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Abstract

We study the metastable equilibrium properties of the two dimensional Potts model with
heat-bath transition rates using a novel expansion. The method is especially powerful for
large number of state spin variables and it is notably accurate in a rather wide range of
temperatures around the phase transition.
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1 Introduction

The Potts model [1] is an extension of the celebrated ferromagnetic Ising model. In this
variation, the spin variables take q integer values (often associated to colours) and are cou-
pled in a way that favours alignment, that is to say, equal values of the spins (colours)
placed on neighbouring sites on a lattice. The model attracted attention at the early ages
of phase transition studies since the order of the phase transition changes when the number
of states of the spins is tuned: in two dimensions, for 2 ≤ q ≤ 4 it is of second-order, while
for q > 4 it is of first-order [2, 3] with the associated metastability properties. Beyond the
fundamental interest that it produced, the Potts model found applications in many areas
of physics, and even beyond the physical domain. For instance, the large q limit is used to
describe soap foams and metallic grain systems [4–6]. In its anti-ferromagnetic version, the
Potts model represents the colouring problem of computer science [7,8]. Another application
in this realm is to community detection in complex networks [9–11]. Furthermore, weakly
disordered Potts ferromagnets are the paradigmatic models in which the effects of random-
ness on phase transitions were studied [12, 13], and disordered and frustrated mean-field
Potts models [14,15] realise the random first-order phase transitions scenario for the glassy
arrest [16–18].

The first order transition of the ferromagnetic two dimensional Potts model with q > 4 is
accompanied by metastability properties (with finite life-time in finite dimensions). In gen-
eral, quantifying metastability and the dynamic escape from it through nucleation is a hard
and longstanding problem [19–22]. In this paper we address metastability in the stochastic
bidimensional Potts model with q > 4 from a novel perspective, that is, by solving the
microscopic dynamics in the large q limit. Indeed, in the stochastic model the dynamic
evolution proceeds via a Markov Chain with microscopic rules that we have the freedom
to choose, conditioned to respect detailed balance. As we argue below, the dynamics are
faster, and also easier to understand analytically, when the heat bath microscopic updates
are used. This is the rule that we adopt. The choice of initial conditions and working tem-
perature decides the kind of metastability one accesses with the dynamic protocol. More
precisely, for sub-critical quenches, in which we follow the evolution of a disordered initial
state under conditions in which the system should order ferromagnetically, the metastable
state is disordered. Instead, in the opposite quench, in which we prepare the system in a
ferromagnetic state and we heat it above the critical point, the metastable state is ferromag-
netically ordered. In this paper we consider both kinds of instantaneous quenches. After
identifying the (few) relevant microscopic transition paths in the large q limit, we derive the
free-energy densities of the two phases and from them various thermodynamic observables
that allow us to quantify the metastable behaviour in full detail. We confirm our analytical
predictions with numerical simulations of excellent accuracy.

The paper is organised as follows. In Sec. 2 we recall the definition and main properties
of the Potts model. In Sec. 3 we introduce the heat bath dynamics, we identify all relevant
moves for q > 4, and we derive the transition probabilities in terms of local configura-
tions updates. Next, Sec. 4 and Sec. 5 describe our results for subcritical and supercritical
quenches, respectively. A concluding Section closes our work.

2 The model

The Potts model [1] is defined by the energy function

HJ [{si}] = −J
∑

〈ij〉
δsisj , (1)

where J > 0 is a coupling constant, the sum is restricted to nearest-neighbours on a lattice,
δab is the Kronecker delta and si take integer values from 1 to q ≥ 2. This model is a
generalisation of the Ising model, to which it reduces for q = 2. There is no external field
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applied. We will focus on the bidimensional case, defined on an L × L square lattice with
periodic boundary conditions. In the sum one counts each bond once and for this geometry
the energy is bounded between −2JN , with N the number of spins in the sample, and 0.

Although the problem is not fully solvable for q > 2, some exact results are known.
Duality allows one to prove that the critical temperature is [1]

kBTc(q) =
J

ln
(

1 +
√
q
) . (2)

Henceforth we will set kB = J = 1.
An exact solution on the square lattice was provided in 1973: by exploiting a mapping

to the ice-rule six-vertex model R. J. Baxter gave an exact expression for the model’s free-
energy at the critical point. He thus showed that the transition is second order for q ≤ 4
and first order for q > 4, and he calculated the latent heat in the latter case [23]. A proof
that the simplest possible mean-field approach yields, in the thermodynamic limit, the exact
free-energy at criticality for q ≥ qc(d) (with qc(2) = 4) to leading order in q, in the large q
limit, was soon after given by Mittal & Stephen [24], see also [25]. Many numerical studies
put these ideas to the test since then. For example, Binder in Ref. [26] and much more
recently the authors of Refs. [27–30] focused on the analysis of the critical properties, both
in the second order and first order cases, using different numerical methods.

In order to go beyond the critical point results, F. Y. Wu exploited a fancy mapping onto
a pure math problem to derive the free-energy density in the large q limit at any T (assuming
that large q and large N limits commute) [31] and he recovered the already known form at
Tc [23, 24] as a particular case. More recently, Johansson and Pistol used a microcanonical
approach to argue that the entropy per site is given by [32]

s(e) =
(

1 +
e

2

)

ln q (3)

with e the energy density, in the large N and q limits, irrespectively of the order in which
these are taken. They then used this result to calculate the partition function and from it
the free-energy density

−βf ∼
{

ln q
2β

for

{

β ≪ βc

β ≫ βc
with βc ≃ ln

√
q (4)

(in the last expression −βf ≃ −βe ≃ 2β for large β was used) that coincides with the one
found in [31]).

3 Heat bath dynamics

Classical spin models coupled to heat baths evolve in time stochastically according to some
microscopic updates that have to be provided to make their definition complete. Concretely,
at each microscopic time step ones chooses one site at random and changes the value of the
local spin according to some probabilistic rule. For a system with N spins, conventionally, N
update attempts correspond to one Monte Carlo step (MCs). In this Section we define the
Heat Bath microscopic rule, we enumerate all possible updates of a chosen spin according
to its surrounding configurations, and we derive the transition probability for each of them.

3.1 Microscopic rules

The usual microscopic dynamics used in Monte Carlo simulations of spin models are the
Metropolis ones, in which one tries to change the spin to a new value (chosen at random
among the remaining q− 1 possibilities) and the move i) is accepted if the new local energy
e′i is lower than the previous local energy ei or, otherwise, ii) it is accepted with probability
exp(−β(e′i − ei)).

2



However, in the case of the Potts model, especially in its large q limit, another rule
also respecting detailed balance, the so-called heat bath rule, is more efficient and allows for
a partial analytic treatment, similarly to what found in other ferromagnetic models [33].

In short, with this rule the transition probabilities are proportional to e−βe′ . Specifically,
the scheme works as follows. First, one considers the weight associated to each possible
value that a spin, say si, can take depending on its local environment. As an example,
assume that si is surrounded, on the square lattice, by two spins taking the value 1, a spin
with value 2 and another one with value 3. We attribute the weights wi(si = 1) = e2β ,
corresponding to the fact that the spin i taking the value 1 yields a local energy of −2,
wi(si = 2) = eβ = wi(si = 3) because of the local energy being equal to −1 in these cases,
and wi(si = j) = 1 for 3 < j ≤ q for similar reasons. Next, we normalize the wi and we
define the probabilities

Pi(si = k) =
wi(si = k)

∑q
l=1 wi(si = l)

. (5)

Having attributed probabilities to the state of the central spin, we can now evaluate the
transition probabilities for its update. Imagine that the spin si takes the value 1. Then,
we choose a random number r ∈ [0 : 1]. If r < Pi(1), the spin keeps its value si = 1.
Otherwise, if r < Pi(1)+Pi(2), si takes the new value si = 2, or if r < Pi(1)+Pi(2)+Pi(3),
it is updated to si = 3, and so on and so forth. Thus, we have the following transition
probabilities for the spin si = 1 surrounded by two spins 1, one spin 2 and one spin 3:

THB
1→1 =

e2β

e2β + 2eβ + q − 3
, THB

1→2 = THB
1→3 =

eβ

e2β + 2eβ + q − 3
, (6)

THB
1→j =

1

e2β + 2eβ + q − 3
, (7)

with j indicating any possible state with j > 3 (there are q − 3 such states). Notice that
these probabilities do not depend on the initial state of the spin. Despite this, we prefer to
use the notation above to make the comparison with the Metropolis probabilities (Eq. (8)).
Proceeding in a similar way one can evaluate the transition probability of any spin, according
to its state and the ones of its neighbours.

For the sake comparison, we recall the transition probabilities of the Metropolis rule:

TM
1→1 = 1− 1

q − 1
(2e−β + (q − 3)e−2β) , TM

1→2 = TM
1→3 =

1

q − 1
e−β ,

TM
1→j =

1

q − 1
e−2β , (8)

for the same example considered above.
In practice, we find that the heat-bath dynamics are much more efficient, in the sense

that the approach to equilibrium is faster, in particular for large q. We only consider the
heat-bath dynamics in the following.

3.2 Enumeration

For any integer q ≥ 5 we can classify all local configurations, seen as vertices with a central
spin and its four first neighbours, and identify all possible updates. The method goes like
this. Take one spin si, count the number of neighbouring spins with the same value as the
selected central one, and call this number n1. Next, count the number of neighbours with
the most present spin value different from the central one and call this number n2. Continue
in this way and organise these numbers in decreasing order, that is, n1, n2, n3, . . . . It is
easy to see that, with this classification, there are only 11 local configurations (we do not
distinguish which are the neighbours that take the same or different values as the central
one) and they are represented in the figure below:
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(0) : (1) : (2) : (3) :

(4) : (5) : (6) : (7) :

(8) : (9) : (10) : (11) :

In the following we will use the name “sand” to refer to the configurations (11) in which all
sites take different values. We now use a more detailed notation to identify each of these
configurations writing explicitly the number of neighbours of each kind, that is to say, using
[n1, n2, . . . ] where only the values ni 6= 0 are kept. Proceeding in this way we have

(0) : [4] → (0) , (7)

(1) : [3, 1] → (1) , (4) , (8)

(2) : [2, 2] → (2) , (2) , (9)

(3) : [2, 1, 1] → (3) , (5) , (10)

(4) : [1, 3] → (4) , (1) , (8)

(5) : [1, 2, 1] → (5) , (3) , (10)

(6) : [1, 1, 1, 1] → (6) , (11)

(7) : [0, 4] → (7) , (0)

(8) : [0, 3, 1] → (8) , (1) , (4)

(9) : [0, 2, 2] → (9) , (2)

(10) : [0, 2, 1, 1] → (10) , (3) , (5)

(11) : [0, 1, 1, 1, 1] → (11) , (6)

where the right arrows and the values after them indicate the transitions generated by the
update of the central spin. For example, the first configuration, denoted by (0), can either
keep the same value, thus the (0) on the right, or take another value, thus the configuration
(7) : [0, 4]. Again, this should be easy to grasp by looking at the sketch above.

3.3 Transition probabilities

For each local situation, we can then read the rules for the heat-bath dynamics. The local
configuration (0) remains the same with probability ≃ e4β and changes to any of the other
q−1 possible values of the spin with probability e0 = 1. Then, normalising the probabilities,
we obtain

P0→0 =
e4β

e4β + q − 1
, P0→7 =

q − 1

e4β + q − 1
. (9)
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In a similar way, we derive all other transition probabilities:

P1→1 =
e3β

e3β + eβ + q − 2
, P1→4 =

eβ

e3β + eβ + q − 2
, P1→8 =

q − 2

e3β + eβ + q − 2
,

P2→2 =
2e2β

2e2β + q − 2
, P2→9 =

q − 2

2e2β + q − 2
,

P3→3 =
e2β

e2β + 2eβ + q − 3
, P3→5 =

2eβ

e2β + 2eβ + q − 3
, P3→10 =

q − 3

e2β + 2eβ + q − 3
,

P4→4 =
eβ

eβ + e3β + q − 2
, P4→1 =

e3β

eβ + e3β + q − 2
, P4→8 =

q − 2

eβ + e3β + q − 2
,

P5→5 =
2eβ

2eβ + e2β + q − 3
, P5→3 =

e2β

2eβ + e2β + q − 3
, P5→10 =

q − 3

2eβ + e2β + q − 3
,

P6→6 =
4eβ

4eβ + q − 4
, P6→11 =

q − 4

4eβ + q − 4
,

P7→7 =
q − 1

e4β + q − 1
, P7→0 =

e4β

e4β + q − 1
,

P8→8 =
q − 2

e3β + eβ + q − 2
, P8→1 =

e3β

e3β + eβ + q − 2
, P8→4 =

eβ

e3β + eβ + q − 2
,

P9→9 =
q − 2

2e2β + q − 2
, P9→2 =

2e2β

2e2β + q − 2
,

P10→10 =
q − 3

e2β + 2eβ + q − 3
, P10→3 =

e2β

e2β + 2eβ + q − 3
, P10→5 =

2eβ

e2β + 2eβ + q − 3
,

P11→11 =
q − 4

4eβ + q − 4
, P11→6 =

4eβ

4eβ + q − 4
.

Note that for any spin in the bulk, that does not feel the boundary if there exists one,
these expressions are independent of the system size. Their large q limit will be established
below, when we will simultaneously decide the temperature range studied that will itself
also vary with q.

4 Sub-critical quenches: the disordered metastable phase

Let us focus now on the first dynamic protocol, a quench to a subcritical temperature
T < Tc(q) from a completely disordered state, i.e., an equilibrium configuration at T → ∞.

4.1 Large q and large N behaviour

Consider a totally random configuration, a typical initial state at t = 0. The number
of sites in the configurations labeled (a), with a = 0, . . . , 11 as in the sketch above, are
Na(0) = [(q − 1)/q4] Ña(0)N with

Ñ0(0) = 1/(q − 1) , Ñ1(0) = 4 , Ñ2(0) = 6 ,

Ñ3(0) = 6(q − 2) , Ñ4(0) = 4 , Ñ5(0) = 12(q − 2) ,

Ñ6(0) = 4(q − 2)(q − 3) , Ñ7(0) = 1 , Ñ8(0) = 4(q − 2) ,

Ñ9(0) = 3(q − 2) , Ñ10(0) = 6(q − 2)(q − 3) ,

Ñ11(0) = (q − 2)(q − 3)(q − 4) .

(10)

For large q, the state (11) largely dominates the disordered configuration since

N11(0) ≃ N(q − 1)(q − 2)(q − 3)(q − 4)/q4 ≃ N . (11)
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The next configurations in the hierarchy are the (6) and (10) ones with

N6(0) ≃ 4N/q , N10(0) ≃ 6N/q . (12)

All the other states appear with a much lower probability, reduced by at least another power
of q.

In the large q limit we can also write

eβ = eβcTc/T = eTc/T ln(1+
√

q) = (1 +
√
q)Tc/T ≃ qTc/(2T ) . (13)

Thus, during an update of the full lattice, the probability that a state (11) be replaced by
a state (6) can be expressed as

P11→6 =
4eβ

4eβ + q − 4
≃ 4qTc/(2T )

4qTc/(2T ) + q
=

1

1 + 1
4
q1−Tc/(2T )

, (14)

showing that the temperature T = Tc/2 plays a special role. Indeed, for q ≫ 1

P11→6 → 1 at T < Tc/2 , (15)

i.e., the state (11) is completely unstable and the system tends to reorganise really fast at
these low temperatures. In the same large q limit, at the cross-over temperature,

P11→6 → 4/5 and P6→11 = 1− P11→6 → 1/5 at T = Tc/2 , (16)

meaning that the states labeled (11) are again unstable, even though in a weaker way. The
system will still reorganise at Tc/2. Finally,

P11→6 → 0 at T > Tc/2 , (17)

and the system remains disordered in the large q limit, in the full temperature interval
(Tc/2, Tc].

10−3

10−2

10−1

100

100 101 102 103 104

Na/N

t

a = 11
6
3
10
0

Figure 1: The time evolution of Na(t)/N for a = 0, 3, 6, 10, 11 at T = 0.9Tc in a square lattice system with
linear size L = 103 and q = 103.

When q is large but finite the picture is qualitatively similar, although the change is no
longer at T = Tc/2 and it is not as sharp. The system does not in general remain disordered
after a quench at T > Tc/2 but it is only in this region that it can be found in a metastable
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state. To be more precise, let us consider a particular case. For a finite value of q = 103

and after a quench at T = 0.9 Tc, we observe the behaviour shown in Figs. 1 and 2. i)
During a first period, most of the spins are in the (11) state and there are only very small
domains, the configurations look like sand. The density of vertices (11) is almost 1, see
Fig. 1, and the left snapshot in Fig. 2 shows one such configuration. ii) At a later time,
we see the appearance of the stable state (0) and some larger domains are formed, see the
central snapshot in Fig. 2. For the chosen parameters q and T , the crossover occurs at a
time t ≃ 100. iii) At even later times, most of the states are in the (0) state and large
domains are formed, see the right panel in Fig. 2. This is the proper coarsening regime.
Each of these three regimes is characterised by a different type of dynamical behaviour. We
call them i) metastable, ii) fast forming finite domains and iii) coarsening.

We found that the measurement of Na(t)/N is a very practical way of determining the
type of dynamics. Next, we found that for a given value of q, the time t at which the change
of behaviour is observed depends strongly on the value of the temperature at which the
system is quenched. In particular, if T moves close to Tc, the system seems to be blocked
in a metastable state forever. For T = 0.99 Tc and q = 103, as we will see below, the system
is not able to escape the metastable state.

Figure 2: Snapshots at times t = 50, 200, 1000 for a square lattice system with linear size L = 103 and q = 103.
Different colors are different spin values.

Thus for a given value of q, after a quench at T < Tc, we observe metastable states up to a
time which seems to diverge at some temperature value that we parametrise as rt(q) = T/Tc.
The quantity rt(q) does not seem to depend on the systems’ linear size considered. We found
numerically rt(q = 103) ≃ 0.98, rt(q = 104) ≃ 0.94, rt(q = 105) ≃ 0.92, rt(q = 106) ≃ 0.90
and rt(q = 109) ≃ 0.87. Thus, as we increase q, the temperature above which we observe
metastable states forever slowly decreases. Presumably, this quantity will go to 0.5 in the
limit of infinite q.

For T/Tc > rt(q), we always observed metastable states. We will concentrate in the
following in the study of these metastable states.

We illustrate the properties of these metastable states in Fig. 3, where we show the
evolution of Na/N as a function of time for q = 103 and L = 103 at T/Tc = 0.99. We only
show the states which contribute the most. Already at times of the order of t ≃ 101 MCs
after the quench, we found N0(t) = N2(t) = N4(t) = N7(t) = N8(t) = N9(t) = 0 while
0 6= N1(t) ≃ N5(t) ≃ O(1) ≪ N are not shown in the plot. The only values of order N at
this time scale are N3, N6, N10 and N11. Their expected values, according to the predictions
based on the method we develop below, are N11/N ≃ 0.862, N6/N ≃ 0.120, N3/N ≃
0.010, N10/N ≃ 0.009 and are shown with thin flat lines in the figure. The solid lines,
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10−3

10−2

10−1

100

100 101 102 103 104

Na/N

t

a = 11
6
3
10

Figure 3: The time evolution of Na(t)/N for a = 3, 6, 10, 11 at T = 0.99Tc in a square lattice system with linear
size L = 103 and q = 103. The thick lines are data from a numerical simulation while the thin ones are analytical
predictions based on the method we develop in this work. The curves demonstrate the hierarchy in Eq. (18).

instead, are the results of the numerical simulations, and are in excellent agreement with
the analytic predictions. Statistically, the configurations do not change after running the
simulation much longer: the state made of “vertices” (3), (6), (10) and (11) according to
the hierarchy

N3(t) ≃ N10(t) ≪ N6(t) ≪ N11(t) (18)

with all of them being O(N), is metastable over incredibly long time-scales.
In the following, we concentrate on cases in which T is close to Tc. Moreover, we use the

hierarchy relation (18) to develop an expansion that is notably accurate even keeping only
the dominant order.

4.2 The leading updates at T ≃ Tc

We rename Na (a = 0, ..., 11) the normalized (by N) abundances that can also be interpreted
as the probabilities that a randomly picked site be in the state (a). Exploiting the hierarchy
relation (18), expected to apply to the metastable state, we consider the evolution of

N11 ≃ 1 , N6 ≃ p , N10 ≃ p2 and N3 ≃ p2 (19)

thus rescaled with the parameter p ≡ P11→6 which, at T ≃ Tc, is proportional to q−1/2:

p ≡ P11→6 ≃ q−1/2 for T ∼ Tc . (20)

In the large q limit, we will then use it as the small parameter in our expansion, that we
will develop up to second order in powers of p.

Concretely, our aim now is to construct a master equation for the probabilities N11,
N6, N10, . . . , and then find the stationary solution that determines the proportions of the
vertices of each kind in the metastable states.

In order to do so, we first picture what kind of structures, i.e., configurations of spins
of the same color (spin value) in a background of “sand” (i.e. spins in the (11) state) have
a probability to exist which is proportional to p2 or greater. It turns out that spins in
the states (6), (3) and (10), the only relevant ones in the large N limit according to the
discussion in the previous Subsection, can only be found in the following structures
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6

11

11 11
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11
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D

3
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3

11

11

11

11

11

11
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11

11

11

11

11

11 11

11

11

11

11

11

F

10

11

11

10

11

11

11

where the gray sites in a given diagram possess the same color, while the white sites have
a different color with respect to the gray ones and also with respect to the nearest and
next-to-nearest other white ones. The numbers indicate the kind of vertex, following the
notation used in the previous Subsections. The red segments, which highlight the satisfied
bonds, are useful to keep track of the energy contribution of the structures. It is possible
to check that all the other possible structures are of order p3 or higher and we will not take
them into account.

Now, we identify the evolutions that these structures can make in a single time step. As
an example consider structure B. The following move
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consists of a spin in state (11) turning into a state (6) and thus forming the structure on
the right. The probability of this move is negligible because the probability to pick a (11)
which is around the structure on the left (which contains (3)) is proportional to p2 and
the probability now for it to become a (6) is proportional to p. The result is therefore
proportional to p3 and hence negligible at the order we are keeping. This kind of analysis
can be performed for all the cases and thus prove that the structures labelled A to F are at
most of order p2 and every other is negligible.

The next step is to list all the possible moves that are relevant for the second order of
our expansion and understand what are the consequences of each of these moves. This will
allow us to write down all the terms of the master equations for the probabilities N11, N6,
N3 and N10. In practice we find that for (3) and (10) we need an equation for each of the
configurations in which these states can be found so we define the following quantities
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We can now express the probabilities for all the structures introduced above in terms of
the probabilities of the various states

P (A) = (N6 − 2N3a − 2N3b)/2 ,

P (B) = N3a ,

P (C) = N3b = N10c ,

P (D) = N3c/4 ,

P (E) = N10a ,

P (F) = N10b/2 ,

(21)

where the first one comes from the fact that for every two (6) which are not in the structureB
or C (which contain two (6) each) we count a structure A. The derivation of P (B), . . . , P (F)
is straightforward. These expressions turn out to be useful to write down the probabilities
of the moves, as we explain below.

Let us start with all the moves that a site which is in (11) can make. Pick a site in (11)
which is not a neighbor of any structure and turn it into a (6). The probability for this
move is

P11→6 = p, (22)

where we mean the extended, temperature and q dependent, form as in Eq. 15, times the
probability of picking such a (11) state. The latter equals N11 − 3N6 because there are 3
sites in state N11 surrounding every (6) in structure A, and we are neglecting the other
terms of P (A) and the other structures because they will lead to contributions of higher

11



orders. In this move we lose 2 (11) states and we gain 2 (6) states. In the following sketch
we represent the move, we give its probability P and we indicate below the sketch the loss
and gain of vertices induced by the move.

P = p(N11 − 3N6)
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11

11
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11
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11
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11

11

6

11

11

−2N11,+2N6

In a similar way, the probability of all the other 15 possible moves (to order p2) are
computed in the Appendix.

4.3 The master equations

Collecting all the contributions for each of the probabilities Na we can now build the master
equations governing their evolution in this approximation

Ṅ11 = −N11
12

4eβ + q − 4
− 2N11p+ 2N6 −

7

4
N6p− 2N3a + 2N10b + 2N10a (23)

+ 2[(N3b +N3a)P3→10 − (N10b +N10a)P10→3] (24)

Ṅ6 = 2N11p− 2N6 +
1

2
N6p+ 4(N3a +N3b) + 2(N3cP3→10 −N10cP10→3) (25)

− 2[(N3b +N3a)P3→10 − (N10b +N10a)P10→3] (26)

Ṅ3a =
1

4
N6p− 2N3a − (N3aP3→10 −N10aP10→3) (27)

Ṅ3b =
1

2
N6p− 2N3b − (N3bP3→10 −N10bP10→3) + (N3cP3→10 −N10cP10→3) (28)

Ṅ3c = −4(N3cP3→10 −N10cP10→3) (29)

Ṅ10a = N11
4

4eβ + q − 4
− 2N10a + (N3aP3→10 −N10aP10→3) (30)

Ṅ10b = N11
8

4eβ + q − 4
− 2N10b + 2(N3bP3→10 −N10bP10→3) (31)

Ṅ10c = Ṅ3b =
1

2
N6p− 2N3b − (N3bP3→10 −N10bP10→3) + (N3cP3→10 −N10cP10→3). (32)
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We want to solve the equations at stationarity, to do so we write down the probabilities in
powers of p

N11 = α0 + α1p+ α2p
2

N6 = β1p+ β2p
2

N3a = γ2ap
2

N3b = γ2bp
2

N3c = γ2cp
2

N10a = δ2ap
2

N10b = δ2bp
2

N10c = δ2cp
2.

(33)

The normalization condition N11 +N6 +N3a +N3b +N3c +N10a +N10c +N10b = 1 implies
α0 = 1, β1 = −α1, α2 = −(β2 + γ2a + γ2b + γ2c + δ2a + δ2b + δ2c). Plugging the expressions
in (33) in the master equation we find from Ṅ3c = 0 that γ2c = δ2cP10→3/P3→10, the first two
equations contain first power terms of the form 2α1p+2p, thus α1 = −1 and by construction
δ2c = γ2b. We are left with

Ṅ11 = −12xp2 + 2p2 + 2β2p
2 − 7

4
p2 − 2γ2ap

2 + 2δ2bp
2 + δ2ap

2+

+ 2p2[(γ2b + γ2a)P3→10 − (δ2b + δ2a)P10→3]

Ṅ6 = −2p2 − 2β2p
2 +

1

2
p2 + 4p2(γ2a + γ2b)

− 2p2[(γ2b + γ2a)P3→10 − (δ2b + δ2a)P10→3]

Ṅ3a =
1

4
p2 − 2γ2ap

2 − p2(γ2aP3→10 − δ2aP10→3)

Ṅ3b =
1

2
p2 − 2γ2bp

2 − p2(γ2bP3→10 − δ2bP10→3)

Ṅ10a = 4xp2 − 2δ2ap
2 + p2(γ2aP3→10 − δ2aP10→3)

Ṅ10b = 8xp2 − 2δ2bp
2 + 2p2(γ2aP3→10 − δ2aP10→3),

(34)

where x ≡ p−2/(4eβ + q − 4).
From Ṅ10a = 0 we get

δ2a =
4x+ γ2aP3→10

2 + P10→3
, (35)

from Ṅ3a = 0

γ2a =
1/2 + P10→3/4 + 4xP10→3

4 + 2P10→3 + 2P3→10
, (36)

Ṅ10b = 0 gives

δ2b =
4x+ γ2bP3→10

1 + P10→3
, (37)

Ṅ10b = 0

γ2b =
1/2 + P10→3/2 + 4xP10→3

2 + 2P10→3 + P3→10
, (38)

and finally from Ṅ6 = 0

β2 = −3/4 + 2(γ21 + γ22)− [(γ2a + γ2b)P3→10 − (δ2b + δ2a)P10→3]. (39)
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Thus summarizing

α0 = 1

α1 = −1

α2 = −(β2 + γ2a + γ2b + γ2c + δ2a + δ2b + δ2c)

β1 = −α1

β2 = −3/4 + 2(γ21 + γ22)− [(γ2a + γ2b)P3→10 − (δ2b + δ2a)P10→3]

γ2a =
1/2 + P10→3/4 + 4xP10→3

4 + 2P10→3 + 2P3→10

γ2b =
1/2 + P10→3/2 + 4xP10→3

2 + 2P10→3 + P3→10

γ2c = δ2cP10→3/P3→10

δ2a =
4x+ γ2aP3→10

2 + P10→3

δ2b =
4x+ γ2bP3→10

1 + P10→3

δ2c = γ2b.

(40)

4.4 Numerical tests

In order to put the approach above to the numerical test, we collected the proportions Na

measured with the heat bath Monte Carlo simulations and we compared them to the values
computed with the master equation analysis. Concretely, we used systems with L = 103,
and q = 104, 105 and 106, at T/Tc = 0.99. The numerical and analytic data are displayed
in Tab. 1. The number of digits shown correspond to results up to order p2. The agreement
between the values found with the two approaches is excellent.

q 10 000 100 000 1 000 000
numerical analytic numerical analytic numerical analytic

N11 0.95731 0.95729 0.986509 0.986509 0.9957020 0.9957023
N6 0.04054 0.04064 0.013269 0.013272 0.0042752 0.0042751
N3a 0.00021 0.00021 0.000022 0.000022 0.0000023 0.0000023
N3b 0.00042 0.00041 0.000044 0.000044 0.0000046 0.0000046
N3c 0.00048 0.00046 0.000050 0.000050 0.0000053 0.0000053
N10a 0.00019 0.00019 0.000020 0.000020 0.0000020 0.0000020
N10b 0.00044 0.00041 0.000045 0.000044 0.0000046 0.0000046
N10c 0.00037 0.00038 0.000039 0.000039 0.0000040 0.0000040

Table 1: Na for systems with L = 103 and q = 104, 105, 106 evolving at temperatures T/Tc = 0.99 after an
instantaneous quench from infinite temperature. The first column show the numerical values at MC times such
that the system is stationary in the metastable state, while the second ones give the asymptotic values calculated
with the master equations approach. Only the relevant values (up to order p2) are shown. The error bars on the
numerical values are always smaller than one on the last shown digits.

In Tab. 2 we show data for a system with linear size L = 103 and q = 106, and we vary
the temperature, moving progressively towards criticality at Tc. As explained below, for this
value of q, we observe a divergency of the time required to reach a ferromagnetic state at
T/Tc ≃ 0.9. The data in Tab. 2 show that the analytic approximation is very good (in the
metastable state) even moderately away from Tc. However, the numerical measurements
at T/Tc = 0.88 have been done at time t = 103, and at this time the agreement between
numerical and analytical data is still good but not as good as for the higher temperatures.
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In particular, one can notice a relatively important difference in N11 and N3c. For longer
measuring times, one would see this difference increase, showing that the system leaves
the metastable state at T/Tc = 0.88. For the higher temperatures, there are no time-
dependencies in the numerical results and for all purposes the metastable states remain for
ever.

T/Tc p N11 N6 103N3a 103N3b 103N3c 103N10a 103N10c

0.88 0.01017
numeric 0.9895816 0.0101646 0.0130 0.0260 0.1772 0.0020 0.0039
analytic 0.9895916 0.0101674 0.0129 0.0259 0.1705 0.0020 0.0039

0.92 0.00725
numeric 0.9926679 0.0072481 0.0066 0.0132 0.0444 0.0020 0.0039
analytic 0.9926690 0.0072485 0.0066 0.0131 0.0438 0.0020 0.0040

0.98 0.00459
numeric 0.9953845 0.0045892 0.0026 0.0053 0.0070 0.0020 0.0040
analytic 0.9953847 0.0045892 0.0026 0.0053 0.0070 0.0020 0.0040

0.99 0.00428
numeric 0.9957020 0.0042752 0.0023 0.0046 0.0053 0.0020 0.0040
analytic 0.9957023 0.0042751 0.0023 0.0046 0.0053 0.0020 0.0040

Table 2: Na for systems with linear size L = 103, q = 106 and various values of T/Tc (corresponding to different
values of p ((second row)). For each temperature, the first line shows the numerical values at MC times such that
the system is stationary in the metastable state, while the second ones give the asymptotic values calculated with
the master equations approach. The error bars for the numerical values are of the order the last digit or smaller
and they are not shown. We also have MC data for N1, 103N1 = 0.0044 at T/Tc = 0.88, 103N1 = 0.0005 at
T/Tc = 0.92, 103N1 = 0.0000 at T/Tc = 0.98 and T/Tc = 0.99.

Once the proportions Na are known it is possible to thermodynamically characterize
the metastable states. For instance, we can evaluate the energy per spin of the disordered
metastable state extended below the critical temperature, exploiting the stationary solutions
obtained above. The only configurations that contribute to the energy are the (6) ones with
one bond and the (3) ones with two bonds. Thus we have

e(d)(β, q) = −1

2
(N6(β, q) + 2N3(β, q)) , (41)

where the 1/2 factor avoids double counting of the bonds on the lattice. Note that for quench
inverse temperature β < βc the expression in Eq. (41) should provide the equilibrium value
of the energy at β. In Fig. 4 we plot the energy density of the disordered state as predicted
by Eq. (41) as a function of q at different ratios between the quench temperature and the
critical one. The values of the energy density obtained with Monte Carlo simulations are
also reported in the figure. The latter are time averages over single runs computed as long as
the system stays in the metastable state (the error bars represent one standard deviation).
A comparison with the exact mean field result for the energy at criticality [2] is reported. It
is possible to appreciate that, for all temperatures, the energy decreases (in absolute value)
approximatively as q−1/2, this is expected because the major contribution to Eq. (41) is
given by the (6) term which scales indeed as q−1/2 (see section above). Figure 5 shows
instead the behaviour of the energy density of the disordered state as a function of the final
quench temperature. The results of the expansion are again tested against Monte Carlo
numerical simulations showing really good agreement.

5 Upper-critical quenches: the ordered metastable phase

As we anticipated above, the upper-critical protocol, which deals with the persistence of
the ordered phase after a quench to a temperature T > Tc starting from a fully ordered
configuration, is less interesting from a technical point of view. We nonetheless perform a
similar analysis (though less rich in terms of numerical evaluations) as for the disordered
phase in order to complete the picture of metastability.
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Figure 4: Theoretical predictions in Eq. (41) and simulations results for the energy density of a system with
L = 200 when it is stuck in a paramagnetic metastable configuration, as a function of the number of states q,
for several ratios of the quench temperature over the critical one. The numerical values are time averages over a
single run. The error bars equal a standard deviation. The dashed tilted line correspond to the mean field exact
result at criticality [2].
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Figure 5: Energy density of the disordered metastable state vs T/Tc for several values of q (increasing from
bottom to top), evaluated from Eq. (41) (colored solid lines). Values from simulations are also presented with
data points. They are time averages of the energy density. The error bars correspond to a standard deviation.
The critical temperature is indicated with a vertical black line.

5.1 Large q and large N behaviour

Let us take the initial configuration to be at zero temperature, that is to say, a completely
ordered state. Thus, the system is in one of the q possible ground states and, consequently,
all the N sites are in state (0).

Recalling that (see Eq. (13)) for large q we have eβ ≃ qTc/2T , during a lattice update,
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the probability for a state (0) to turn into a state (7) can be written as

P0→7 =
q − 1

q + e4β − 1
≃ q

q + q2Tc/T
=

1

1 + q2Tc/T−1
. (42)

Thus, in the upper critical regime, the crossover temperature that separates two very dif-
ferent behaviours in the q → ∞ limit is T = 2Tc:

P0→7 → 1 at T > 2Tc , (43)

the (0) states turn into (7) states, and the system disorders really fast. At the crossover
temperature

P0→7 → 1/2 at T = 2Tc , (44)

implying that states (7) can appear. Every (7) states will have as neighbours (1) states
which (always in the limit q → ∞) will become states (8) with probability P1→8 → 1, and
bring the system to a disordered configuration. Finally,

P0→7 → 0 at T < 2Tc , (45)

and the state (0) is completely stable in this temperature window close to Tc.
Going back to large but finite q, in Fig. 6, we show the evolution of Na as a function of

time for a = 0, 1 and 7, we only show the states which contribute the most.

10−3

10−2

10−1

100

100 101 102 103 104

Na

t

a = 0
1
7

Figure 6: Na(t) for a = 0, 1, 7 evolving in time at T = 1.01Tc in a square lattice system with linear size L = 103

and q = 103. In thin lines are reported the analytical predictions obtained from the master equations below, in
thick lines data from a numerical simulation. Note that the (1) and (7) abundances are one the vertical translation
of the other. This is due to the fact that, by construction, there are four (1) states for every (7) one (see below).

Therefore, at upper critical temperatures, the following hierarchy holds

N1 ≃ N7 ≪ N0 ≃ 1 , (46)

where the Na are normalised by the number of spins in the sample, and all other states are
negligible.

5.2 The leading updates at T ≃ Tc

Using again the expansion parameter p with,

p2 ≃ q−1 ≃ P0→7 at T ∼ Tc , (47)
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we consider the evolution of N0 ≃ 1, N7 ≃ p2 and N1 ≃ p2. Again we stop at second order
in p.

It is straightforward to verify that the only structure that can appear in the sea of aligned
spins (i.e., in the (0) state), with a probability proportional to p2 or greater, is a (7) state
surrounded by (1) states

0

0

1

0

0

1

7

1

0

0

1

0

0

Indeed there are only two ways to build different structures from the one above. The first
one is that a (1), which has a probability proportional to p2 to be picked, turns into a (4) or
into an (8), respectively with probabilities P1→4 ∼ p2 and P1→4 ∼ p. The other possibility
is that a (0) close to a 1, which again has probability proportional to p2 to be picked, turns
into a (7), with probability P0→7 ∼ p2. The overall probabilities therefore are such that
both scenarios are negligible in our approximation.

The only moves that should be taken into account to build a master equation for the
ordered case are the switching of a (0) (surrounded by other (0) states) into a (7) and vice

versa. In particular, we have that the probability of picking such a (0) is N0 − 8N7, because
there are 8 (0) states next to a (1) surrounding each (7), but to the second order in p we
only retain N0, and the probability for it to turn into a (7) creating in doing so also 4 (1)
states is P0→7

P = N0P0→7

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

1

0

0

1

7

1

0

0

1

0

0

−5N0,+N7,+4N1

The inverse move, consistently, with probability N7P7→0 causes the destruction of 4 (1)
states and of 1 (7) state creating 5 (0) states

P = N7P7→0
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5.3 The master equations

The master equations are therefore

Ṅ0 = −5N0P0→7 + 5N7P7→0

Ṅ7 = −N7P7→0 +N0P0→7

Ṅ1 = −4N7P7→0 + 4N0P0→7 .

(48)

To solve them we write down the probabilities in powers of p

N0 = α0 + α1p+ α2p
2

N7 = β2p
2

N1 = γ2p
2.

(49)

By construction we have N1 = 4N7 and so γ2 = 4β2, moreover the normalization condition
N0 + N7 + N4 = 1 impose α0 = 1, α1 = 0 and α2 = −5β2. Finally, looking for the
stationary solution of either one of the three differential equations above, we find β2 =
1/P7→0. Summarizing

α0 = 1

α1 = 0

α2 = −5/P7→0

β2 = 1/P7→0

γ2 = 4/P7→0 .

(50)

5.4 Numerical tests

We can put the results from the previous section to the numerical test analysing, as for the
disordered case, an interesting observable: the energy density of the metastable state. In
this case the spin which falls in the (0) configuration contributes with four bonds, while the
ones in (4) with three bonds. The ordered energy density thus reads

e(o)(β, q) = −1

2
(4N0(β, q) + 3N4(β, q)) . (51)

This energy scales as q−1 at fixed temperature, consistently with the fact that the major
contribution comes from (0). The agreement with the mean field results [2] and the outcome
of the simulations analysed as in the disordered case is really good as can be checked by
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inspecting Fig. 7. The dependence of the energy density of the ordered state, as evaluated
from Eq. (51), on temperature is portrayed in Fig. 8, where the comparison to the results
of numerical evaluations shows again a perfect agreement.

10−5

10−4

10−3

10−2

10−1

100

102 103 104 105

q−1

−
(e

(o
) (
∞

,q
)
−
e(

o
) (
β
,q
))

q

Mean field
T/Tc = 1.00

1.05
1.10

Figure 7: Energy density of the ordered state as predicted by Eq. (51) and simulation data, for L = 200, as a
function of the number of states q, for several ratios of the quench temperature. The numerical values are averages
in time of the energy for a single realisation, the error bars correspond to a standard deviation. Exact mean field
predictions at criticality are reported as well (black dashed line) [2].
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Figure 8: Ordered energy vs T/Tc for several values of q, evaluated from Eq. (41). Values from simulations for
L = 200 are also present and are time averages for a single realization of the energy of the system as long as it
stays in the metastable state, the error bars correspond to a standard deviation.

6 Conclusions

Most dynamic studies of the bidimensional Potts model focused on the analysis of the
coarsening dynamics after deep quenches at moderate subcritical temperatures [6, 34–36]
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so as to avoid getting stuck in long-lived metastable configurations [6, 37–41]. The study
of metastability and thermally assisted nucleation close to the critical temperature in this
rather simple model has not been so much developed in the literature.

Numerical evidence for thermodynamic metastability in finite but large size systems
with q > 4 was provided in various papers. In particular, the analysis of the short-time
dynamics [44] and Binder cumulant [45] was recently used with this purpose. However,
Meunier and Morel [42] argued that thermodynamic metastability should disappear in the
infinite system size limit and other authors [43] provided arguments supporting this claim.
Extracting the infinite size limit behaviour, and the eventual disappearance of metastability
from numerical studies is, however, a dauntingly hard task.

Last year, some of us wrote a short note on the nucleation and growth dynamics of the
two dimensional Potts model [46]. With it we started our study of metastability in this
(and eventually other) systems with first order thermal phase transitions. In this paper
we developed a large q expansion of the heat bath microscopic dynamics that allowed us to
deduce, analytically, the metastability properties of the finite but large size model, in a rather
wide range of temperatures around criticality (namely, from Tc/2 to 2Tc). Although in the
strictly infinite size limit the spinodals are expected to approach the critical point [42], we
observe that the lifetime of the metastable state goes beyond reasonable times for relatively
small system sizes. Our expansion allows us to capture the properties of these metastable
states with amazing numerical accuracy.

References

[1] R. B. Potts, Some generalised order-disorder transformations, Proc. Cambridge Phil.
Soc. 48, 106 (1952).

[2] F. Y. Wu, The Potts model, Rev. Mod. Phys. 54, 235 (1982).

[3] R. J. Baxter, Exactly solved models in statistical mechanics, 1st edition (Academic
Press, 1982).

[4] D. Weaire and N. Rivier, Soap, cells and statistics - random patterns in two dimensions,
Contemp. Phys. 25, 59 (1984).

[5] J. Stavans, The theory of cellular structures, Rep. Prog. Phys. 56, 733 (1993).

[6] J. Glazier, M. Anderson and G. S. Grest, Coarsening in the 2-dimensional soap froth

and the large Q Potts model - a detailed comparison, Phil. Mag. B 62, 615 (1990).

[7] A. D. Sokal, Chromatic polynomials, Potts models and all that, Physica A 279, 324
(2000).

[8] J. Salas and A. D. Sokal, Transfer matrices and partition-function zeros for antiferro-

magnetic Potts models. I. General theory and square-lattice chromatic polynomial, J.
Stat. Phys. 104, 609 (2001).

[9] M Blatt, S. Wiseman, and E. Domany, Superparamagnetic Clustering of Data, Phys.
Rev. Lett. 76, 3251 (1996).

[10] J. Reichardt and S. Bornhold, Detecting fuzzy community structures in complex net-

works with a Potts model, Phys. Rev. Lett. 93, 218701 (2004).

[11] P. Ronhovde, D. Hu, and Z. Nussinov, Global disorder transition in the community

structure of large-q Potts systems, EPL 99, 38006 (2012).

[12] Vik. S. Dotsenko, Vl. S. Dotsenko, M. Picco, and P. Pujol, Renormalization group so-

lution for the two-dimensional random bond Potts model with broken replica symmetry,
Europhys. Lett. 32, 425 (1995).

[13] Vl. S. Dotsenko, M. Picco, and P. Pujol, Renormalisation group calculation of correla-

tion functions for the 2D random bond Ising and Potts models, Nucl. Phys. B 455, 701
(1995).

21



[14] T. R. Kirkpatrick and D. Thirumalai, Mean-field soft-spin Potts glass model - statics

and dynamics, Phys. Rev. B 37, 5342 (1988).

[15] D. Thirumalai and T. R. Kirkpatrick, Mean-field Potts glass model - initial-condition

effects on dynamics and properties of metastable states, Phys. Rev. B 38, 4881 (1988).

[16] T. R. Kirkpatrick, D. Thirumalai and P. G. Wolynes, Scaling concepts of the dynamics

of viscous liquids near an ideal glassy state, Phys. Rev. A 40, 1045 (1989).

[17] G. Biroli and L. Berthier, Theoretical perspective on the glass transition and amorphous

materials, Rev. Mod. Phys. 83, 587 (2011).

[18] T. R. Kirkpatrick and D. Thirumalai, Colloquium: Random first order transition theory

concepts in biology and physics, Rev. Mod. Phys. 87, 183 (2015).

[19] J. D. Gunton, M. San Miguel and P. S. Sahni, in Phase Transitions and Critical Phe-
nomena vol 8, eds. C Domb and J L Lebowitz (New York: Academic, 1983).

[20] K. Binder, Theory of first order phase transitions, Rep. Prog. Phys. 50, 783 (1987).

[21] D. W. Oxtoby, Homogenoeus nucleation: theory and experiment, J. Phys.: Condens.
Matter 4, 7627 (1992).

[22] K. F. Kelton and A. L. Greer, Nucleation in Condensed Matter (Elsevier, Amsterdam,
2010).

[23] R. J. Baxter, Potts model at the critical temperature, J. Phys. C 6, L445 (1973).

[24] L. Mittag and M. J. Stephen, Mean-field theory of the many component Potts model,
J. Phys. A: Gen. Phys. 7, L109 (1974).

[25] A. Baracca, M. Bellesi, R. Livi, R. Rechtman, and S. Ruffo, On the mean field solution

of the Potts model, Phys. Lett. A 99, 156 (1983).

[26] K. Binder, Static and dynamic critical phenomena of the two-dimensional q-state Potts

model, J. Stat. Phys. 24, 69 (1981).

[27] K. Nam, B. Kim and S. J. Lee, Nonequilibrium critical relaxation of the order parameter

and energy in the two-dimensional ferromagnetic Potts model, Pays. Rev. E 77, 056104
(2008).

[28] X. Huang, S. Gong, F. Zhong and S. Fan, Finite-time scaling via linear driving: Appli-

cation to the two-dimensional Potts model, Phys. Rev. E. 81, 041139 (2010).

[29] C. D. Li, D. R. Tan and F. J. Jiang, Applications of neural networks to the studies of

phase transitions of two-dimensional Potts models, Annals of Physics 391, 312 (2018).

[30] S. Iino, S. Morita, N. Kawashima, and A. W. Sandvik, Detecting Signals of Weakly

First-order Phase Transitions in Two-dimensional Potts Models, J. Phys. Soc. Japan
88, 034006 (2019).

[31] F. Y. Wu, The infinite-state potts model and restricted multidimensional partitions of

an integer, Mathematical and Computer Modelling 26, 269 (1997).

[32] J. Johansson and M. E. Pistol, Microcanonical entropy of the infinite-state Potts model,
Physics Research International, 2011, ID 437093 (2011).

[33] R. Burioni, F. Corberi, and A. Vezzani, Complex phase-ordering of the one-dimensional

Heisenberg model with conserved order parameter, Phys. Rev. E 79, 041119 (2009).
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A Appendix: Probability of the moves

Consider starting from a state (11) next to a structure A, turn it into a state (6), and
make then a structure B be born. The probability of picking the starting site is N6 because
there are 2 (11) in such position for every structure A (again we are keeping only the terms
which at the end will contribute up to the second order) and the probability to switch to
(6) exactly in the needed direction is p/4. The probability of the move is thus pN6/4 and
we end up with with 1 (11) less and 1 (3a) more.

P = pN6/4
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The same move but with as a consequence a formation of a structure C has mutatis mutandis

probability pN6/2, and we lose 2 states (11) and gain 1 (3b) and 1 (10c):

P = pN6/2
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A site in a state (11) that is far from any structures and flips to another q value but
remains in the state (11) can, with probability N114/(4e

β + q − 4) assume the same colour
of one of its next to nearest neighbours thus forming an E or, again with probability,
N114/(4e

β + q − 4) form an F structure. We have, respectively,

P = N11(4/(4e
β + q − 4))
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and

P = N11(4/(4e
β + q − 4))
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Picking one of the two gray sites which are part of an E structure has probability 2P (E) =
2N10a. The probability for it to change colour but stay in a state (11) is P11→11 = 1 − p.
Thus, the following move

P = 2N10a
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occurs with probability 2N10a and causes a loss of a (10a) and a gain of an (11)
Similarly, there are two gray (11) which are part of a structure F. Thus with probability

N10b the following move cause a loss of 2 (10b) and the gain of 2 (11)

P = N10b
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Now we consider the cases when the starting state is a (6). The probability of picking a
(6) which is part of a structure A is 2P (A) = N6 − 2N3a − 2N3b and it turns to a (11) with
probability 1− p. So, to the second order in p2, with probability N6(1− p)− 2(N3a +N3b),
2 (6) disappears and 2 (11) appears
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P = N6(1− p)− 2(N3a +N3b)
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Considering instead picking one of the two (6) which are part of a structure B or C, the
transition to a (11) leads respectively with probability 2N3a to a loss of 1 (3a) and a gain
of a (11)

P = 2N3a
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and with probability 2N3b to the distruction of 1 (3b) and 1 (10c) and the creation of 2 (11)
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P = 2N3b
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Now we consider all the moves involving as starting sites a (3) or a (10) of all the possible
kinds. This states, which can be picked with probability proportional to p2 can turn one into
the other with probabilities P3→10 ∼ 1/2 and P10→3 ∼ 1/2 for T ≃ Tc. Consider picking a
(3a), this happens with probability N3a, if it turns into a (10) (it happens with probability
P3→10) it cause the loss of 1 (3a) and 2 (6) and the gain of 1 (10a) and 2 (11)

P = N3aP3→10
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The inverse is
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P = N10aP10→3
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If we pick a (3b), the probability of the move is N3bP3→10 and cause the destruction of
1 (3b), 1 (10c) and 2 (6) while creates 2 (10b) and 2 (11). We have

P = N3bP3→10
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and the opposite move with
P = N10bP10→3
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Finally, with probability N3cP3→10, 4 (3c) are destroyed and 1 (3b), 1 (10c) and 2 (6)
are created by

P = N3cP3→10
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the opposite of which happens with probability

P = N10cP10→3
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