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A B S T R A C T   

Accurate prediction of maximum convergence in unsupported, shallow tunnel construction is crucial for opti-
mizing the lining and ensuring tunnel safety. Machine learning (ML) algorithms, especially through boosting 
techniques, enable effective solution of complex engineering problems and demonstrate their capabilities in 
problem solving and optimization. In this study, the FLAC 3D package was used to create a robust and validated 
database of 954 datasets. Five tree-based ML algorithms, including extreme gradient boosting (XGBoost), 
adaptive boosting (AdaBoost), gradient boosting machine (GBM), histogram-based gradient boosting (HGB) and 
categorical boosting (CatBoost), were used to predict the maximum convergence displacement for unsupported 
shallow tunnels. For the test dataset, XGBoost outperformed the other models with an excellent coefficient of 
determination of 0.9633, a minimum mean absolute error of 0.0021 and a low root mean squared error of 
0.00725. HGB followed closely behind, and GBM and CatBoost showed strong performances, while Adaboost was 
less effective. The superior performance of XGBoost highlights its effectiveness in predicting maximum 
convergence in shallow tunnels. An in-depth sensitivity analysis within the XGBoost model showed the signifi-
cant influence of soil elastic modulus on the maximum convergence displacement in unsupported tunnels. The 
remarkable results achieved by the XGBoost algorithm on our complex tunnel convergence predictions illustrate 
the profound ability of ML to tackle complicated geotechnical challenges. This interdisciplinary collaboration 
demonstrates the potential of advanced algorithms to improve safety and efficiency in construction, underlining 
the crucial role of technology in tackling complex problems and establishing a new paradigm for innovation in 
the field.   

Introduction 

Tunneling is a complex process that involves the excavation of un-
derground passages for transportation, water supply, and other pur-
poses. One of the critical challenges in tunnel construction is predicting 
the maximum convergence of shallow tunnels, which is the amount of 
deformation or displacement that occurs in the surrounding soil or rock 
mass during the excavation process. The key to a secure and stable 
tunnel structure, while also enhancing the design and construction of the 
support system, lies in the accurate estimation of maximum conver-
gence. The convergence displacements at the tunnel boundary occurs 
before the face progresses beyond a specific location. The tunnel 
boundary continues to undergo inward displacement as the tunnel 

advances beyond the mentioned point. This profile depicting closure or 
displacement concerning the distance from the tunnel face is termed the 
longitudinal displacement profile (LDP) [29]. Different researchers have 
done numerous studies considering ground properties [7,29,3,2,23], 
water effect [22,24,28], and other consideration including soil strength 
parameters [25]to approximate the LDP and tunnel displacement for 
unsupported tunnels. 

While traditional methods for tunnel displacement calculations offer 
certain advantages, they come with significant disadvantages. These 
drawbacks include the high expenses associated with experiments, 
complexities in numerical modeling, and the necessity for over-
simplified assumptions. In contrast, the integration of machine learning 
(ML) in tunnel engineering presents a more cost-effective and efficient 
solution. Nowadays, with advanced algorithms and powerful hardware, 
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ML is widely applied in engineering, particularly in construction and 
design. Improved algorithms and enhanced computing capabilities 
enable ML to analyze complex databases, revolutionizing how engineers 
approach challenges in these fields [27]. 

In the field of tunnel construction, Wang et al. [32] focused on 
predicting the tunnel boring machine (TBM) advance rates; conse-
quently, they utilized the principal component analysis (PCA) and the 
artificial bee colony (ABC) methods to develop a highly accurate PCA- 
Artificial neural networks-ABC model. Similarly, Wang et al. [31] 
employed biogeography-based multilayer perceptron neural network 
and biogeography-based support vector regression methods for TBM 
penetration rate forecasting, showcasing the effectiveness of integrated 
artificial intelligence (AI) techniques. In their exploration of TBMs in 
tunnel construction, Shan et al. [26] addressed performance prediction 
and settlement concerns using ML techniques. Furthermore, Li et al. [18] 
conducted a comprehensive review of TBM dataset outcomes, evalu-
ating ML algorithms for performance prediction and efficiency optimi-
zation. Wang et al. [33] proposed a dynamic prediction model with the 
long short-term memory and Extreme Gradient Boosting (XGBoost) for 
TBM performance during shield tunneling. To predict tunnel deforma-
tion, Zhou et al. [35] implemented ML techniques and optimized the 
random forest model with various algorithms to forecast deformation 
around powerhouse caverns. Tunnel squeezing was explored as a time- 
dependent phenomenon impacting tunnel construction costs and time-
lines by Fathipour-Azar [11]. The study developed a multi-level data 

mining decision-making assessment methodology based on parameters 
like diameter, buried depth, support stiffness, and rock tunneling quality 
index to predict squeezing conditions. The multi-level decision-making 
models achieved high prediction accuracy, providing effective tools for 
analyzing and mitigating tunnel squeezing problems. Later, Geng et al. 
[15] harnessed the power of Bayesian optimization and the entropy 
weight method to refine XGBoost model. Through the optimization of 
key hyperparameters, the study attained remarkable accuracy in pre-
dicting tunnel squeezing intensity. This investigation stands as a valu-
able resource for forecasting tunnel squeezing deformation, thereby 
enhancing the realm of intelligent tunneling operations. 

For predicting tunnel convergence, Chang et al. [8] introduced a 
probabilistic model, combining empirical models (EM), Bayesian esti-
mation, and relevance vector machine (RVM). By selecting the most 
accurate EM through Bayesian estimation and refining predictions with 
RVM, the model significantly reduced root mean squared error values by 
92.6 % and 95.8 % for two datasets in a high-speed railway tunnel. 
Compared to alternative models like backpropagation neural network 
and Gaussian process regression, the presented model demonstrated 
superior accuracy, as reflected in the numerical results. 

The prediction of convergence displacement in unsupported shallow 
tunnels has been a less explored area in the past. For geotechnical en-
gineers, a precise understanding of convergence displacement is crucial. 
Previous studies have not extensively investigated the accuracy of ML 
models, especially those employing tree-based and boosting methods, in 

Nomenclature 

ABC Artificial Bee Colony: An optimization algorithm that 
simulates the foraging behavior of bees. 

AI Artificial Intelligence: The simulation of human 
intelligence processes by machines, especially computer 
systems. 

CMA Covariance Matrix Adaptation: An evolutionary strategy 
for optimizing complex nonlinear functions. 

D Tunnel Diameter: The total width of the tunnel cross- 
section. 

DPM Dynamic Programming Model: A mathematical model that 
simplifies decision-making processes by breaking them 
down into simpler, sequential stages. 

Dis Convergence Displacement: The movement toward each 
other of the opposite sides of a tunnel, usually due to stress 
or pressure. 

E Modulus of elasticity: A measure of the stiffness of an 
elastic material, defined as the ratio of stress (pressure or 
force per unit area) to strain (proportional deformation in 
an object). 

EM Expectation Maximization: An iterative method for finding 
maximum likelihood estimates of parameters in statistical 
models. 

ES Evolutionary Strategy: A methodology for solving 
optimization problems based on the concept of evolution. 

FDM Finite Difference Method: A numerical technique used to 
approximate solutions to differential equations by using 
finite difference approximations. 

FLAC Fast Lagrangian Analysis of Continua: A numerical 
modeling software used in geotechnical engineering for 
simulating soil and rock behaviors. 

GBM Gradient Boosting Machine: A machine learning technique 
for regression and classification problems. 

H Depth of the Tunnel: The vertical distance from the surface 
to the crown of the tunnel. 

HGB Histogram-Based Gradient Boosting: A machine learning 

technique for constructing decision trees. 
K0 Coefficient of Earth Pressure at Rest: The ratio of 

horizontal effective stress to vertical effective stress in soil 
at rest. 

LDP Longitudinal Displacement Profile: A representation of 
displacement values measured along the length of the 
tunnel. 

LSTM Long Short-Term Memory: A type of recurrent neural 
network used in deep learning. 

MAE Mean Absolute Error: A measure of errors between paired 
observations. 

ML Machine Learning: A branch of artificial intelligence that 
involves the development of algorithms that can learn from 
data. 

PCA Principal Component Analysis: A statistical procedure that 
uses an orthogonal transformation to convert a set of 
observations of possibly correlated variables into a set of 
values of linearly uncorrelated variables. 

RMSE Root Mean Square Error: A measure used to evaluate the 
difference between values predicted by a model and the 
values actually observed. 

RVM Relevance Vector Machine: A type of sparse kernel 
machine used in machine learning. 

SHAP SHapley Additive exPlanations: A method to explain 
individual predictions based on the contribution of each 
feature. 

TBM Tunnel Boring Machine: A machine used to excavate 
tunnels with a circular cross section through a variety of 
soil and rock strata. 

c Cohesion: A measure of the shear strength of soil or rock 
from intermolecular forces. 

γ Unit Weight of the Soil: The weight per unit volume of soil, 
expressed in kN/m3. 

υ Poisson’s Ratio: A measure of the Poisson effect, the ratio 
of transverse strain to axial strain in material. 

φ Friction Angle: The angle of shearing resistance of the soil.  
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predicting convergence displacement along the LDP. This study ad-
dresses a gap by assessing the performance of different tree-based ML 
algorithms through boosting for predicting convergence displacement in 
unsupported shallow tunnels. Five tree-based boosting algorithms are 
used to predict the convergence displacement of the tunnel. With the 
help of FLAC 3D, a database was created in which the essential pa-
rameters influencing tunnel convergence are considered. Key factors 
such as the unit weight of the soil (γ), the earth pressure coefficient at 
rest (K0), the tunnel depth (H), the diameter (D), the Poisson’s ratio (υ), 
the modulus of elasticity (E), the cohesion (c) and the friction angle (φ) 
were taken into account. A practical range was defined for each property 
and 954 finite difference models were simulated to accurately map their 
relationships to each other and thus accurately predict the convergence 
displacement (Dis). Based on this extensive database, five prediction 
models are applied to estimate the convergence displacement. The re-
sults highlight the model’s effectiveness in predicting tunnel displace-
ment. Finally, we rank the factors influencing displacement and offer a 
brief summary of our findings. 

Methodology for database generation 

Base model and calibration 

Due to the necessity arising from the lack of sufficient and reliable 
data, a pragmatic solution is to create a thorough and extensive dataset 
through numerical modeling. In order to obtain a reliable database, 
numerical modeling with the software FLAC 3D (Itasca, 2003) was used 
in this study. First to validate the outcomes generated by FLAC 3D, a 
comparison is made with analytical equation by Hoek [17] and 
compared with the result of FLAC3D. Table 1 shows the properties 

considered for the model validation, while Table 2 illustrates a com-
parison between the results of the analytical solutions and FLAC 3D. As 
can be seen, the convergence displacement calculated by the FLAC 3D 
software can be considered acceptable compared to the analytical 
equation of Hoek [17]. Here are the relevant equations: 

Convergence displacement =
r0(1 + ϑ)

E
×

[

2(1 − ϑ)(P0 − Pcr)

[
rp

r0

]2

− (1

− 2ϑ)(P0 − Pi)

]

(1)  

rp = r0

[
2(P0(K − 1) + σcm )

(1 + K) ((K − 1)Pi + σcm )

]
1

K− 1 (2)  

Pcr =
2P0 − σcm

1 + K
(3)  

σ1 = σcm +Kσ3 (4) 

The uniaxial compressive strength of the rock mass σcm is charac-
terized by: 

σcm =
2c Cos(φ)
(1 − Sinφ)

(5) 

The gradient K in equation (4) is as follows: 

K =
1 + Sinφ
1 − Sinφ

(6) 

Where: 
σ1: axial stress leading to failure. 
σ3: constricting stress. 
c: internal cohesion. 
φ: friction angle of the rock mass. 
ϑ : Poisson’s ratio. 

Database overview 

To ensure the accuracy of the finite difference method (FDM), a 
numerical model of 60 m × 35 m × 20 m was used to build the database. 
It included various parameters such as soil elastic modulus, Poisson’s 
ratio, friction angle, cohesion, tunnel diameter, and soil overburden, 
using a three-dimensional numerical analysis. The LDP was determined, 
and the maximum convergence displacement at a distance of 3 times the 
tunnel diameter was set as the target value. The conceptual 3D model, 
which serves as the main model, is shown in Fig. 1. 

Table 3 provides a comprehensive overview of the dataset, which 

Table 1 
Properties for model validation.  

Property Value 

Modulus of elasticity (E) 80 MPa 
Friction angle 33 degrees 
Internal cohesion 22 kPa 
Poisson’s ratio 0.29 
Tunnel diameter 5 m 
Density (γ) 19 KN/m3 

Depth of tunnel center 20 m  

Table 2 
Comparison of numerical validation model results with analytical results.  

Parameter FLAC 3D Analytical equation [17] 

Convergence displacement (cm) 4.87 4.8  

Fig. 1. 3D numerical model of shallow tunnel.  
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consists of 954 entries. It provides valuable statistical insights into the 
input and output variables. The table contains statistical measures for 
each parameter, such as mean, standard deviation (std), minimum 
(min), 25th percentile (25 %), median (50 %), 75th percentile (75 %), 
and maximum (max). These measures give a clear picture of the central 
tendency, variability, and range of values for the features, including unit 
weight of the soil (γ), coefficient of earth pressure at rest (K0), depth of 
tunnel (H), tunnel diameter (D), Poisson’s ratio (υ), modulus of elasticity 
(E), cohesion (c), friction angle (φ), and convergence displacement (Dis) 
as output. The mean values, for example, give an impression of the 
typical or average values, while the percentiles help to understand the 
data distribution over different quartiles. 

Before using the dataset to train and test ML models, the identifica-
tion of outliers was performed. Fig. 2 displays box plots representing 
both input and output variables. Although some outliers were identified, 
the dataset, gathered for the purpose of testing models to predict the 
convergence displacement of the tunnel, was considered appropriate. 

The correlation matrix for the database reveals important insights 
into the relationships between different features and their effects on 
tunnel convergence (Fig. 3). When evaluating the correlation between 
each feature and the displacement, it can be seen that a moderately 
negative correlation is exhibited by unit weight of soil, implying that as 
unit weight increases, maximum convergence tends to decrease. The 
results show positive correlations, with higher values of K0, tunnel 

depth, and Poisson’s ratio being associated with greater convergence 
displacement of the tunnel. Conversely, a strong negative correlation is 
observed with the modulus of elasticity, indicating a lower maximum 
convergence displacement for materials with higher E values. Cohesion 
shows a weak negative correlation, indicating a slight reduction in 
maximum convergence with increased cohesion. In addition, there is a 
weak positive correlation with friction angle, implying that greater 
maximum convergence displacement may be associated with higher 
friction angle values. These correlations provide valuable insights for 
evaluating tunnel stability and making informed engineering decisions. 

In Fig. 4 scatter plots were used to illustrate the relationships be-
tween the convergence displacement and each feature. A close exami-
nation of these scatter plots shows that they do not consistently exhibit 
clear patterns. However, one significant pattern stands out: There is a 
clear downward trend in the relationship between the modulus of 
elasticity and the convergence displacement. This downward trend im-
plies that as the modulus of elasticity increases, the displacement tends 
to decrease, suggesting that materials with higher E values are associ-
ated with a lower maximum convergence displacement in shallow tun-
nels. In contrast, when considering the remaining features such as 
density, lateral earth pressure coefficient, tunnel depth, depth, Poisson’s 
ratio, cohesion, and friction angle, no distinct or consistent trends can be 
identified from the scatter plots. 

Table 3 
Statistical summary of the input and output variables.   

γ (KN/m3) K0 H D (m) υ E (MPa) c (KPa) ϕ Displacement (m) 

count 954 954 954 954 954 954 954 954 954 
mean 19.78 0.39 15.98 5.03 0.28 143.9 41.4 25.0 0.047 
std 0.82 0.02 2.32 0.82 0.01 74.9 17.3 5.8 0.050 
min 18.50 0.37 11.00 4.00 0.27 10.0 10.0 14.0 0.009 
25 % 19.12 0.37 13.50 4.00 0.27 80.0 26.0 20.0 0.022 
50 % 19.50 0.39 17.00 5.00 0.2 120.0 40.0 26.0 0.030 
75 % 20.50 0.41 17.50 6.00 0.29 200.0 59.0 30.0 0.047 
max 21.50 0.43 18.00 6.00 0.30 450.0 100.0 35.0 0.569  

Fig. 2. Input and output variables box plot.  
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Workflow 

The training of ML models involved utilizing input features including 
density, K0, H, Poisson’s ratio, E, c, and friction angle. Fig. 5 visually 
illustrates the fundamental processes of the proposed methodology, 
where the convergence displacement is the target variable. 

Training process 

The numerical dataset for the convergence displacement of shallow 
tunnels consists of 954 data points, generated based on a validated nu-
merical modeling approach for FDM. The dataset was split into a 
training (80 %) and a test (20 %) subsets. Both sets were used during the 
training and validation phase to develop the ML models. This split 
allowed a comprehensive evaluation of the performance of the models. 

ML algorithms and optimization 
Boosting is a powerful technique used in tree-based algorithms to 

improve their prediction performance. This ensemble learning method 
focuses on sequentially training weak learners, usually decision trees, 
and combining their results to build a robust and accurate model [14]. In 
this comprehensive study, a series of ML models were used to predict the 
convergence displacement of shallow tunnels. The methodology 
included various boosting tree-based algorithms, each of which brings 
contributing its own strengths to the predictive power of the model. 
Among these, XGBoost, Adaptive Boosting (ADABoost), Gradient 
Boosting Machine (GBM), Histogram-based Gradient Boosting (HGB), 
and Categorical Boosting (CatBoost) were used as the main models. 
XGBoost is used due to its efficient implementation of gradient-boosted 
decision trees that sequentially build models to minimize prediction 
errors. ADABoost complements this approach by iteratively adjusting 
the weights to correct errors from previous predictions and thus improve 
the accuracy of the model. GBM further refines this process by creating 

trees that specifically address and reduce the residuals left by their 
predecessors. Meanwhile, HGB optimizes the efficiency of GBM by using 
histograms to speed up the calculation process, which is beneficial when 
managing large data sets typical for regression analysis. Finally, Cat-
Boost is included due to its innovative treatment of categorical features 
through ordered boosting, which prevents overfitting and improves the 
reliability of the model by systematically reducing prediction errors over 
randomly permuted data segments. Together, these algorithms form a 
comprehensive ensemble that utilizes their individual strengths in a 
unified prediction model to achieve high accuracy of regression results. 
In particular, XGBoost, known for its efficiency and speed, works 
together with ADABoost, which focuses on the iterative correction of 
errors to improve prediction accuracy. GBM, an ensemble learning 
method, has teamed up with HGB and uses histogram-based strategies to 
increase efficiency. Finally, CatBoost, designed for seamless processing 
of categorical features, added another layer of sophistication to the 
ensemble. This fusion of boosting tree-based algorithms underscores the 
commitment to a nuanced and robust approach to predicting the 
convergence displacement of shallow tunnels [5,9,10,13,14,20]. 

The Optuna package was utilized to fine-tune the hyperparameters of 
the models used [1]. 

The CmaEsSampler in Optuna is a practical implementation of the 
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) algorithm, 
a sophisticated optimization technique rooted in evolutionary strategies 
and stochastic optimization [16]. In this study, all modeling procedures 
were performed in Python 3.10.9, using open-source libraries such as 
CatBoost, XGBoost, Scikit-learn, Optuna, SHAP, Matplotlib, SciPy, 
Pandas, and NumPy. 

ML model assessment 
In the development of ML models, the validation phase is crucial for 

the evaluation of prediction accuracy. In this study, three key statistical 
indicators namely, the coefficient of determination (R2), root mean 

Fig. 3. Correlation matrix.  
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square error (RMSE), and mean absolute error (MAE), are used to 
evaluate the agreement between the predicted values and the values 
calculated using FDM as illustrated in formulas 1–3. These indicators, 
which measure the variance, precision and absolute errors, ensure a 
thorough overall assessment of the model’s predictive performance, and 
increase the reliability of the results. 

R2 = 1 −

∑n
i=1

(
Dis − Dis∗i

)2

∑n
i=1

(
Dis∗i − Dis

)2 (7)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1

(
Disi − Dis∗i

)2

√

(8)  

MAE =
1
n
∑n

i=1

⃒
⃒Disi − Dis∗i

⃒
⃒ (9)  

where n stands for the number of FDM data points, Disi is the predicted 
convergence displacement values, Dis*

i stands for the FDM convergence 
displacement values, and Dis illustrates for the average convergence 
displacement. 

Results and discussion 

Best hyperparameters 

In this study, five tree-based boosting ML algorithms were used to 
develop a model that can predict convergence displacement in shallow 
circular tunnels. The optimization of the hyperparameters for these 
models was performed using the Optuna package. In particular, the 
CMA-ES algorithm was used to fine-tune the hyperparameters. The 
dataset was split 80/20 between training and testing. The five algo-
rithms analyzed were XGBoost, HGB, GBM, CatBoost and AdaBoost. 

Fig. 4. Scatter plot of features in relation to output with marginal distribution.  
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These algorithms were evaluated based on their ability to accurately 
predict the convergence displacement and their computational effi-
ciency. A summary of the fine-tuned hyperparameters for the five ML 
models is presented in Table 4. 

Assessment results 

The outcomes of the five trained ML model assessments are pre-
sented in Table 5. 

As shown in Table 5, among the evaluated ML algorithms for pre-
dicting the maximum convergence of shallow tunnels, XGBoost proves 
to be the top performer when comparing different metric measurements 
in the test dataset. XGBoost achieves the highest R2 value of 0.9633, 
indicating an excellent degree of explained variance. Additionally, it 
showcases the lowest MAE value of 0.0021 and the lowest RMSE value of 
7.25E-03, demonstrating its remarkable precision and consistency in 
predictions. HGB closely follows XGBoost in its performance, with a 
remarkable R2 value of 0.9608, an MAE of 0.002, and an RMSE of 7.48E- 
03. GBM has strong predictive power for the test set with an R2 of 
0.9574, an MAE of 0.0023, and an RMSE of 7.80E-03. CatBoost also 
delivers respectable results on the test dataset, achieving an R2 of 
0.9569, an MAE of 0.0022, and an RMSE of 7.85E-03. Although Ada-
Boost has slightly lower performance on the test dataset, with an R2 of 
0.903, it still provides valuable insights, along with an MAE of 0.0073 
and RMSE of 0.01. As a result, XGBoost performs excellently in pre-
dicting the maximum convergence of shallow tunnels, outperforming 
the other models on various metric measurements in the test dataset. 

Fig. 5. Workflow describing the adopted approach.  

Table 4 
Tuned hyperparameters for the ML models.  

Model Hyperparameter Value 

XGBoost n_estimators 184 
learning_rate 0.045 
max_depth 7 
min_child_weight 2 
subsample 0.809 
colsample_bytree 0.904 
gamma 9.18E-06 
reg_alpha 6.20E-06 
reg_lambda 0.1602 

HGB learning_rate 0.086 
max_iter 96 
max_depth 19 
min_samples_leaf 2 

GBM n_estimators 162 
learning_rate 0.116 
max_depth 6 
min_samples_split 0.040 
min_samples_leaf 0.017 
subsample 0.780 
max_features 0.902 
alpha 0.0001 

CatBoost n_estimators 143 
learning_rate 0.117 
depth 7 
min_child_samples 6 
subsample 0.745 
colsample_bylevel 0.654 
reg_lambda 0.0089 

ADABoost n_estimators 158 
learning_rate 0.016 
loss exponential  

Table 5 
Assessment of the predictive performance of each model.  

Algorithm Dataset R2 MAE RMSE Execution time (s) 

XGBoost Train Set  0.9868  0.0015 3.55E-03 102.3 
Test Set  0.9633  0.0021 7.25E-03 

HGB Train Set  0.9938  0.0009 2.43E-03 873.6 
Test Set  0.9608  0.002 7.48E-03 

GBM Train Set  0.9774  0.0017 4.65E-03 207.2 
Test Set  0.9574  0.0023 7.80E-03 

CatBoost Train Set  0.9968  0.0008 1.76E-03 242.9 
Test Set  0.9569  0.0022 7.85E-03 

AdaBoost Train Set  0.9052  0.0066 9.53E-03 141.6 
Test Set  0.9030  0.0073 0.0117  
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Fig. 6. Density distribution by using a) XGBoost, b) GBM, c) HGB, d) CatBoost, e) AdaBoostdisplacement for test dataset.  
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HGB, GBM, CatBoost, and AdaBoost also have acceptable performance 
levels, making them valuable alternatives for similar applications. When 
comparing the models based on execution time in Table 5, XGBoost 
shows the highest computational efficiency among the evaluated models 
with an execution time of 102.3 s for the training set. This is the shortest 
execution time compared to the other models, which are ranked in order 
of increasing execution time: AdaBoost (141.6 s), GBM (207.2 s), Cat-
Boost (242.9 s) and HGB (873.6 s). These comparisons were performed 
on a computer equipped with an 11th Gen Intel(R) Core(TM) i9-11900H 
@ 2.50 GHz CPU and 16.0 GB DDR4 RAM. The analysis of the density 
distribution for the predicted displacement versus the actual displace-
ment, calculated by FDM shows a high degree of agreement between the 
XGBoost, GBM, HGB, and CatBoost algorithms (Fig. 6). These models 
exhibit satisfactory coincidence between predicted values and FDM- 
calculated displacements. However, it is noteworthy that AdaBoost, 
exhibits slight discrepancies within the specific ranges of 0 to 0.05 and 
0.1 to 0.2 m convergence Fig. 7 shows scatter plots depicting the pre-
dicted versus calculated convergence displacement of a tunnel using 

numerical method. The XGBoost regression model clearly outperforms 
the actual data within the tested displacement range, while the other 
algorithms fall just short of XGBoost. 

Furthermore, Taylor diagrams were utilized to evaluate the standard 
deviation and correlation values between predicted and calculated 
convergence displacement values for the XGBoost, CatBoost, GBM, HGB, 
and AdaBoost models using different input parameters. Fig. 8 shows the 
Taylor diagrams for these models, with the distance from the reference 
point (shown as a black star) to each point indicating the centered 
RMSE. The model with the highest accuracy is therefore characterized 
by the smallest distance between the black star and the corresponding 
point. Specifically, for the test dataset, the XGBoost model, represented 
by a red dot, showed the most accurate predictions of the convergence 
displacement values for the shallow tunnel. 

In our study, the Williams plot (Fig. 9) is used to evaluate the diag-
nostic robustness of the predictive modeling performed by the XGBoost 
algorithm. This plot allows a double assessment of leverage and stan-
dardized residuals and serves as an important visualization tool to 

Fig. 7. Regression of the predicted versus the calculated convergence displacement of a tunnel using numerical method.  
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investigate the influence and prediction error of individual observations 
within the dataset. In this context, leverage quantifies the potential in-
fluence of each data point on the parameter estimates of the model. High 
leverage points can excessively influence the model fit and are therefore 
of central importance for regression diagnostics. The leverage of each 

observation is plotted on the x-axis, with a higher value of leverage 
indicating a greater potential to influence the coefficients of the model. 
Standardized residuals represent the normalized differences between 
observed and predicted values and provide information about the pre-
diction accuracy of the entire data set. These residuals are plotted on the 

Fig. 8. Taylor diagram for all adopted algorithms, train dataset (a), test dataset (b).  
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y-axis, with values close to zero indicating a strong agreement between 
predicted and observed results and deviations beyond the threshold 
values of ± 3 indicating possible outliers or inadequacies of the model. 
The graph delineates the range of application, which is defined by fixed 
thresholds for both the leverage effect and the residuals. In our analysis, 
a significant majority of data points for both the training sample (94.53 
%) and the test sample (98.94 %) are within this range, highlighting the 
efficiency and stability of the model. Such positioning within the graph 
suggests that the model predictions are both reliable and robust, closely 
adhering to the observed data behavior. To improve the clarity and 
usefulness of the Williams diagram, we have included color-coded 
markers and reference lines:  

• Color-coded markers distinguish between data points that adhere to 
expected behavior and those that are outliers or could exert undue 
influence.  

• Reference lines are strategically placed at the leverage and residual 
thresholds to visually reinforce these critical boundaries, allowing 
for quick identification of data points that warrant further 
investigation. 

This visualization not only confirms the XGBoost model’s ability to 
capture essential data patterns, but also highlights its precision in 
dealing with different data observations and validating its application to 
new data sets. The comprehensive assessment of the model diagnosis by 
the Williams plot is an essential part of our analysis and ensures that the 
model operates within a well-defined and scientifically justified 
framework. 

Fig. 10a and Fig. 11a illustrate a comparison between the tunnel 
convergence displacement obtained from the proposed XGBoost model 
and the actual numerical data during the training and testing process. 
Overall, there is a notable concordance between the two datasets. In 
Fig. 10b and Fig. 11b, the evolution of the error with respect to the 
variation of the number of samples. In addition, Fig. 10c and Fig. 11c 
display a histogram representing the distribution of error values during 
training. It is obvious that the majority of errors during the training 
process are closely clustered around 0. A similar trend can be observed 
when the results of the XGBoost model are compared with the corre-
sponding numerical data for the test dataset. 

Feature importance 

XGBoost feature importance 
The feature importance of the XGBoost is a critical aspect of the al-

gorithm that quantifies the contribution of each feature to the predictive 
performance of the model. By analyzing the importance scores, practi-
tioners gain valuable insight into the relative influence of features, 
which facilitates informed decisions about feature selection, model 
interpretation, and optimization for improved prediction accuracy. In 
Fig. 12 the feature importance analysis shows that the most influential 
factors contributing to the maximum convergence displacement, our 
target variable, are the modulus of elasticity with a significance of 
0.646, followed by the unit weight of soil with 0.174. The depth of the 
tunnel also plays a notable role, albeit to a lesser extent, with a signif-
icance factor of 0.065. Other parameters such as the tunnel diameter, the 
cohesion, the earth pressure coefficient at rest and the friction angle 
show varying degrees of importance with 0.039, 0.027, 0.018, and 
0.017, respectively. In addition, the Poisson’s ratio is a factor with an 
importance factor of 0.014, but it has relatively little influence. This 
comprehensive analysis provides valuable insight into the relative 
importance of each parameter in influencing the maximum convergence 
displacement, which contributes to the understanding and possible 
optimization of tunneling or excavation processes to improve structural 
stability. 

SHAP evaluation 
In recent years, the SHAP (SHapley Additive exPlanations) technique 

has been widely applied in various engineering disciplines and provides 
valuable insights into the interpretability of predictive models 
[4,6,12,19,21,30,34]. In this research, a detailed assessment of feature 
importance is conducted using SHAP values, offering valuable insight 
into the relative importance of each feature in predicting the maximum 
convergence of shallow tunnels (Fig. 13). The analysis clearly shows that 
the modulus of elasticity has the largest and most variable influence on 
the model’s predictions. The large scatter of SHAP values for this 
parameter shows that the stiffness of the material is a decisive factor for 
the convergence behavior of the tunnel structure, with higher stiffness 
correlating with lower displacement. The graph also illustrates the 
essential role of other geotechnical properties such as the depth of the 
tunnel and the cohesion of the soil. Both show a scatter of positive SHAP 
values, which means that their increased presence can potentially 
contribute to a reduction in displacement, indicating a stabilizing effect 

Fig. 9. Williams plot for XGBoost model.  
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Fig. 10. (a) Assessment of the accuracy of convergence displacement predictions generated by the XGBoost model, (b) relative error, (c) distribution of residual error 
(Train samples). 
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Fig. 11. (a) Assessment of the accuracy of convergence displacement predictions generated by the XGBoost model, (b) relative error, (c) distribution of residual error 
(Test samples). 
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on the tunnel structure. In contrast, the angle of internal friction, unit 
weight and coefficient of earth pressure at rest have SHAP values that 
cluster around the baseline, indicating a less pronounced but still 
complicated relationship with the displacement result. This complexity 
could reflect the different nature of the geological formations and their 
response under stress. While Poisson’s ratio is not as influential as 
modulus of elasticity or height, it still exhibits a recognizable clustering 
of SHAP values. This closer clustering near the baseline indicates a more 
consistent influence across different instances of the dataset. In sum-
mary, the SHAP analysis underscores the paramount importance of the 
modulus of elasticity in predicting the convergence displacement of the 

tunnel, with other parameters governing the mechanical behavior of 
earth materials also making a notable contribution. The findings from 
this model are of great importance for structural engineering consider-
ations, both for planning and for preventive measures in tunnel 
construction. 

Feature importance conclusion 
In conclusion, the combined analysis of SHAP values and XGBoost 

feature importance provides a comprehensive understanding of the most 
important factors influencing the predictive model for the maximum 
convergence displacement. The modulus of elasticity proves to be a key 

Fig. 12. XGBoost feature importance.  

Fig. 13. SHAP values for XGBoost model.  
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feature and emphasizes its crucial contribution to the overall perfor-
mance of the model. The unit weight of the soil follows closely behind 
and emphasizes its significant influence. In addition, the depth of the 
tunnel, tunnel diameter, cohesion, earth pressure coefficient at rest, and 
friction angle all contribute to varying degrees and provide a nuanced 
insight into their respective roles. This holistic assessment provides 
practitioners with valuable information for informed decision-making in 
feature selection, model interpretation, and optimization, and ulti-
mately improves the accuracy of maximum convergence displacement 
prediction. 

Conclusion 

This study focused on the prediction of convergence displacement in 
unsupported shallow tunnels by creating and analyzing a database of 
954 data points. This dataset was carefully compiled using FLAC 3D 
software and FDM, with particular attention paid to the selection of 
significant features as model inputs. To predict the convergence 
displacement, the study utilized the performance of five tree-based 
boosting algorithms: XGBoost, ADABoost, GBM, HGB and CatBoost. 
The precision and stability of these models were evaluated using sta-
tistical indicators and visual analysis. In addition, a detailed sensitivity 
analysis was performed considering XGBoost feature importance and 
SHAP values to identify the most important factors for the most effective 
intelligent model. The key findings are described below:  

• A robust database of 954 samples, carefully constructed with verified 
data from FDM simulations and verified with empirical formulas, 
comprehensively accounts for crucial features that influence the 
maximum convergence displacement. This rigorous approach in-
creases the credibility and reliability of the predictive models. An 
advanced intelligent framework is presented that provides a method 
for reducing the costs associated with the complexity, expense, and 
time involved in numerical modeling.  

• XGBoost, harnessing the boosting technique for weak learners, 
proves to be the most effective algorithm for predicting convergence 
in shallow tunnels among the others. Overall, the algorithms using 
boosting techniques show a strong ability to accurately predict the 
convergence displacement of shallow tunnels.  

• The predictions agree exactly with the displacements calculated by 
FDM for several models: XGBoost achieved an impressive R2 of 
0.9633, with an MAE of 0.0021 and an RMSE of 0.00725. GBM, HGB 
and CatBoost also performed well, with R2 values of 0.9574, 0.9608 
and 0.9569, respectively, and corresponding MAE and RMSE values. 
This comparison underlines the accuracy and reliability of the pre-
diction models. Different assessments and Taylor diagram evalua-
tions confirm the accuracy of XGBoost in replicating the actual data. 

• The modulus of elasticity proves to be a decisive feature that in-
fluences the maximum convergence displacement in a shallow cir-
cular tunnel. 

In conclusion, our study emphasizes the effectiveness of XGBoost in 
predicting convergence displacement in shallow tunnels. The model’s 
accuracy and robust behavior, as indicated by various evaluations, 
highlight its reliability for practical applications. These findings 
contribute to advancing our understanding of tunneling behavior and 
offer valuable insights for optimizing predictive models in tunneling 
process. In addition, this research equips geotechnical engineers with 
improved predictive tools for underground construction by using ML for 
more accurate assessments of structural behavior. It enables more reli-
able and cost-efficient project planning and advances geotechnical en-
gineering by improving the safety and efficiency of tackling 
underground challenges. 
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[5] Bourel M, Segura AM, Crisci C, López G, Sampognaro L, Vidal V, et al. Machine 
learning methods for imbalanced data set for prediction of faecal contamination in 
beach waters. Water Res 2021;202:117450. https://doi.org/10.1016/j. 
watres.2021.117450. 
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