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Abstract The Alto Tiberina normal fault (ATF) in central Italy is a 50-km-long crustal structure that
dips at a low angle (15–20◦). Events on the fault plane are about 10 times less frequent than those located
in its shallower syn- and antithetic hanging-wall splays. To enhance ATF catalog and achieve a better
understanding of the degree of coupling in the fault system, we apply a template matching technique in
the 2010–2014 time window. We augment by a factor 5 the detections and decrease the completeness
magnitude to negative values. Contrary to what previously observed on ATF, we highlight intermittent
seismic activity and long-lasting clusters interacting with sequences on the shallower splays. One of these
episodes of prolonged seismic activity, detected at the end of 2013 on a 30-km-long ATF segment, suggest
the ATF active role during an aseismic transient unraveled by geodetic data.

Plain Language Summary Small magnitude events have regularly shaken the 50-km-long Alto
Tiberina low-angle normal fault (ATF) in central Italy. Above it, few kilometers long syn- and antithetic
higher-angle normal faults were active with many moderate seismic sequences and 10 times more events
than ATF between 2010 and 2014. To better understand the fault system interaction, we apply a technique
for finding events which match predefined templates to improve the ATF seismic catalog. The results
indicate that productive sequences in the shallower high-angle faults often hamper the detection of
microseismicity along with the ATF and that events are released at intermittent rates. Moreover, the seismic
activity is mainly organized in clusters of small earthquakes lasting days or months with no identifiable
mainshock. These clusters span a 30-km-long segment and coincide with transient deformation recorded
at the end of 2013.

1. Introduction
Recent seismological studies (e.g., Ross et al., 2020) pointed out that fault zones are complex systems with
interacting shear discontinuities (e.g., Fagereng & Sibson, 2010), variable damage volumes (e.g., Powers &
Jordan, 2010; Ross et al., 2017), depth-dependent variations in slip behavior, and frictional properties (e.g.,
Collettini et al., 2011; Shelly et al., 2016). Variations in the tectonic loading (e.g., Frank, 2016; R. Jolivet
& Frank, 2020) of different interlaced fault portions, where the frictional properties are rate-strengthening
or weakening, can inhibit or promote the nucleation of large earthquakes (e.g., Avouac, 2015). The
rate-weakening patches act as locked zones where stress builds up during the interseismic period. In this
framework, improved knowledge of the earthquake distribution and interplay between seismic and aseismic
parts of the same fault system may help constrain the locked, rate-weakening patches that define seismic
potential (e.g., Harris, 2017).

Some extending regions, as the Gulf of Corinth, Apennines, and Southeastern Papua New Guinea, show
frequent earthquakes on steep shallow faults and creep on deeper low-angle normal faults (LANFs)
(e.g., Abers, 2009; Valoroso et al., 2017; Webber et al., 2018). Even if structures and geological displace-
ments observed in correspondence of outcropping LANFs indicate that they can be tectonically active and
accommodate crustal extension (e.g., Collettini & Holdsworth, 2004; Hayman et al., 2003; Hreinsdóttir &
Bennett, 2009; John & Foster, 1993; L. Jolivet, Lecomte, et al., 2010; Lister & Davis, 1989; Mirabella
et al., 2011; Webber et al., 2018), the frictional properties of these subhorizontal faults, the interplay with
shallower faults, and their seismic potential are scarcely known.

The Alto Tiberina Fault (ATF), located in the Northern Apennines within the Umbria-Marche region in
central Italy (Figure 1), is an active LANF (e.g., Chiaraluce et al., 2014) within a fold and thrust belt under-
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Figure 1. (a) Map of the study area. 33,000 events (ML ≤ 3.9) in the hanging-wall volume, and 3,685 events from
Valoroso et al. (2017) along the ATF (ML ≤ 2.4). Red dashed lines show the isobaths of the ATF projected at surface.
Red triangles are seismic stations used, (b) cross section from points A-A' as shown in (a). Events are colored according
to their depth as in the legend. Stars indicate earthquakes with ML greater than 2 and 3.5, and red dashed lines
represent the syn- and antithetic shallower splays.

going NE-trending extension at a rate of about 3 mm/year (Serpelloni et al., 2016). This fault was identified
by interpreting deep seismic reflection profiles (Barchi et al., 1998) and by field geology, gravity, magnetic
and heat flow data, measurements, and modeling (Boncio et al., 2000; Collettini & Barchi, 2002; Mirabella
et al., 2011; Pauselli et al., 2006).

These studies reconstructed a ≈50- to 60-km-long extensional NNW-trending main fault dipping 15–20◦

from the surface to at least 12–14 km depth, toward ENE. Above the ATF, synthetic and antithetic structures
dip at high-angle (40–60◦), ending at the intersection with the ATF plane at approximately 3–6 km of depth
(Figure 1).

Several geophysical studies investigated ATF mechanical behavior. Vadacca et al. (2016) through a 2-D
numerical elastic model including geological and seismic data, simulated the interseismic deformation of
the whole fault system. The comparison between the modeling results and GPS data supports the active role
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played by ATF in accommodating the ongoing tectonic extension in this sector of the chain. From geode-
tic data, Gualandi et al. (2017) identified a small aseismic transient signal associated with the occurrence
of a shallow sequence lasting about 6 months in 2013–2014 (Gubbio MW = 3.8). The transient produced an
extension of about 5 mm with a moment release equivalent to an MW = 4.7, and it was modeled to occur
along two minor shallow steeply dipping faults placed within the hanging-wall volume (Figure 1b).

By applying template matching to data collected between 2010 and 2014 (Figure 1), we analyze the ATF
seismicity pattern to investigate the mechanical behavior of this LANF. Exploiting a high-resolution earth-
quake catalog, we investigate the interactions and the possible degree of coupling between the ATF and the
shallower system of normal faults. To this end, we characterize the clusters of the augmented catalog in
terms of swarms, mainshock-aftershock, and foreshock-mainshock sequences. Including greater detail in
the earthquakes patterns and delimiting the fault portions that actively creep or aseismically slip help to
better evaluate where stresses accumulate along the ATF and could provide indications on the connection
between the fault system heterogeneity and the physics of earthquake initiation.

2. Input Catalog
Instrumental seismicity in the studied area was mainly located in the shallower dipping faults in the ATF
hanging-wall and along with the ATF, while the footwall is almost aseismic (Chiaraluce et al., 2007). The
high-angle synthetic and antithetic faults in the hanging-wall showed the most energetic sequences in the
last 50 years (MS <5.2 in 1984 Haessler et al., 1988). Small earthquakes along the ATF (ML <2.4) are released
at the average rate of 2.2 events per day (Valoroso et al., 2017) and within ≈1-km-thick dipping fault ranging
from ≈3 to 16 km of depth.

The procedure applied by Valoroso et al. (2017) to obtain high-quality locations consisted of using waveform
cross-correlation and double-difference methods (Waldhauser & Schaff, 2008). The retrieved catalog con-
tains 36,819 events that occurred between 1 April 2010 and 30 September 2014. Seismic events have at least
12 phase readings, azimuthal gap lower than 180◦, residuals (RMS) smaller than 0.3 s, and a formal relative
location error of few tens of meters.

The 3-D geometry of the ATF as imaged by seismic reflection profiles (Mirabella et al., 2011) together
with relocated seismicity has been used to select events belonging to the ATF and those occurring in its
hanging-wall (Figure 1b). The ATF related earthquakes, hereafter named ATF-Z, are the ones nucleating
within 1.5 km from the assumed fault surface; these 3,685 events, in the magnitude range −1 < ML < 2.4,
represent the input templates.

Under the assumption that the templates widespread along the ATF may represent a meaningful sample in
time and space of the fault behavior, we apply a waveform matching technique to detect a more significant
number of small earthquakes not yet recognized by conventional techniques. These events contained in
the continuous recordings can only be retrieved by the application of a more sensitive and computationally
demanding method.

3. Detection Results
By template matching (details in Text S1 in the supporting information and in Sugan et al., 2019; Vuan
et al., 2017, 2018), we augment the starting catalog of 16,500 new detections (hereafter named ATF-Z+),
most of them having smaller magnitudes than the 3,685 templates, allowing a substantial decrease of com-
pleteness magnitude (Mc) from ML0.6 to less than ML0.0 (Figure S1). It is worth noting that Mc of the ATF-Z
and ATF-Z+ catalogs vary with time during the 5 years decreasing at the end of 2013. This decrease is not
due to a different network setting or performance but to rate changes of seismicity. Examples of detection
for a template of ML0.0 finding an ML0.8 and an ML-1 event are shown in Figure S2.

Looking at the occurrence of the events versus time in terms of cumulative number, the first novelty unrav-
eled by the new ATF-Z+ catalog is that we do not observe anymore a stable and gradual increase as we
did for the templates. Now, the distribution in 5 years time of the new detections in comparison with the
hanging-wall seismicity shows (Figure 2) that there is some synchrony in the frequency of occurrence of the
events, especially during the moderate shallow sequences at the end of 2013 to early 2014.
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Figure 2. (a) Histograms showing the number of events from 2010 to 2014 in the hanging-wall and (b) time versus
magnitude, (c) and (d) as in (a) and (b) for templates catalog, and (e) and (f) for the new augmented catalog. In the
inset of (a), (c), and (e) we also show the number of events versus magnitudes. Intermittent bursts are more evident in
the augmented than in the templates catalog and generally follow the increase of seismicity in the hanging-wall.

The time-magnitude distribution for the template and ATF-Z+ catalogs are different. The greater detail
gained by operating the template matching analysis highlights intermittent bursts spanning the whole
period from 2010 to 2014 (Figure 2f), previously completely undetected. Moreover, in ATF-Z+, we are able
to fill time windows for which we had no available templates, as in the first months of 2010 or at the end
of 2014. We run the waveform matching also for these two unsampled time windows to check both the
power of the method and to confirm specific seismicity patterns as the intermittent bursts we find at the end
of 2014.

We also detect few new ML < 3.0 events occurring along the ATF in particular when many events hap-
pened during the shallower 2013–2014 sequence. Rising seismicity on the hanging-wall often hampers the
detection of deeper and lower magnitude ATF earthquakes.

ATF-Z+ samples the fault volume more densely than original ATF-Z (Figure 3). The number of events in
ATF-Z+ is considerably increased, and new detections are distributed more homogeneously in the 70 km
along-strike area, also showing many clusters.
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Figure 3. (a) Events from the augmented catalog in map. (b) and (c) Cross-sections along the ATF. (d), (e), and (f)
along-strike projections (C-C' in map) of the seismic events in the hanging-wall, for the templates, and augmented
catalogs, respectively. Red dashed lines in (a) show the isobaths of the ATF plane projected at surface. The along-strike
offset at 0 km corresponds to the first M > 3.0 event of the December 2013 Gubbio sequence. The dotted vertical line
indicates the time of increased seismicity in a 30-km-long segment of the ATF-Z+. Rectangles in panel (d) include the
Pietralunga 2010 (P10), Cittá di Castello 2013 (C13), and Gubbio 2013–2014 (G13) sequences.

From Figure 3, it is noteworthy the increase of seismicity on ATF after December 2013, spanning an area
that extends 30 km along-strike beyond the fault portions activated in the hanging-wall. We also find clusters
on ATF portions not included in the templates catalog occurring respectively after or in synchronous with
sequences on the shallower splays of the hanging-wall. The distribution of the events at depth indicates
some preferential ranges separated by a 1- to 1.5-km-thick layer, from approximately 7–8 km to 8–9 km
(see Figure 3a), where seismicity considerably decreases. The decrease of seismic events at ≈8 km of depth
(Latorre et al., 2016) seems to coincide with lithological changes (from acoustic to crystalline basement) and
an increase in seismic velocities at depth.
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4. Interaction Between ATF and Hanging-Wall Splays
The high-resolution catalog we generated represents an exceptional opportunity to correlate the tectonic
loading variations, in terms of seismicity rate changes, to the degree of interconnection between different
fault segments with varying frictional properties. Hereafter we describe the seismicity pattern of the ATF
augmented catalog relative to the seismic sequences occurred along the secondary splays faults located in
the hanging-wall, all with multiple mainshocks ranging from 3.0≤MW ≤ 3.8. The primary sequences, exten-
sively described by Valoroso et al. (2017) and Marzorati et al. (2014), occurred in 2010 (Pietralunga, MW 3.6),
2013 (Cittá di Castello, MW > 3) and the long-lasting 2013–2014 (Gubbio, MW 3.8; Figures 1 and 3 for map
view and along-strike position, respectively).

Looking at the interplay of the seismic activity within the fault system during the hanging-wall sequence
of April–May 2010 (Pietralunga), we do not observe a microseismicity rate increase on the ATF before or
immediately after it. Multiple events, starting from July until the end of August 2010, are instead found by
template matching on the ATF volume, south of the Pietralunga sequence, as a possible delayed response
(Figure 2).

Conversely, during the April 2013 (Cittá di Castello) hanging-wall sequence, we find many undetected events
supposed to be related to the ATF (≈2,000) (Figure 3f). The earthquakes along the ATF are almost syn-
chronous with those on the hanging-wall. This sequence is the shallowest one, and the ATF low-angle plane
could be, based on this newly discovered seismicity, interconnected with the high-angle normal faults close
to Cittá di Castello.

Such a simultaneous activity is also observed during the 2013–2014 Gubbio sequence when the rate change
in the ATF affects a ≈30-km-long fault segment (box in Figure 3f). Moreover, along the ATF activated zone,
there are particular areas (e.g., strands) of the fault plane where the seismic activity persists over time inter-
spersed with more quiet zones (Figure 3f). The seismic activation of the ATF started in December 2013 and
extended slightly beyond the length of the Gubbio fault system. The microseismicity persisted for months
after the MW > 3 seismic events between December 2013 and February 2014, suggesting a strong coupling
between the system of splay faults in the hanging-wall and the ATF (Figure 3).

If the ATF and the system of splay faults are strongly coupled, we could consider the microseismicity at
depth on the ATF as a tracer of a possible afterslip involving an area of ≈250–300 km2. The same coupling is
not observed in the period 2010–2011 and during the first 6 months of 2013 when the same portions of the
hanging-wall volume close to Gubbio were active (Figure 3). Therefore, we suggest that the interchange of
accelerated microseismicity (end of 2013) could be related to a transient causing a tectonic loading variation
on large ATF portions.

5. Clustering Analysis
To further investigate the seismicity pattern and its correlation to tectonic loading variations, we analyze
the clustering over time and space (see Text S2). The time-space (T-R) rescaled distribution of the events in
ATF-Z+, by applying the Zaliapin and Ben-Zion (2016) approach, helps in separating the clusters from the
background seismicity that spans homogeneously all along the ATF with a smooth increase from December
2013 (Figures S3a and S3b).

The clusters, at least for the first couple of years (2010–2012), seem almost homogeneously distributed
in space and time mainly in the northern portion of the fault plane (from −10 to 20 km along-strike in
Figure S4a). Then, from the end of 2013, contemporaneously to the seismic activity occurred in the splays
located north of the Gubbio area, the clusters occurrence increases together with the energy released along
a ≈30-km-long fault portion.

In detail, we observe that until December 2013, clusters last no more than a few days and are located all along
the fault plane (between 6 and 12 km of depth in Figure S4a). At the end of 2013 until the first few months
of 2014, the clusters extend overtime lasting for 2–3 months and appearing as seismic strands in a 30 km
along-strike fault segment. Clusters depth is generally shallower (<6 km) in the northern area of the ATF
and deepening (6–10 km) in the central part. The same depth distribution of events, more superficial at the
edges and deeper in the central zone of the fault, is also shown by the background seismicity (Figure S4b).
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Figure 4. (a) Cluster locations, and in background the coupling of the ATF from Anderlini et al. (2016), (b) cluster
duration (days) versus maximum magnitude, (c) cluster time versus depth. Most of the clusters are located in patches
close to highly coupled fault regions at depths ranging from 3.5 to 8 km. Swarms (yellow circles) last in the range from
few hours to less than 90 days.

The synchronous activation of long-lasting clusters in an area of ≈250–300 km2 suggests an increasing slip
on the ATF since December 2013 and a not negligible role of ATF in the evolution of the aseismic transient
observed by Gualandi et al. (2017).

We then classified the clusters in swarms, mainshock-aftershock, and foreshock-mainshock sequences fol-
lowing the criterion proposed by Ogata and Katsura (2012). In Figure S5, we show examples of these types
of clusters. The declustering procedure applied to the ATF-Z+ finds 133 clusters with at least 10 events.
Forty-eight percent of clusters are classified as foreshock-mainshock, 47% as swarm-like, and only 5% rep-
resents typical mainshock-aftershock sequences (Figure 4). Examining the magnitude distribution within
each ATF cluster with more than 10 events allow us to understand their development in time and space bet-
ter. Swarms, more sensitive to changes of the tectonic loading (e.g., Passarelli et al., 2018; Shelly et al., 2016;
Toda et al., 2002), persist over time compared with typical foreshock sequences and are characterized by a
significantly higher number of events. Few clusters classified as swarms revealed a complex mixed behavior
with bursts repetitions in a few days.

6. Discussion
A recent analysis of the ATF seismicity (Valoroso et al., 2017) proposed that the release of small events was
constant all along the main fault and widespread, without any evident change in the rate of earthquakes
occurrence or evidence for long-lasting clusters. In particular, similarly to Chiaraluce et al. (2007), clusters
were considered to be composed of few events (mainly doublets) and having a short duration (hours-day).

The new augmented catalog we obtained, having a greater detail, shows different peculiarities with repeated
variations in the seismic release both in space and time. These sudden variations often coincide with mod-
erate seismic sequences (e.g., Cittá di Castello 2013 and Gubbio 2013–2014) activating the shallower splays
in the fault hanging-wall; other times the rate changes are instead uncorrelated (e.g., Pietralunga 2010 and
some clusters in 2011). Despite in some cases the activation of specific ATF portions is then evident, and coin-
cident with the strongest earthquakes (ML > 3.5) occurring in the structures above, the interaction between
the master and secondary faults is challenging to interpret by using only seismic data.
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However, we suggest an active role of the leading low angle fault during the occurrence of the slow slip event
at the end of 2013. The stress load from the aseismic transient may have induced the ATF rise in seismicity
or have been taken place along with the ATF itself. In both cases, the ATF seismic energy release is not
enough to fill the gap between the geodetic and the seismic moment. As observed by Gualandi et al. (2017),
the seismic moment associated with aseismic slip is, in fact, more than 2 times higher than the value related
to the seismic one, and the additional events now included in the ATF-Z+ catalog are still not enough.

Looking at the normalized cumulative seismic moment release with time for the hanging-wall and the
ATF-Z+ catalogs, we observe that within the periods when significant shallow sequences above the ATF are
absent, the percentage moment growth is 3 times higher in the ATF than in the hanging-wall (Figure S6). As
proposed by Anderlini et al. (2016) and Vadacca et al. (2016), we suggest that positive stress accumulation
due to ATF creep is most likely released by more favorable oriented shallow splay faults in the hanging-wall
(MW > 3 sequences), whose rupture may propagate downdip to the ATF intersection.

The majority of the clusters occurring during the 2013–2014 Gubbio sequence were swarms and
foreshock-mainshock sequences, suggesting a combined effect of relaxation and tectonic load that could
also be facilitated by the presence of fluids. High pore pressure can induce aseismic creep (e.g., Guglielmi
et al., 2015; Wei et al., 2015), and we know about the presence of high CO2 pressure in ATF footwall
observed in kilometers deep boreholes (Collettini & Barchi, 2002; Chiodini et al., 2004). Another signature
of the possible combination of tectonic effects with fluids is the presence of fault seismic strands (Figure 3)
interspersed with aseismic zones we observe with the new catalog. These structures could represent small
patches of velocity weakening material embedded within primarily velocity strengthening material (e.g.,
Collettini, 2011; Ross et al., 2020; Schwartz & Rokosky, 2007). The spatial distribution of velocity weak-
ening and velocity strengthening patches on the fault interface (e.g., Hetland & Simons, 2010) is linked
to the interseismic coupling, and thermal pressurization may control the slip velocity (e.g., Wibberley &
Shimamoto, 2005).

At a larger scale, the presence of ATF portions possessing various frictional properties and then possibly
corresponding to sectors undergoing seismic or aseismic deformation has been investigated by Anderlini
et al. (2016), based on the mapping of the coefficient of interseismic coupling (ratio of long-term seismic
slip rate to the tectonic slip rate) and by inverting GPS data (see map in Figure 4a). Surface deformation
observations show that, in the interseismic phase between strong earthquakes, some areas remain locked,
and others creep aseismically (e.g., Kaneko et al., 2010). The value of coupling depends on the number, size,
and spacing of velocity weakening asperities. Anderlini et al. (2016) found that about half of the ATF surface
below 5 km of depth is characterized by creep (e.g., low coupling), absorbing a large part of the regional
long-term slip rate (1.7 mm/year), while the remaining portions are locked and then able of generating
M > 6 earthquakes. Following Valoroso et al. (2017), we superposed the 2010–2014 ATF-Z+ seismicity to
the map of the coupling proposed by Anderlini et al. (2016) and confirm that the creeping regions (low
coupling coefficient) are surrounded by clusters and high seismic activity, while the less productive portions
are supposed to be locked (Figure 4a).

We also added to the map the typology of clusters, and we observed that the highest number of events is
within swarms. The location at the edges of higher coupling patches is confirmed for almost all clusters
regardless of their classification and is also reflected in the location of the repeaters highlighted by Valoroso
et al. (2017) on the ATF. Figures 4b and 4c also show the cluster type in relation to their maximum magni-
tude, depth, and duration. Swarms duration (0–120 days) generally increases with the maximum magnitude,
and depths range from 3 to 8 km.

The observations made on creep and interseismic coupling suggest some mechanical implications. First,
from the microseismicity pattern analysis, we confirm that a mixed distribution of locked and creeping
patches seems to characterize the ATF. Second, the ATF is a thick fault zone in which heterogeneous rocks
accommodate seismic-aseismic shear slip with different frictional properties. Third, since the ATF also
shows a high degree of tectonic coupling with its main antithetic faults, it is likely that microseismicity and
aseismic slip on ATF may control the seismic activity on the shallower splays. This ATF specific behavior can
be retrieved in other tectonic environments (e.g., Harris, 2017), in laboratory experiments (e.g., Collettini
et al., 2011) and in numerical simulations (e.g., van den Ende et al., 2020) and confirm the recent evidence
about the control of seismicity by complex fault systems (e.g., Ross et al., 2020). A better understanding
of the interplay of the seismic activity within complex fault systems, including segments undergoing both
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creeping and fast/slow slip earthquakes, seems to be the main road to provide better earthquake hazard
characterizations (e.g., Avouac, 2015; Bürgmann, 2018).

7. Conclusions
The ATF is a creeping low-angle normal fault (15–20◦) characterized by frequent moderate earthquakes on
steeply dipping, shallow secondary faults. From 2010 to 2014, by using a template matching approach, we
obtain a fivefold increase in ATF earthquake detections and a decrease of ≈0.5–0.7 of the completeness mag-
nitude. We identify previously hidden features such as the variation of the rate of occurrence of the seismicity
along the ATF, including the presence of at least 133 highly productive (more than 10 events) clusters. The
majority of clusters behave as fore-mainshock sequences (48%) and swarms (47%); sometimes lasting more
than 40 days. Clusters occur around fault patches with a low seismicity rate and higher coupling between
the shallow crust and the ATF. Looking at the seismic behavior of ATF in relation with sequences occurring
in the high-angle normal faults at shallow depth, we show that the ATF is mainly active at variable inter-
mittent rates and interplaying with moderate earthquakes in the hanging-wall. This intermittency is evident
along-strike for fault strands that extend below and at the edges of the shallower faults. As an example, we
observe that the ATF shows a rise in the seismic activity during the occurrence of the slow slip associated
with the 2013–2014 sequence.

Data Availability Statement
INGV manages the TABOO stations (Chiaraluce et al., 2014) - Seismological Data Centre (https://doi.org/10.
13127/SD/X0FXNH7QFY), and data to support this article are available via EIDA (the European Integrated
Data Archive infrastructure within ORFEUS) (http://www.orfeus-eu.org/webdc3/). TABOO is a multidisci-
plinary geophysical observatory of INGV, designed for the study of deformation processes active along with a
system of extensional faults in the Northern Apennines and for the identification of earthquake preparation
processes. Computations are performed at CINECA in the framework of the HPC-TRES program agree-
ment between OGS and CINECA. PyMPA software is freely available online (https://github.com/avuan/
PyMPA37). The code development is partially supported by the project Seismology and Earthquake Engi-
neering Research Infrastructure Alliance for Europe (SERA), responding to the priorities identified in the
call INFRAIA-01-2016-2017 Research Infrastructure for Earthquake Hazard. Figures were produced using
the Generic Mapping Tools version 5.0 (http://gmt.soest.hawaii.edu/ Wessel & Luis, 2017).
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