the Alpago sequence located in the northern part of the region (between 46�

and 46.2� latitude), while other 16 events are located at a greater distance from the 
Refrontolo sequence (outside the region delimited by the green box in Figure 1a).

Our results show that with the ML picks alone up to the absolute location step, 
�86% of the events in the RSC catalog are found using as a proxy 1 s time difference 
in the origin time and quality constraints based on the horizontal and vertical errors 
and associated weights, as shown in Table 1.
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Finally, we test the template matching module; it increases the number of events 
detected with respect to the manually located ones (Figure 5c): this is particularly evi-
dent during the most productive period of the Refrontolo sequence (August 2-3, 
2021, Figure 1a3). Nevertheless, a maximum of �93% RSC events are found, not 
reaching 100%, using the selected thresholds. This means that a minimum percentage 
of the RSC events are not found by the new procedure, and vice versa.

Despite the promising results we have obtained with LOC-FLOW, some issues 
need to be considered before applying the methodology, especially with regard to the 
purpose of the output catalog.

Spurious picks and associated unsupervised events do not seem to affect the main 
spatio-temporal features of the sequence (Figure 5.), but the systematic delay observed 
for S-picks leads to a systematic shift in the observed event cloud which is partially 
compensated by relative location.

Therefore, manual robust revision is still required for some specific applications. 
This is particularly true for all activities related to monitoring of induced seismic 
events, for which high quality certified data must be provided and which may have 
legal implications. At the same time, in the case of productive sequences, ML-based 
detection may be an optimal strategy to quickly generate earthquake catalogs that are 
reliable enough to make decisions for seismic risk mitigation.

So far, we encourage developers to improve ML methods, emphasizing the need to 
train models on massive, very local data as they become available, and also to con-
sider and address the aspect of picking inconsistency as pointed out by Park et al. 
2023.

For further research, we plan to test different configurations of ML pickers, includ-
ing PhaseNet, trained on different datasets (M€unchmeyer et al. 2022) in the hope of 
improving the results obtained.

4. Conclusion

In this study, we test the performance of the machine learning PhaseNet technique 
integrated into the LOC-FLOW code for detecting microseismicity in the Montello 
region, in northeast Italy. Seismic monitoring of the region is extremely important 
due to the Collalto gas reservoir that has been in operation since 1994 and instru-
mentally monitored by RCS since 2012; so far, all the seismic activity has been con-
sidered of natural origin. We use an unusually productive microseismic sequence that 
occurred near Refrontolo in August 2021 as a case study.

Our results show that PhaseNet detected 79% and 90% of the manual P and S 
arrival times at the same stations, respectively, using a 0.3 probability threshold and 
the model trained on the original California dataset. While P picks show enough 
accuracy, we observe a general delay for the S picks, which we expect should be a 
common feature even in other datasets, based on the high quality of the manual pick-
ing used for comparison.

If we include the events detected by the template matching procedure, the final 
LOC-FLOW catalog has an increased number of events compared with the initial 
manual one. Nonetheless, in our case study, PhaseNet does not help increase the 
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earthquake number during the most productive days of the sequence (e.g. 2-3 
August), and template matching is crucial during these intervals. We acknowledge 
that there are several tuning steps in the LOC-FLOW package, and each choice of 
parameters plays a role in the resulting number of events identified. Despite the lower 
accuracy in S picks, PhaseNet performances are good, especially if we consider that 
the automatic procedures require much less working time in comparison with the 
manual picking. The observed seismicity clearly depicted the geometry of the acti-
vated fault in both time and space. Our results show that LOC-FLOW can effectively 
and accurately produce earthquake catalogs by processing continuous seismic data, 
and that it can effectively support very dense local networks during seismic monitor-
ing even for very low-magnitude events.

At the same time, we acknowledge that ML techniques may not yet be ready to 
replace the standard approach in compiling certified seismic catalogs for microseismic 
sequences. Some limitations may depend on the original training used. We plan to 
test different ML picker configurations trained on different dataset, hopefully increas-
ing the obtained results. In this study, we show that the integration of template 
matching code is important to recover missed events and increase the number of 
events. We would encourage the use of ML at a very local scale, where a preliminary 
comparison with benchmark data manually processed for the area under investigation 
should be considered.
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