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Microbial communities confer multiple beneficial effects to their multicellular hosts. To
evaluate the evolutionary and ecological implications of the animal-microbe interactions,
it is essential to understand how bacterial colonization is secured and maintained during
the transition from one generation to the next. However, the mechanisms of symbiont
transmission are poorly studied for many species, especially in marine environments,
where the surrounding water constitutes an additional source of microbes. Nematostella
vectensis, an estuarine cnidarian, has recently emerged as model organism for
studies on host-microbes interactions. Here, we use this model organism to study
the transmission of bacterial colonizers, evaluating the contribution of parental and
environmental transmission to the establishment of bacterial communities of the
offspring. We induced spawning in adult male and female polyps of N. vectensis and
used their gametes for five individual fertilization experiments. While embryos developed
into primary polyps, we sampled each developmental stage and its corresponding
medium samples. By analyzing the microbial community compositions of all samples
through 16S rRNA gene amplicon sequencing, we showed that all host tissues harbor
microbiota significantly different from the surrounding medium. Interestingly, oocytes
and sperms are associated with distinct bacterial communities, indicating the specific
vertical transmission of bacterial colonizers by the gametes. These differences were
consistent among all the five families analyzed. By overlapping the identified bacterial
ASVs associated with gametes, offspring and parents, we identified specific bacterial
ASVs that are well supported candidates for vertical transmission via mothers and
fathers. This is the first study investigating bacteria transmission in N. vectensis, and
among few on marine spawners that do not brood larvae. Our results shed light on the
consistent yet distinct maternal and paternal transfer of bacterial symbionts along the
different life stages and generations of an aquatic invertebrate.
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INTRODUCTION

Multicellular organisms originated in a world dominated
by unicellular organisms. Thus, the current-day relationships
of animals and microbes, from parasitism to mutualism,
evolved most likely from ancient unicellular eukaryote–bacterial
interactions (McFall-Ngai et al., 2013; Bosch and McFall-Ngai,
2021). In aquatic environments these relationships are essential
components of animal health and physiology, influencing the
nutrient cycling (Wegley et al., 2007; Raina et al., 2009; Lema
et al., 2012; Santos et al., 2014), gut development (Rawls et al.,
2004), resistance against pathogen colonization (Jung et al., 2009;
Krediet et al., 2013; Fraune et al., 2015), osmoregulation and
oxidative stress responses (Lesser, 1996; Bourne et al., 2016;
Peixoto et al., 2017; Rosado et al., 2019), as well as larvae
settlement and metamorphosis (Dobretsov and Qian, 2004;
Hadfield, 2010; Tran and Hadfield, 2011; Huang et al., 2012).

Given the importance of these relationships, it is essential to
understand how bacterial colonization is secured and maintained
during the transition from one generation to the next (Bosch
and McFall-Ngai, 2021). There are two ways animals acquire
their bacterial symbionts, horizontal transmission, in which
the bacterial symbionts are acquired from the environment,
and vertical transmission in which the bacterial symbionts
are transferred via the gametes or by direct contact with the
parents. In most animals a combination of both mechanisms
(mixed mode transmission) contributes to the establishment of
early life bacterial colonization (Bright and Bulgheresi, 2010).
While vertical transmission of bacterial symbionts facilitates
the evolution and maintenance of mutualistic relationships
(Koga et al., 2012; Bosch and McFall-Ngai, 2021), horizontal
acquisition requires efficient host selection mechanisms to
ensure appropriate bacterial colonization (Nyholm and McFall-
Ngai, 2004; Franzenburg et al., 2013). For microbes that are
transmitted horizontally, symbiotic life is facultative and free-
living populations serve as reservoirs for colonization (Bright
and Bulgheresi, 2010). In the marine environment, such free-
living populations occur both in shallow and deep waters (Gros
et al., 2003; Aida et al., 2008; Harmer et al., 2008) and, in some
cases, are replenished by the release of symbionts from the host
itself (Salerno et al., 2005). These bacteria provide a diverse
pool of potential colonizers for horizontal acquisition and could
confer advantages under changing environmental conditions
(Hartmann et al., 2017).

As marine invertebrates have great diversity of life history,
reproductive and developmental modes, they exhibit diverse
modes of bacterial transmission (Russell, 2019). An accredited
idea among authors was that species that brood their larvae,
transmit symbionts to the next generations through direct
contact of the parents with the offspring (Bright and Bulgheresi,
2010; Di Camillo et al., 2012; Bernasconi et al., 2019), while
transmission in broadcast spawners, is dominated by horizontal
transfer of bacteria from the surrounding water (van Oppen
and Blackall, 2019). As more studies are being conducted, there
are more evidences that do not necessarily support this idea
(Nussbaumer et al., 2006; Apprill et al., 2012; Leite et al., 2017;
Björk et al., 2019; Oliveira et al., 2020). Many broadcast spawners

pass their symbionts to their offspring by incorporating them
into the mucus that envelops oocyte and sperm bundles (Ceh
et al., 2012; Ricardo et al., 2016; Leite et al., 2017) and a wide
spectrum of mixed-mode transmission in brooders and in free
and broadcast spawners is revealed (Sipkema et al., 2015; Fieth
et al., 2016; Bernasconi et al., 2019; Damjanovic et al., 2020b).

Nematostella vectensis is an anthozoan cnidarian that lives
burrowed in sediments of estuarine areas and is widely
used as model organism in eco-evo-devo studies (Hand and
Uhlinger, 1994; Fraune et al., 2016). N. vectensis reproduces
both sexually and asexually and its full life cycle can be
maintained under laboratory conditions. It is gonochoric and the
sexual reproduction is triggered by changes in light exposure,
food intake and increased temperature. Adult females release
several hundreds of oocytes embedded in gelatinous sacks, while
adult males release sperms directly into the surrounding water
(Hand and Uhlinger, 1992; Fritzenwanker and Technau, 2002;
Stefanik et al., 2013). The embryos develop inside the gelatinous
sack and, within 1 to 2 days, ciliated planula larvae hatch
from the oocytes and is released into the water where they
remain freely swimming until settlement. After settlement, the
planulae metamorphose into primary polyps. Under optimal
conditions, the sexual maturity is reached within 3–4 months
(Hand and Uhlinger, 1992).

Previous studies showed that adult N. vectensis harbors a
specific microbiota whose composition changes in response
to different environmental conditions and among geographic
locations (Mortzfeld et al., 2016). In addition, sampling of
different body regions (physa, mesenteries and capitulum) of
the adult revealed a specific microbiota for each region, with
specific dominance of spirochaetes bacteria within the capitulum
(Bonacolta et al., 2021). Also changes in the diet lighting cycle
induced differences in composition and relative abundance in
N. vectensis microbiome (Leach et al., 2019). It has also been
observed that different life stages (larva, juvenile, and adult) host
specific microbiota (Mortzfeld et al., 2016; Domin et al., 2018).

In this study, we aimed at understanding how microbial
symbionts are transmitted through generations and established in
early life stages. Through metabarcoding of the 16S rRNA gene,
we analyzed the microbial community composition in separated
pairs of adult female and male polyps, and their corresponding
newly released gametes, planula larvae and primary polyps.
The comparisons to the corresponding medium microbiota
allowed us to identify bacterial species that are specifically host
associated and putatively maternally and paternally transmitted
to the offspring.

MATERIALS AND METHODS

Animal Culture
Nematostella vectensis anemones were F1 offspring of
CH2 × CH6 individuals collected from the Rhode River
in Maryland, United States (Hand and Uhlinger, 1992;
Fritzenwanker and Technau, 2002). Adult polyps were cultured
in N. vectensis medium (NM) composed of 12.5 ppt artificial sea
water (Red Sea) and maintained at 18◦C in the dark. They were
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fed five times a week with freshly hatched Artemia brine shrimps
(Ocean Nutrition Sep-Art Artemia Cysts). Embryos were raised
at 21◦C in the dark and planulae or polyps were collected.

Spawning Induction and Fertilization
Five adult female polyps (labeled with numbers) and five adult
male polyps (labeled with letters) were starved for 4 days prior
to fertilization at standard conditions (18◦C, in the dark), to
avoid contamination from the food. A day before induction the
animals were washed three times with sterile NM (autoclaved and
filtered on 0.22 µm membrane) and separated into sterile six well
plates. The induction was performed by exposing both males and
females to increased temperature (25◦C) and light for 13 h. After
spawning, the adults were washed three times with sterile NM,
snap-frozen in liquid nitrogen and stored at −80◦C until DNA
extraction. As control, the media where each female was kept
before and during induction was filtered on a 0.22 µm membrane
and stored at −80◦C for DNA extraction. Sperms and oocyte
sacks were individually collected into 1.5 ml tubes. Half of the
sperms from each male polyp was collected for DNA extraction
and the other half was used for fertilization of the oocytes. The
sperms for DNA extraction were washed three times in sterile
NM and stored at−80◦C until processing. Each oocyte sack (here
referred as oocytes) was washed three times in sterile NM and
cut in two halves using a sterile scalpel; one half was collected for
DNA extraction and the other half was fertilized. Four days post-
fertilization (dpf), fertilized oocytes developed into planulae. Half
of the planulae from each oocyte sack was washed three times
with sterile NM and collected for DNA extraction, the other
half was kept in the incubator for further development. Ten dpf,
planulae developed into primary polyps that were washed three
times with NM and collected for DNA extraction (Figure 1).

DNA Extraction and 16S rRNA
Sequencing
The gDNA was extracted from adult animals, oocyte sacks,
sperms, planulae, and primary polyps, with the DNeasy R© Blood
and Tissue Kit (Qiagen, Hilden, Germany) as described in the
manufacturer’s protocol. DNA was eluted in 100 µL elution
buffer. The eluate was kept frozen at −20◦C until sequencing.
For each sample the hypervariable regions V1 and V2 of bacterial
16S rRNA genes were amplified. The forward primer (5′-
AATGATACGGCGACCACCGAGATCTACAC XXXXXXXX
TATGGTAATTGT AGAGTTTGATCCTGGCTCAG-3′) and
reverse primer (5′- CAAGCAGAAGACGGCATACGAGAT
XXXXXXXX AGTCAGTCAGCC TGCTGCCTCCCGTAGGA
GT -3′) contained the Illumina Adaptor (in bold) p5 (forward)
and p7 (reverse) (Fadrosh et al., 2014). Both primers contain
a unique 8 base index (index; designated as XXXXXXXX) to
tag each PCR product. For the PCR, 100 ng of template DNA
(measured with Qubit) were added to 25 µl PCR reactions, which
were performed using Phusion R© Hot Start II DNA Polymerase
(Finnzymes, Espoo, Finland). All dilutions were carried out
using certified DNA-free PCR water (JT Baker). PCRs were
conducted with the following cycling conditions [98◦C—30 s,
30 × (98◦C—9 s, 55◦C—60 s, 72◦C—90 s), 72◦C—10 min]

and checked on a 1.5% agarose gel. The concentration of the
amplicons was estimated using a Gel Doc TM XR + System
coupled with Image Lab TM Software (BioRad, Hercules,
CA, United States) with 3 µl of O’GeneRulerTM 100 bp Plus
DNA Ladder (Thermo Fisher Scientific, Inc., Waltham, MA,
United States) as the internal standard for band intensity
measurement. The samples of individual gels were pooled
into approximately equimolar sub-pools as indicated by band
intensity and measured with the Qubit dsDNA br Assay Kit
(Life Technologies GmbH, Darmstadt, Germany). Sub-pools
were mixed in an equimolar fashion and stored at −20◦C until
sequencing. Sequencing was performed on the Illumina MiSeq
platform with v3 chemistry (Rausch et al., 2016). The raw data
are deposited at the Sequence Read Archive (SRA) and available
under the project ID PRJNA737505.

Analyses of Bacterial Communities
A total of 35 samples belonging to five separated families (five
mothers, five fathers, five sperm batches, five oocyte sacks, five
planulae batches, five primary polyps batches, and five medium
controls) were submitted for 16S RNA gene sequencing. The 16S
rRNA gene amplicon sequence analysis was conducted through
the QIIME2 2021.4 platform (Bolyen et al., 2019). Sequences
with 100% identity were grouped into ASVs and clustered against
the SILVA RNA reference database (Quast et al., 2013; Yilmaz
et al., 2014). Denoising and quality filtering were performed
through the DADA2 plugin implemented in QIIME2 (Callahan
et al., 2016, p. 2). A sample with less than 7000 reads was
removed from the dataset, being considered as outlier. For
the successive analysis, the number of ASVs per sample was
normalized to 7000 reads.

Alpha-diversity was calculated using the Faith’s PD, evenness,
dominance and the total number of observed ASVs metrics
implemented in QIIME2. Statistical significance was tested
through the non-parametric Kruskal-Wallis test through
QIIME2 and JASP 0.14.1 (JASP Team, 2020).

Beta-diversity was calculated in QIIME1 (Caporaso et al.,
2010) and QIIME2 according with the different β-diversity
metrics available (Binary-Pearson, Bray-Curtis, Jaccard,
Weighted-Unifrac, and Unweighted-Unifrac). Statistical
values of clustering were calculated using the non-parametric
comparing categories methods PERMANOVA and Anosim
implemented in QIIME2.

Bacterial ASVs associated with specific conditions were
identified through LEfSe (Segata et al., 2011). LEfSe uses
the non-parametric factorial Kruskal-Wallis sum-rank test to
detect features with significant differential abundance, with
respect to the biological conditions of interest; subsequently
LEfSe uses Linear Discriminant Analysis (LDA) to estimate the
effect size of each differentially abundant feature. To identify
vertically transmitted bacteria ASVs, we performed pairwise
comparisons of the surrounding medium microbiota with the
microbiota of the N. vectensis samples. We were then able
to infer ASVs associated with each animal life stage and
therefore putative bacterial candidates for vertical transmission.
The results obtained from LEfSe analyses were cross-checked
against the outcomes of a logical test based on presence/absence
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FIGURE 1 | Experimental design. Five pairs of parent polyps were induced for spawning. Their gametes and offspring were collected separately and used for further
development and 16S rRNA gene sequencing.

data, performed directly on the ASV table generated for each
sampled family. We assumed that a maternally transmitted
bacterium should be present simultaneously in the microbiota
of mother polyps, oocytes and planulae but absent from the
medium and a paternally transmitted bacterium should be
present in father polyps, sperms and planulae but absent from
the medium. Bacterial ASVs that might be acquired horizontally
from the medium by the early life stages were filtered by their
concurrent presence in planula or primary polyps and medium
and absence in the gametes.

RESULTS

Microbiota Associated With N. vectensis
Tissues Is Distinct From Surrounding
Medium
The experimental setup allowed us to assign gametes and
offspring to their parent polyps in order to identify bacterial
colonizers that are likely transmitted vertically among separated
animal families and to differentiate them from the surrounding
medium (Figure 1).

The sequencing was successful for 34 samples. After filtering
and denoising, 2325 different ASVs were detected, with the
number of reads per sample ranging between 678748 and
7026 (Supplementary Table 1). Beta-diversity analyses revealed
that bacterial communities from the surrounding medium were
distinct from those associated with host tissue (Figure 2A and
Table 1), indicating a specific bacterial colonization in all life
stages of N. vectensis. In contrast, α-diversity analyses revealed no
significant differences between the bacterial communities of the

medium to the bacterial communities associated with host tissues
(Figure 2B and Supplementary Table 2). Although the medium
showed a similar species richness compared to the animal tissues
(Figure 2B), bacterial species in the medium showed lower
diversity at the phylum level compared to those associated
with the host (Figure 2C), e.g., Spirochaetota and Firmicutes
are absent in the medium. In comparison, the host bacterial
communities showed a higher evenness and lower dominance
(Figure 2C and Supplementary Table 2) and harbored uniquely
more bacterial species than the medium, with an overlap of 161
ASVs shared between both medium and host (Supplementary
Figure 1). Given that the life stages of N. vectensis associate with
specific bacterial communities distinct from the environment, a
portion of these is likely to be non-random.

Specific Bacterial Communities Colonize
Oocytes and Sperms
Analyzing the associated bacterial communities of N. vectensis
according with their life stages revealed a clear clustering
(Figure 2D and Table 1). Interestingly, the bacterial communities
of sperms and oocytes were distinct from those of all the
other life stages and from each other, indicating distinct
mechanisms shaping the bacterial colonization of gametes
(ANOSIM: R = 0.444, p = 0.003, Figure 2D), and a specific
transmission from male and female parent polyps. Both planulae
and primary polyps harbored similar bacterial communities
(Figure 2D) that clustered between the sperms and oocytes
samples, suggesting the contribution of maternal and paternal
transmitted bacteria to early life stages colonization. While
no significant differences in the bacterial α-diversity could be
detected, sperms harbored bacterial communities with a slightly
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FIGURE 2 | Microbiota diversity analyses among sample source and life stage. (A) PCoA (based on Binary-Pearson metric, sampling depth = 7000) illustrating
similarity of bacterial communities based on sample source; (B) α-diversity (observed ASVs) comparison of medium and animal tissue samples (max rarefaction
depth = 7000, num. steps = 10); (C) relative abundance of main bacterial groups between host and medium samples; (D) PCoA (based on Binary-Pearson metric,
sampling depth = 7000) illustrating similarity of bacterial communities based on developmental stage; (E) α-diversity (observed ASVs) comparison by developmental
stage (max rarefaction depth = 7000, num. steps = 10); (F) relative abundance of main bacterial groups among different life stages.
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TABLE 1 | Beta-diversity statistical tests comparing the different sample sources, the developmental stages and the families.

ANOSIM PERMANOVA

Parameter β-diversity metric R p-value pseudo-F p-value

host vs. medium Binary-Pearson 0.987 0.001 10.130 0.001

Bray-Curtis 0.940 0.001 9.757 0.001

Jaccard 0.978 0.001 6.048 0.001

Weighted-Unifrac 0.198 0.069 5.800 0.001

Unweighted-Unifrac 0.865 0.001 6.559 0.001

life stage Binary-Pearson 0.408 0.001 1.926 0.001

Bray-Curtis 0.488 0.001 2.682 0.001

Jaccard 0.458 0.001 1.544 0.001

Weighted-Unifrac 0.468 0.001 3.553 0.001

Unweighted-Unifrac 0.339 0.001 1.614 0.001

Family Binary-Pearson 0.004 0.420 1.041 0.347

Bray-Curtis 0.000 0.465 0.984 0.470

Jaccard −0.030 0.682 1.020 0.353

Weighted-Unifrac −0.031 0.698 0.978 0.467

Unweighted-Unifrac −0.031 0.683 0.975 0.573

Statistical analyses were performed (methods ANOSIM and PERMANOVA, number of permutations = 999) on each of the pairwise comparison distance
matrices generated.

lower bacterial α-diversity compared to all the other samples
(Figure 2E and Supplementary Table 3).

In contrast, no clustering (Supplementary Figure 2A and
Table 1) and no differences in α-diversity (Supplementary
Figure 2B and Supplementary Table 4) were evident according
to family status.

Looking at the different bacterial groups, greater abundances
of Spirochaetota (between 23.2 ± 17.2% and 5.2 ± 5.9%) and
Firmicutes (between 27.3 ± 13.6% and 10.4 ± 7.8%) were
evident in the adults and in the oocytes, while Bacteroidota were
relatively more abundant in the sperms and in the offspring
(between 27.6 ± 29.2% and 12.4 ± 12.4%). The abundance of
Alphaproteobacteria increased from the adults (23.4 ± 10.9%
and 27.2 ± 13.9%, respectively) through the primary polyps,
in which they reached the maximum abundance (46.4 ± 9.3%)
(Figure 2F). These differences among life stages and sexes
suggest a differential transmission of specific bacterial groups
through the gametes.

Offspring Bacterial Colonizers Originate
From Oocytes, Sperms, and Surrounding
Medium
By using the LEfSe algorithm (Segata et al., 2011) and the
pairwise comparisons between host tissues and surrounding
medium, we identified 15 ASVs that were significantly more
abundant in mother polyps, oocytes, and planulae (Figure 3A
and Supplementary Table 5) and 5 ASVs that were significantly
more abundant in father polyps, sperms and planulae (Figure 3B
and Supplementary Table 5), than in the surrounding medium.
By overlapping these results with those obtained from the
presence-absence calculations (Supplementary Table 1), we were
further able to filter the LEfSe results to those candidates that were
completely absent from the medium in any of the animal families

(Supplementary Table 6). We ended up with 13 ASVs potentially
transmitted by the mother and 5 ASVs potentially transmitted
by the father (Figure 3C). The ASVs potentially transmitted by
both mother and father polyps belong to the classes Alpha- and
Gammaproteobacteria (Supplementary Table 6). In addition,
one ASV potentially transmitted by mother polyps is a member of
the Firmicutes phylum, while father polyps potentially transmit
one member of the Bacteroidota phylum (Figure 3C). The high
resolution of the presence-absence analysis, allowed us to also
point out a slight variability in bacterial transmission that occur
between different families (Supplementary Table 6).

In a final step we aimed at detecting bacterial ASVs that
are present in the offspring and in the medium but not
in the gametes, and thus, likely acquired horizontally from
the medium. For planulae and primary polyps, we detected
24 and 25 ASVs, respectively, with an overlap of 10 ASVs
shared between both developmental stages (Supplementary
Table 6). In both planulae and primary polyps, these bacteria
belonged to the classes Alpha- and Gammaproteobacteria, and
the phyla Bacteroidota and Actinobacteriota. In addition, the
primary polyps shared with the medium also four members
of the Firmicutes (Figure 3D). These results suggest that each
developmental stage is able to associate with different and specific
environmental symbionts.

DISCUSSION

Maternal and Paternal Transmission of
Bacterial Symbionts
A reliable transfer of specific symbionts is required to maintain
the bacterial associations across generations. Thereby, vertically
transmitted bacteria may represent beneficial symbionts,
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FIGURE 3 | Vertical and horizontal contributions to offspring microbiota. (A) Venn diagram showing the number of ASVs shared between mothers, oocytes and
planulae; (B) Venn diagram showing the number of ASVs shared between fathers, sperms and planulae; (C) Bar-chart of parentally transmitted bacterial ASVs
divided by major groups; (D) Bar-chart of environmentally transmitted bacterial ASVs divided by major groups.

necessary for animals’ development and physiology, bacteria that
lack a free-living stage, or more simply, bacteria that are present
in the open water in too low abundance to be recruited (Salerno
et al., 2005; Bright and Bulgheresi, 2010). So far, few studies have
undertaken a detailed comparison of microbial communities
of parents, gametes and progeny in marine organisms (Sipe
et al., 2000; Bright and Bulgheresi, 2010; Sharp et al., 2012;
Leite et al., 2017; Quigley et al., 2017, 2018, 2019; Bernasconi
et al., 2019; Damjanovic et al., 2020a; Oliveira et al., 2020;
Igawa-Ueda et al., 2021).

Our results, consistent with results obtained in former studies
on broadcast spawning corals (Sharp et al., 2010; Quigley et al.,
2017), indicate that N. vectensis transmits microbial symbionts
to its offspring mainly maternally. Current knowledge is limited
on the contribution of male parents to the progeny microbiota
(Damiani et al., 2008; Watanabe et al., 2014; De Vooght
et al., 2015); nevertheless, some examples exist regarding marine
invertebrates (Usher et al., 2005; Sharp et al., 2010; Padilla-
Gamiño et al., 2012; Kirk et al., 2013; Leite et al., 2017). In our
study it seems that also male polyps transmit specific bacteria to
the next generation.

As suggested from previous studies on corals, we hypothesize
that in N. vectensis mother polyps incorporate bacterial colonizers
into the mucus bundles that surround the oocytes (Ceh et al.,
2012; Ricardo et al., 2016; Leite et al., 2017), while the sperms
may acquire the bacteria before fertilization by horizontal
transmission through water, which contains bacteria released by
the parents (van Oppen and Blackall, 2019). This strategy is less
specific than strict vertical transfer, however, not as non-specific
as random horizontal acquisition of seawater communities
(Ceh et al., 2013).

Our results are supported by fluorescence in situ hybridization
(FISH) approaches applied on coral larvae and gametes,
indicating the presence of bacteria in the ectoderm of brooded

larvae (Sharp et al., 2012), but not inside gametes, embryos, and
larvae of several broadcast spawners (Sharp et al., 2010).

Offspring Microbiota Results From
Mixed-Mode Bacterial Transmission
Nematostella vectensis male and female polyps transmit different
bacterial species through their gametes, with the oocytes
contributing the most to the bacterial assemblage of the planulae,
thus indicating distinct selecting forces. For instance, through
the oocyte bundles, the mothers might provide the developing
embryos with specific antimicrobial peptides (Fraune et al.,
2010) and, in the case of N. vectensis also with nematosomes,
multicellular motile bodies with putative defense function
(Babonis et al., 2016). In vertebrates, like birds, fishes, and
reptiles, passive immunity is transmitted through the deposition
of antibodies in eggs (Grindstaff et al., 2003) and the fertilization
envelope of fish eggs has demonstrated bactericidal activity
(Kudo and Inoue, 1989).

Although not yet demonstrated, the bigger size of oocytes
and the presence of a cytoplasm, in comparison to the sperm,
may offer more room for carrying symbionts on the surface
and/or intracellularly; sperms on the other hand, may carry
strict symbionts in the nucleus (Usher et al., 2005; Watanabe
et al., 2014). Additionally, the offspring can be partly colonized
post-spawning through the uptake of microbial associates
released by the parents into the surrounding seawater, as
previously described (Apprill et al., 2009; Sharp et al., 2010;
Ceh et al., 2012, 2013).

As already observed, the early life stages and adult microbiota
in N. vectensis differ significantly (Mortzfeld et al., 2016; Domin
et al., 2018). Our results suggest that a portion of the early
life stages microbiota is the result of a parental transmission
while another part is horizontally acquired from the environment
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during ontogeny. This hypothesis is supported also by the
tendency of higher bacterial species richness associated with the
early developmental stages in comparison to that of the adults.
Higher α-diversity in the early life stages has been described also
in other studies on marine animals (Nyholm and McFall-Ngai,
2004; Littman et al., 2009; Fieth et al., 2016; Mortzfeld et al., 2016;
Epstein et al., 2019) indicating an host filtering window during
which the microbiota is shaped to a more stable community.
This can relate with the different ecological (e.g., pelagic vs.
benthonic, motile vs. sessile, preying vs. filter-feeding) and/or
developmental requirements across the life stages of animals
that have complex life cycles (Mortzfeld et al., 2016; Bosch
and McFall-Ngai, 2021; Putnam, 2021). N. vectensis’ life cycle
includes a pelagic, freely swimming, not feeding planula larva
and benthonic, sessile, preying primary polyp and adult stages.
Therefore, it is easy to imagine that the symbiotic microbial
community is impacted by the deep ecological and morphological
changes during host development and that specific bacterial
species may provide different benefits to the different life
stages. As already pointed out (Fraune et al., 2010), organisms
in which embryos develop outside the mother’s body, in a
potentially hostile environment, use a “be prepared” strategy
involving species-specific, maternally produced antimicrobial
peptides for protection. These antimicrobial peptides not only
have bactericidal activity but also actively shape and select the
colonizing bacterial community (Fraune et al., 2010; Fieth et al.,
2016). It is likely that also N. vectensis is able to employ different
mechanisms to shape and control its symbiotic microbiota in a
life stage-specific manner.

Consistently with previous studies (Gilbert et al., 2012;
Deines et al., 2017; Hernandez-Agreda et al., 2017; Goldsmith
et al., 2018; Sullam et al., 2018; Glasl et al., 2019; Berg
et al., 2020), our results showed that between different
parents a slight variability of vertically and environmentally
transmitted bacteria exists, highlighting the potential impact of
host genotype and stochastic events on symbiotic community
establishment of offspring.

The hologenome theory of evolution (Zilber-Rosenberg and
Rosenberg, 2008) proposed that microbiome mediated plasticity
of the host phenotype can be under selection pressure and may
contribute to animal adaptation. Vertical transmission of the
microbiota could therefore facilitate transgenerational adaptation
of animals to changing conditions (Webster and Reusch, 2017),

while horizontal transmission may mitigate some of the
deleterious consequences of obligate host-association/strict
vertical transmission (e.g., genome degradation and reduction
of effective population size) (Russell, 2019). Concertedly,
vertical transmission may secure the maintenance of coevolved
beneficial bacteria, while horizontal acquirement of new bacterial
partners increases the flexibility of beneficial effects under
changing environmental conditions. Future studies should
compare the function of vertically transmitted and horizontally
acquired bacterial associates, providing important insights into
the potential of microbial communities to promote animal
adaptation to changing environmental conditions.
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