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ABSTRACT: Standard seismic refraction data recorded in North-East Italy,
were used to define the shear wave velocities in sediments by means of the
inversion of the Rayleigh wave dispersion relation. The group velocity for the
fundamental mode and the phase velocity for the fundamental and first few higher
modes were measured in the frequency range from 12 to 28 Hz. The inversion
of these data gave a well defined S-wave velocity structure of the weathered zone
to a depth of 38 meters. Using this information in the computation of complete
synthetic seismograms for anelastic media, allowed a qualitative estimation, in the
same depth range, of the distribution with depth of the quality factor, Q.
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INTRODUCTION

The knowledge of the distribution of the shear wave velocity (Vs) and of the
anelastic parameters versus depth can be utilised to enhance the quality of
seismic data which usually suffer significant degradation by highly
inhomogeneous and poorly compacted near surface weathered layer. This
information, together with the density, can be used to determine the shear
modulus, a constant that is strictly correlated to lithology and useful in
earthquake engineering to define the effects of earthquakes, foundation
vibrations and slope stabilities (Gabriels et al., 1987; Jongmans and Demanet,
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1993). Moreover Poisson’s ratio is obtainable when compressional wave
velocity (Vp) variation with depth is known from independent data.

Rayleigh waves, which are often generated during seismic reflection and
refraction surveys, contain important information about the physical properties
of the medium through which they propagate, mainly the shear wave velocity.
In seismic prospecting the application of the techniques that permit the detection
and analysis of surface waves and their inversion are relatively few. The
source-generated noise has been studied in several areas of Texas having
distinctly different near-surface layering and velocities by Jolly and Mifsud
(1971). Ten years later Essen et al. (1981) examined the propagation of surface
waves in marine sediments paying attention to the Vp/Vs ratio and Al-Hussein
et al. (1981) analyzed dispersion patterns of ground roll in Saudi Arabia to
determine the best field acquisition system in reflection surveys. In the same
year McMechan and Yedlin (1981) used a method developed earlier by Nolet
and Panza (1976) in earthquake seismology for surface wave analysis. Mari
(1984), Szelwis and Behle (1986) estimated the static correction for S-wave
seismic profiling from the dispersion properties of Love and Rayleigh waves,
respectively. In situ measurements of shear wave velocity to a depth of 50 m
by the recognition of six higher-modes of Rayleigh waves in the frequency-wave
number domain were made by Gabriels e al. (1987). Al-Eqabi and Herrmann
(1993) demonstrated that a laterally varying shallow S-wave structure, derived
from the dispersion of the ground roll, can explain observed lateral variations
in the direct S-wave arrivals, while Jongmans and Demanet (1993) used the
information derived from seismic refraction data to define the dynamic
characteristics of soils, by the employment of the same technique. In addition
they later found Qs by determining the frequency dependent attenuation factor
of the surface waves. Tilahun Mammo ez al. (1995) used the residuals of
ground roll present in reflection seismic data recorded in a desert area to obtain
an estimation of the quality factor using complete synthetic seismograms.

In this paper it is shown how well defined shallow shear wave velocity structure
can be obtained using the inversion of dispersion relations and how the depth
variation of the quality factor can be inferred from numerical modelling of the
whole signal.
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DATA ACQUISITION AND PROCESSING

The data were recorded in North-East Italy along two lines perpendicular to
each other having 200 m and 150 m of length, respectively. The source used
was cannon mini-bang buried at a depth of 0.50 m. A 24 channel seismograph
(Bison mod. 7024) was used with inter-receiver spacing of I m. Data of 4 s
length were obtained having a sampling interval of .004 s. Figures la and b
show the raw data for two perpendicular lines at the same site. These
wave-fields were then respectively transformed into frequency-wave number
domain via 2-D Fourier transformation (Figs 2a and b). The Nyquist frequency
(125 Hz) was greater than the maximum frequency found in the data and
therefore no aliasing occurred. The Nyquist wave-number was 0.5 1/m and
thus it was possible to have a sufficiently narrow spatial sampling for the wave--
lengths under consideration. In Fig. 2a the fundamental (0) and few higher
modes (1=first and 2=second) can be seen whereas in Fig. 2b only the
fundamental mode (0) is clearly visible. This is due to the fact that the number
of channels for the seismic refraction survey of Fig. Ib is small (144). This fact
hampered a sufficient sampling in the wave number domain with the consequent
problem of a poor resolution for the higher modes.

Frequency-time analysis (Levshin et al., 1972) was applied to single channel
(e.g. Fig. 3a) to measure group velocity. The algorithm we used, derived from
multiple filter analysis (Dziewonski et al., 1969) employs a system of
narrow-band Gaussian filters through which is passed the spectrum of the
signal. Figure 3b shows the consequent bi-dimensional representation of the
signal envelope as a function of the group velocity and of the frequency. On
the diagram, the dispersion curve is defined by the ridge crest. Because of the
time overlapping of the higher modes, this technique is in general suitable only
for the fundamental mode. In our case the fundamental mode is visible in the
left lower part of Fig. 3b for group velocities around 0.200 kms' and
frequencies not exceeding 30 Hz. A band-pass filtering with windowing
(Ratnikova, 1990; Shapiro, 1992) was utilised to separate the fundamental mode
(Figs 3c and d) from the available signal.
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a) Seismic refraction data with 200 m and b) 150 m long array of receivers.
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Fig. 2a. 2-D Amplitude spectrum of the data of Fig. 1a. (0, fundamental mode.)
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Fig. 2b. 2-D Amplitude spectrum of the data of Fig. 1b. (0, fundamental mode; 1, first higher
mode; 2, second higher mode.)
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INVERSION FOR SHEAR WAVE VELOCITY AND ATTENUATION

Since the dispersion curves of the modes are sensitive to the shear wave velocity
these can be inverted to determine the S-wave velocity distribution with depth.
The non-linear inversion was carried out using a modified version of the Hedge-
hog method developed by Keilis-Borok and Yanovskaja (1967) and discussed
in detail by Panza (1981). Only a brief discussion will be given here.

An initial model represented by a set of parameters (shear and compressional
wave velocities and densities in a layered earth) whose magnitudes vary with
depth was considered. We constructed the compressional wave velocity model
from the analysis of the first arrivals (Fig. 4), using the generalised reciprocal
method (GRM) (Palmer, 1981) while densities were inferred from the literature.
Perturbing some of the model parameters at a time in a systematic manner vary-
ing each parameter by multiples of a basic increment, phase and/or group
velocities corresponding to all frequencies under consideration were computed.
These theoretical velocities were then compared with experimental velocities of
equal frequencies. If the root mean square error of the entire data set was less
than a critical value (in our case 14 ms™) and if no individual calculated velocity
differed from its experimental counterpart of the same frequency by more than
a certain value (see Table 1) the model was accepted as a solution. The
inversion procedure was divided into two steps in order to reduce the number
of variables investigated in the multidimensional parameters space. First we
had inverted group and phase velocity for the fundamental mode to fix appr-
oximately the shear wave velocity in the near-surface 4 m. Then phase
velocities for fundamental, first and second higher modes were inverted varying
the S-wave velocity from 4 to 38 m. The different solutions of the inverse
problem were contained within the interval defined by the dashed lines (Fig. 5).
At the bottom of the model, where the Vs velocity was equal to 1190 ms™, the
uncertainty in the shear wave velocity is around 35 ms™. In the next step we
compute complete synthetic seismogram (Panza, 1985; Panza and Suhadolc,
1987) for the structural model shown in Fig. 5 (solid line), using the same
acquisition array employed for the field data. These synthetic seismograms were
used to define the anelastic properties of the medium (Craglietto ef al., 1989)
which otherwise, because of local site effects, scattering and lateral lithological
changes (Mokhtar er al., 1988), are difficult to obtain by direct measurement.
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Fig. 4. Travel time curves derived from refraction seismic to obtain a near—
surface compressional wave velocity model.

Table 1. Dispersion function and observational errors used in the inversion. First five points
belong to the second higher mode, the following six to the first higher mode and the
last eight to the fundamental mode.

Frequency (Hz) Phase vel. (ms™) Error (ms™)
18.0 620 15
20.0 563 12
22.0 488 11
Second higher mode 24.0 455 11
26.0 433 10
15.0 460 40
16.5 412 20
17.5 397 i5
20.0 363 12
First higher mode 2.5 333 11

25.0 320 11
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Table 1. (Contd.)

Frequency (Hz) Phase vel. (ms™) Error (ms™)

12.5 329 25

13.5 300 15

15.0 277 10

16.5 257 9
Fundamental mode 17.5 248 7

20.0 232 5

22.5 219 4

25.0 213 4

0=14 ms™! ave. r.m.s. error
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Fig. 5. Models for shear wave velocity. Dashed lines include the interval of possible
solutions, solid line represents the model used in computations.

“t
Iy



SINET: Ethiop. J. Sci., 21(2), 1998 11

Very low (Fig. 6a) and very high (Fig. 6b) values of Q, respectively 5 and 50
for the shallow part of the model were used initially to generate the synthetic
seismograms. Subsequently the distance between these extreme values had been
reduced until a qualitative satisfactory match is reached between the synthetic
and field data (Fig. 6¢). On the basis of the similarity of signal envelopes, Q
values ranging from 5, near to the surface, to 25 at the bottom of the model
were finally selected (Table 2).
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Fig. 6. Examples of synthetic and field data. Synthetic seismograms were computed using
different Q values for near surface weathered structure: a) Q=S5, b) Q=50,

¢) Q variable with depth between 5 at the free surface and 25 at 38 m of depth.
Field are high cut-off filtered at the frequency of 30 Hz.

Table 2. Estimated Q value with depth.

Interval depth (m) Q range
0-10 5-10
10-20 10-15
20-38 10-25
>38 >100
CONCLUSION

Shallow seismic velocity structure can be effectively studied using Rayleigh
modes obtained from a refraction seismic survey. The result shows the
efficiency of analysing dispersion of Rayleigh waves using bi-dimensional
Fourier transform and frequency-time analysis.
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The inversion result gave a velocity model characterised by Vp\Vs ratios (from
1.5 to 2.25) typical of dry or only partially saturated materials as fine gravel
and coarse sand (Stumpel et al., 1984). The satisfactory agreement between the
experimental and the synthetic data permitted defining the Q values up to a
depth of 38 m. The very low values obtained agree with those determined for
the similar soil conditions by Jongmans (1990) using other techniques.
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