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Abstract Seismic recorders register vibrations from
all possible sources. Even though the purpose of
the seismic instrument is, usually, to record ground
motions coming from tectonic sources, other sources
such as vehicles can be recorded. In this study, a
machine learning model is developed by using a con-
volutional neural network (CNN) to separate three dif-
ferent classes which are earthquakes, vehicles, and
other noises. To do that vehicle signals from various
accelerometric stations from Italy are visually detected.
Together with the vehicle signals noise and earthquake
information coming from Italy are used. Inputs of the
database are 10s long seismic traces along with their
frequency content from three channels of the seismic
recorder. CNN model has an accuracy rate of more
than 99% for all classes. To understand the capabil-
ities of the model, seismic traces with vehicles and
earthquakes are given as input to the model which the
model successfully separates different classes. In the
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case of the superposition of an earthquake and a vehi-
cle, the model prediction is in favor of the earthquake.
Moreover, earthquake signals from various databases
are predicted with more than 90% accuracy.
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1 Introduction

Seismic instruments record the movement of the
ground, which is a superposition of various seis-
mic sources. The sources can be subcategorized into
three categories: tectonic, environmental, and anthro-
pogenic. Tectonic sources can be earthquakes and vol-
canic tremors. Environmental sources are wind (With-
ers et al. 1996), landslides (Lacroix et al. 2012), thun-
ders (Lythgoe et al. 2021), avalanches (Suriñach et al.
2005) and so on. Cars, trains, and quarry blasts can be
examples of anthropogenic sources. Detection of the
seismic sources would help us to investigate further
the detection of small tectonic events and their loca-
tions (Vičič et al. 2019), characterization of features
of the ground (e.g., seismic tomography Bianchi et al.
2021), and changes under and above the surface of the
earth (Zhao and Rector 2010).

Vehicles can be problematic for seismic monitor-
ing (Allen 1978). Seismometers close to major roads
may record vehicles passing continuously. The earth-
quake detection algorithms canmisinterpret these vehi-
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cle noises, which can be considered S wave arrival. In
case of an earthquake, the presence of a vehicle pass-
ing on any station of a seismic network may lead to
a miscalculation of the location and magnitude of an
earthquake. Hence, seismic network capabilities can be
improved by classifying vehicle passages and ignoring
them in real-time earthquake monitoring.

Vehicles are not only detected by seismometers
but also with other geophysical monitoring tools such
as magnetometers (Wang et al. 2017) and acoustic
recorders (Liu et al. 2019, Min et al. 2024, Sun et al.
2023, Yuan et al. 2024). To detect the vehicles, differ-
ent approaches are used, such as frequency-time analy-
sis (Ghosh et al. 2015), wavelet analysis (Sharma et al.
2012), and attenuation analysis (Meng et al. 2021). Dou
et al. (2017) used the dispersion curves calculated with
distributed acoustic sensing (DAS) recorders. Wavelet
analysis are also carried out for DAS sensors (Liu et al.
2019). Machine learning methods are used by using
feature extraction by both time and frequency domain
information (Ahmad et al. 2022, Hashima et al. 2023,
Jakkampudi et al. 2020, Jin et al. 2018, Köse and
Hocaoğlu 2023, Uttarakumari et al. 2017, Zhu et al.
2023).

In this study, a machine learning model is developed
to identify several features that can be monitored on
seismic traces. Three main features are earthquakes,
vehicles, and noise. In Section 2, data is introduced, and
in Section 3, features of the machine learning model
are explained. Results of the study are presented in
Section 4, and results are interpreted in Section 5.

2 Data

Data are collected from the National Accelerometric
Network (RAN), owned and managed by the Italian
Civil Protection Department (Costa et al. 2022, Gorini
et al. 2010, Presidency of Counsil of Ministers - Civil
Protection Department 1972, Zambonelli et al. 2011).
Themain purpose of the RAN is to provide information
related to ground motion parameters (e.g., PGA, PGV,
and PSA) and earthquake physics parameters (e.g.,
earthquake magnitude). Stations are installed close to
the population centres to understand the potential dam-
age of earthquakes. Due to that, seismic traces of the
RAN carry information about not only the earthquakes
but also the anthropogenic events such as quarry blasts

(Gulia and Gasperini 2021; Ertuncay et al. 2024) and
vehicles. These non-tectonic sources may have various
unwanted effects on seismic monitoring duties.

For instance, quarry blasts may be labelled as earth-
quakes,which changes the seismicity of the region, thus
the seismic hazard of the region (Ghofrani et al. 2019,
Gulia and Gasperini 2021). Vehicles may pass near the
seismic recorders, which is a common event in RAN
sincemany stations are installed inside public buildings
that are generally located near the roads. When a seis-
mic event occurs in a region, a vehicle can pass near a
station, which can be interpreted as a part of the occur-
ring event. This leads to an erroneous determination of
the epicenter of the event.

Detection of a vehicle can also help to understand
the attenuation of the shallow subsurface (Le Gonidec
et al. 2021, Meng et al. 2021), the passage of humans
(Ketcham et al. 2005) and vehicles (Kalra et al. 2020,
Riahi and Gerstoft 2015, Wang et al. 2019) in a partic-
ular region.

In vehicle detection, 2 data sources are used, which
are the STEAD (Mousavi et al. 2019) database and the
RAN. The data set contains three data types: noise,
earthquake, and car. Noise data consists of 10000 data
points from STEAD and RAN. Earthquake data has
36559 waveforms from events that are publicly avail-
able (ran.protezionecivile.it, last access 4th of Septem-
ber 2023). Vehiclewaveforms are coming fromCNMT,
PBN, and PLTA stations in 13 days of 2019 of RAN
(Fig. 1), and in total, there is 14885 waveforms.

The starting and ending points of the vehicles are
picked via visual inspection. Noise data from RAN are
selected from the car-free time ranges from the same
dates for vehicles. All signals are detrended, sampling
rates are fixed to 100Hz, 4 corner Butterworth-band-
pass filtered between0.5Hz and50Hz, and are in accel-
eration domain.

The data length of the waveforms is 10 s. The num-
ber is selected by trial and error method between 4 s,
5 s, 10 s, and 20 s. Theoretical P and S wave arrival of
earthquakes are calculated, and only the signals with
P-S difference less than 7s are selected. At least 3 s of
S wave information is provided to the model, but the
selection is essentially made arbitrarily. This is impor-
tant because the S wave has larger amplitudes than the
P wave, and vehicle records have spiky features that
can be similar to the nature of the S wave. Earthquakes
havemagnitudes betweenM2.5 toM6.0.The frequency
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Fig. 1 Locations of the stations (red triangles) that are used in vehicle detection study. Google Earth with satellite information from
Landsat/Copernicus are used

content of each class has different information (Fig. 2).
Furthermore, Fourier transforms (FFTs) are calculated
in real-time for earthquake monitoring purposes (Gallo
et al. 2014). If a vehicle duration is shorter than 10 s,
the signal is padded with zeros. On the other hand, the
first 10 s is selected when it is longer than 10 s.

Both waveforms and FFTs are normalized by using
the maximum amplitude in each channel. Peak ground
acceleration (PGA) values are similar between earth-
quakes and vehicles (Fig. 3) depending on the magni-
tude of the event and the source-to-site distance.Hence,
amplitude information cannot be used as an indicator
of classification.

3 Method

Our model is based on a convolutional neural network
(CNN). The inputs of the model have time, s, and
frequency, F(s), representation of the seismic record.
Specifically, the time series input consists of 1000 data
points of 10 s signal with 100Hz sampling rate. The
frequency content of the time series includes 500 data
points of frequencies up to 50Hz, with 0.01Hz inter-
val. The main rationale for using frequency and time
series data is to leverage routines already implemented
for real-time earthquake monitoring tasks (Costa et al.
2022). Vehicles and earthquakes exhibit distinct char-
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Fig. 2 Averaged
frequencies of channels of
noise (green), vehicle
(blue), and earthquake (red)

acteristics in both time and frequency domains com-
pared to background noise. In the time domain, vehi-
cles produce monochromatic waveforms, while earth-
quakes have much more complex time signatures that
vary based on the epicentral distance. In the frequency
domain, the frequency contents of vehicles and earth-
quakes differ, as depicted in Fig. 2.

The CNNmodel comprises two convolutional com-
ponents to handle time and frequency inputs. These
input lengths differ, and the CNNmodel possesses spe-
cialized convolutional parts to process them.Given that
RAN includes three-component seismic recorders, all
components serve as inputs to the CNN, rendering both
waveform and FFT inputs multi-channel four 1D con-
volutional layers, each with 3 channels, interconnected

with max-pooling layers, determine the features from
the inputs. Subsequently, the extracted information is
concatenated and stored as a 1D vector. Densely con-
nect layers and then process this vector to complete the
procedure. The network structure is illustrated in Fig. 4.
Python packages of Tensorflow (Abadi et al. 2015) and
Keras (Chollet et al. 2015) are used to construct the
CNN model.

In more detail, both the waveform and FFT com-
ponents of the CNN consist of 4 layers. These layers
have 64, 32, 32, and 16 filters respectively, with kernel
sizes of 6, 3, 3, and 3. The max-pooling layers inserted
between these convolutional layers possess a size of
4 for the first layer and a size of 2 for the subsequent
ones. The activation function employed is the Recti-

Fig. 3 PGAs of vehicle
(blue) and earthquake (red)
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Fig. 4 Convolutional neural network workflow for classification

fied Linear Unit (ReLU), and the initial weights are set
using Glorot normal initialization (Glorot and Bengio
2010). Following the concatenation of the aforemen-
tioned layers, two fully connected layers with 20 and
10 neurons, respectively, are employed,with both using
the ReLU activation function. The concluding layer
emits the probability for 3 classes, with the softmax
activation function determining the most likely class.
The network employs a gradient descent optimizerwith
a learning rate of 0.01.

4 Results

We employed various metrics to assess our model’s
performance in signal source identification. These
included Cohen’s kappa score, the area under the
curve (AUC) of the receiver operating characteristic
(ROC) results (as shown in Fig. 5), and the confusion
matrix. Cohen’s kappa score is particularly valuable
formulti-class classificationproblems, especiallywhen

the classes are imbalanced. In our case, the classes are
noise, earthquake, and vehicle.

κ = p0 − pe
1− pe

(1)

In Eq. 1, p0 represents the observed accuracy, sig-
nifying that the classifier has correctly classified the
data throughout the given set. pe denotes the expected
accuracy, which can be interpreted as the total sum of
correct and incorrect predictions. The κ value ranges
between 0 and 1, with values closer to 1 indicating
superior results. We employed a one-vs-rest approach
for AUC, wherein each class is evaluated against the
rest. AUC values fall between 0 and 1, and predictions
approaching 100% accuracy yield AUC scores closer
to one. Additionally, we display the results using a con-
fusion matrix, which offers a summarized view of the
model’s predictions. For a flawless model, entries in
the confusion matrix should align diagonally.

123



J Seismol

Fig. 5 Receiver operating characteristic performance of devel-
oped mode for each class

The model’s evaluation was conducted using 4-fold
cross-validation, and the results were averaged. To cir-
cumvent the potential bias of a “lucky” training set,
experiments were repeated 5 times. This resulted in a
total of 20 experiments, with 113583 signals for each
training fold. Models have trained over 20 epochs, and
at the end of these epochs, each model was evaluated
using a distinct validation set, comprising 25% of the
database (Table 1). Training was halted if the loss func-
tion in the validation set increased for 2 consecutive
epochs to prevent overfitting.

For our dataset, the averageAUCand κ values across
the 20 repetitionswere 99.99%and 99.64, respectively.
The average confusion matrix from all repetitions is
presented in Table 2. This indicates that our model can
accurately classify inputs from each class with a preci-
sion exceeding 99%.

5 Discussion and conclusion

AUCvalue in vehicle detection shows that the ability of
the classifier to distinguish classes is significantly good
(99.99%). Moreover, a high κ value means that our
model makes good predictions even though the data is

unbalanced between classes (99.64). To see the capabil-
ities of our model, we made predictions on unseen sig-
nals fromBEL7, CVT, PBN, and TVL stations (Fig. 1).
In Fig. 6, an hour-long prediction results can be seen.
Waveforms are normalized by using the largest ampli-
tude of each channel for an hour-long data, even though
in the prediction process, normalization is done in 10 s
inputs. Starting from the beginning of each signal 10 s
chunks are retrieved and FFTs are calculated for the
prediction. Iteration over data points is done for every
5 s. Predictions of the model are plotted as a line that
varies between 0 to 1 which means 0% to 100% in
terms of prediction for each label.

Due to their relatively long duration, traces with a
superposition of multiple vehicles are avoided in the
manually detected vehicles. However, in reality, it is a
common occurrence. To see the prediction capability of
ourmodel in such cases, specific examples are retrieved
from the RAN (Fig. 7). As can be seen, our model
is capable of successfully detecting these signals as
vehicles. Even though seismic tracesmay change due to
amplification or abbreviation, their frequency content
still carries information from vehicles. Between 6s to
15s in Fig. 7 model prediction returns vehicle output.
It is due to the fact that the input takes 10 s long signal,
which includes the beginning of the vehicle passage
around 17s.

We also analyzed the signals from the dates earth-
quake signals were detected. As seen in Fig. 8, our
model distinguishes vehicles from earthquakes suc-
cessfully. The PBN station is chosen as an example
to show the model’s performance with earthquake and
vehicle passing records. The station is next to the road
in the village of Pievebovigliana in Central Italy. The
recorded earthquake with a magnitude of 2.4 occurred
on the 5th of January 2023 at 21:54:44 (UTC) with
an epicentral distance 3.71km. There are 3 vehicles
passed near the station before the earthquake, and all
the vehicles are successfully labelled along with the
earthquake. However, there are several incidents where
our model predicts many false earthquakes (Fig. 7).

Table 1 Average of
validation data

Label
Noise Earthquake Vehicle

Prediction Noise 23076.60 14.60 11.05

Earthquake 14.80 9122.05 2.90

Vehicle 15.15 7.90 3698.20
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Table 2 Confusion Matrix Label
Noise Earthquake Vehicle

Prediction Noise 99.89 0.06 0.05

Earthquake 0.16 99.81 0.03

Vehicle 0.41 0.21 99.38

False earthquakes may predicted where vehicles are at
present as well as pure background noise. However,
in the visual inspection, we realised their occurrence
is negligible. The model can be retrained with many
earthquake and noise signals to avoid false predictions.
However, we used a relatively small dataset to avoid
uneven train examples among classes. Furthermore,
RAN is already using the earthquake detection routine
from Antelope software (Costa et al. 2022) to detect
earthquakes, and our model is developed to help the
earthquake detection algorithm to exclude vehicles.

Furthermore, we created new sets of data to see
the capability of our model in terms of the detection
of earthquakes. To do that, we used the Italian seis-
mic dataset for machine learning (INSTANCE,Miche-
lini et al. 2021) and ITalian ACcelerometric Archive
(ITACA, Felicetta et al. 2023). From the INSTANCE
database, we select 10000 earthquake signals recorded
by strong motion stations of earthquake magnitude
between M1 and M6. All data from stations we used
in the training and validation process are excluded.
Signals have both P and S arrivals registered, and the

Fig. 6 Model prediction of noise, earthquake, and vehicle
classes an hour-long seismic trace vehicle passing recorded at
BEL7 station on 20th of January 2023 between 18:00 and 19:00
(UTC). Green, blue, and red lines with dots indicate model pre-

diction for noise, vehicle, and earthquake, respectively. From top
to bottom the components are East-West, North-South, and ver-
tical of BEL7 and predictions are plotted on separate channel to
increase the readability of the figure
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Fig. 7 Model prediction of multiple vehicle passing recorded
at CNMT station. Green, blue, and red lines with dots indicate
model prediction for noise, vehicle, and earthquake, respectively.

From top to bottom, the components are East-West, North-South,
and vertical of CNMT, and predictions are plotted on separate
channels to increase the readability of the figure

time difference between arrivals is less than 7s is used.
Our model detect earthquakes with 96.15% accuracy
(Table 3). We also retrieve raw acceleration data from
ITACA with magnitudes larger than M3. All signals
that are coming from training and validation are also
excluded. We calculate the P and S wave arrival of the
signals by using the ray path models of Kennett and
Engdahl (1991) and only selected signals with P and
S wave arrival less than 7s. Our model identify 8038
signals out of 9139 signals correctly (accuracy rate:
87.95%, Table 3).

As a final test of our models, we created an artificial
signal by adding up an earthquake and a vehicle on top
of each other. The idea behind this is to see the capabil-
ity of our model when an earthquake and vehicle traces
arrive at the recorders simultaneously. To do that, we
selected the earthquake trace recorded by CVT station
that occurred on 23rd of April 2023 at 16:17:35 (UTC)
with magnitude 2.5 and epicentral distance of 17.2km.
PGA of the earthquake for the station is 3.94cms−2.
TVL station is located 24km away from Rome, Italy
and next to an ST51a regional road with a distance

of a couple of meters. The station is inside an electric
transformer cabin. A car trace is selected from the 20th
of January 2023 at around 17:45 (UTC) and is used
for the analysis with PGA of 1.51 cm s−2. The vehi-
cle signal is shifted over the earthquake signal second
by second, and in each iteration, model predictions are
observed (Fig. 9). Our model returns with the output
of the earthquake even though there is a vehicle signal
along with the earthquake. The only vehicle output is
retrieved in the last iteration (10 s shift), where only a
small part of the S wave and coda waves are present.
In the training phase, the maximum P-S time differ-
ence is selected as 7 s, which means that in some of the
earthquake signals, the last part of the S wave and coda
waves are not given as input, which can explain why in
the last iteration the output is vehicle. One problematic
outcome of the model prediction would be its preci-
sion. Even though in the input signal there is always
a vehicle signal, the prediction of the model is always
earthquakes with almost 100% certainty. This model is
developed to help misidentify vehicles as earthquakes;
therefore, the prediction satisfies our needs. However,
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Fig. 8 Seismic trace of PBN station recorded on 5th of January 2023 between 22:50 (UTC) and 23:00 (UTC). Red, blue, and green
lines are the model predictions for earthquake, vehicle, and noise, respectively

if the detection of vehicles is more important for the
user, this result might be unsatisfactory. The model is
not developed solely for vehicle detection, and it should
not be used for this purpose.

Overall, our model performs well in detecting vehi-
cle traces and earthquake signals. However, there are
several aspects to stress about the model’s capabili-
ties. First, the input size of the model makes it suitable
only for local earthquakes. Regional and teleseismic

events cover longer time spans on seismic traces, and
themodel is not trained to use such inputs. Second, even
though the noise information is retrieved from two dif-
ferent datasets, it may not provide information on all
types of noises. If the model is used for another study
area, it should be retrained with the data collected from
the area to produce more accurate results. Third, the
model is trained with several thousand vehicle traces
from3 stations, whichmay not be suitable to generalize

Table 3 Model prediction
for earthquakes from
INSTANCE and ITACA
databases

INSTANCE ITACA
Earthquake

Prediction Noise 385 1074

Earthquake 9615 8038

Vehicle 0 27

Accuracy (%) 95.15 87.95
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Fig. 9 Combined signal of the earthquake with shifted vehicle
traces and their FFTs. Red, blue, and black colors present earth-
quake, vehicle, and combined trace, respectively. Model predic-

tions for each class are given in the upper right side of the vertical
component signal

all vehicle trace features. We do not know what type of
vehicles passed near those stations. Hence, we may not
have more specific types of vehicles. Furthermore, we
do not use longer time spans in which the superposition
of themultiple vehicle signals is recorded.However, the

model can be improved by retraining with new vehi-
cle traces to improve its detection capability.Moreover,
input shapes and features can be rearranged depending
on needs. Frequency-time information (e.g., short time
Fourier transform, STFT can also be used instead of
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FFT and might even be enough to separate the three
classes as STFT can detect different seismic sources
(Linville et al. 2019).

The developed model may predict the class of a
given data in order of milliseconds. It is of vital impor-
tancewhen applied to real-time seismicmonitoring. As
explained in (Costa et al. 2022), seismic waveforms are
constantly monitored for the RAN, and when a pos-
sible event is detected, FFTs of the waveforms with
detection are automatically calculated. In this regard,
our model requires no extra data processing step to be
used in RAN routines and practically requires no extra
processing power.

In this study, a machine learning algorithm is devel-
oped to detect three different features: noise, earth-
quake, and vehicle. To do that, visually labelled vehicle
traces from 3 strong motion stations are used for vehi-
cle class, whereas for earthquakes and noise classes,
the STEAD database and RAN data are used. Seismic
traces and frequency content are used to train a CNN
network. The final model is selected from the best-
performing model of 4 folds. The model is capable of
predicting vehicles even with different datasets. Arti-
ficial data are created by superpositioning earthquake
and vehicle traces to understand the limits of the net-
work. In such a case, our model fails to detect the vehi-
cle as it outputs earthquake class with high confidence.
To understand the earthquake detection capabilities of
the model, earthquake data coming from ITACA and
INSTANCE databases are used. The model performs
with high accuracy rates of 87.95% and 95.15% for
the databases, respectively.

This study opens new perspectives for future stud-
ies on vehicle detection using seismic data. The effect
of the superposition of vehicles can be analyzed in
more detail. We do not consider the effect of attenu-
ation, which influences the frequency content of vehi-
cle signals. An extra layer of information should be
collected to analyse such effects, such as visual evi-
dence about the vehicles and their distance from the
station.
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