
1.  Introduction
In the last 25  years, the central Apennines have been the site of moderate-strong (5.9  ≤  Mw<= 6.5) exten-
sional earthquakes (Colfiorito 1997; L'Aquila 2009; Central Italy 2016). Contrary to what happened in both 1997 
(Ripepe et al., 2000) and 2009 (Lucente et al., 2010) crises, the 2016 sequence initiated without conventional 
foreshocks activity (e.g., Vuan et al., 2017).

The sequence evolved around its largest event (Mw 6.5, 30th October) near Norcia, located in the middle of a 
fault system activated 2 months earlier, with a first Mw 6.0 (24th August) event located south, near the town of 
Amatrice. Then, a few days before the Norcia earthquake, another Mw 5.9 event occurred at the northernmost 
extent of the sequence, near the village of Visso (Figure 1).

Aftershocks distribution shows the geometry of the shallow SW-dipping normal fault segments hosting the main-
shocks of the sequence, confined at depth by a sub-horizontal, approximately 2–3 km thick, shear zone (SZ) 
active between 7 and 12 km (SZ; Chiaraluce et al., 2017; Waldhauser et al., 2021); a discontinuity interpreted 
as a litho-structural feature or as the limit of the brittle-ductile transition, contributing differently to pre- co- and 
post-seismic displacement (respectively Barchi et al., 2021 and Mandler et al., 2021).

Before the Mw 6.0 Amatrice mainshock, seismicity rate changes along the SZ (Vuan et al., 2017) and pre-slip 
(Vičič et al., 2020) linked to supposed temporal fluctuations in tectonic loading are observed close to the system 
of shallow dipping normal faults.

In the 8 months preceding the 2016 sequence onset, seismic activity increased along the SZ in the areas located at 
the termination of the normal faults that will host the strongest earthquakes. These time-varying rates have been 
interpreted as the brittle signature of the final stage of the tectonic loading process acting along the normal fault's 
bounding plane, suggesting an active role of the SZ in the preparatory earthquake phase (Vuan et al., 2017). 
On the contrary, Tan et al. (2021) and Waldhauser et al. (2021) observed that during the aftershock sequence, 
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Figure 1.
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seismicity along the SZ mainly occurs in response to the slip on the normal faults, proposing a passive role for 
this structure during the coseismic stage. All these findings suggest a time-dependent and evolving behavior for 
the SZ.

To investigate the driving process leading to the unlocking mechanisms of the 2016 seismic sequence and to 
better understand the role of the SZ and surrounding fault system, we increase the spatio-temporal resolution of 
the seismicity patterns, placed between Colfiorito 1997 and L'Aquila 2009 (Figure 1), over the 8 years before the 
sequence onset.

To look for previously undetected events, we first relocated the catalog of ∼23,000 earthquakes within the source 
volume of the 2016 Central Italy sequence. Seismic events were detected by the Italian National Network (ISIDe 
Working Group, 2007) from the 1st of January 2009 and the 24th of August 2016, the day of the Amatrice main-
shock (Figure 1). This starting catalog is then used in a template matching framework (Gibbons & Ringdal, 2006; 
Sugan et al., 2014, 2019; Vuan et al., 2018, 2020) to generate an augmented catalog that we used to identify areas 
with different frictional properties looking at the occurrence over time and space of diverse typologies of clusters 
(e.g., foreshock-mainshock, mainshock-aftershock, or swarm-like; Zaliapin & Ben-Zion, 2016, 2020).

Within the events characterized by higher waveforms similarity, we look for repeating earthquakes to be possibly 
associated with the occurrence of aseismic slip, such as creeping, afterslip, or slow slip events (e.g., Uchida, 2019).

These features are then discussed with respect to models proposed for the earthquake preparation phase and 
nucleation process (Ellsworth & Bulut, 2018; Kato & Ben-Zion, 2021; Tape et al., 2018).

2.  Methods
2.1.  Input Catalog

The catalog of templates consists of 23,003 events in the local magnitude (ML) range 0.1–5.2 that occurred in 
the 100 × 100 km 2 area shown in Figure 1 from the 1st of January 2009 to the onset of the 2016 Central Italy 
sequence (24th of August 2016). The events have been initially relocated in absolute terms using NonLinLoc 
code (Lomax et  al.,  2000), based on a nonlinear inversion method (Figures S1 and S2, in Supporting Infor-
mation S1). Then, to further maximize the quality of the templates' catalog in terms of hypocentral location 
resolution, we apply a double difference (Waldhauser & Ellsworth, 2000) scheme, taking only absolute travel 
times. The resulting relocations show the mean value of horizontal errors of ∼500 m in an east-west direction 
and ∼400 m north-south (Figure S3 in Supporting Information S1). Details about the methods are described in 
supplement Text S1 in Supporting Information S1.

2.2.  Template Matching

Template matching search for earthquakes that strongly resemble well-located events called templates. We apply 
the method developed by Vuan et al. (2018) to 8-year continuous data (Figure S4, in Supporting Information S1) 
to gain greater detail in microseismicity patterns. Text S2 in Supporting Information S1 describes input and 
output parameters to infer and validate the augmented catalog (Figure S5 in Supporting Information S1). We keep 
the new detections co-located with the templates, while the magnitude is estimated by amplitude comparison with 
the templates.

2.3.  Clustering Analysis and Repeating Earthquakes

We analyze the clustering of the events in the augmented catalog over time and space (see Text S3 in Support-
ing Information S1 by applying the Zaliapin and Ben-Zion  (2016, 2020) approach that separates the clusters 
from the background seismicity (Figure S6 in Supporting Information S1). Subsequently, following the criterion 
proposed by Ogata and Katsura (2012), we define and classify the clusters as swarms, mainshock-aftershock, and 
foreshock-mainshock sequences (Figure S7 and Text S3 in Supporting Information S1).

Figure 1.  (a) Map showing the selected templates (black dots) and stations (red triangles) used in the template matching analysis. Faults are projected at the surface 
as boxes: Amatrice (red, Tinti et al., 2016), Visso (orange, Chiaraluce et al., 2017), Norcia (blue, Scognamiglio et al., 2018). The star marks the 24th August Amatrice 
epicenter. Green lines show normal faults (Barchi et al., 2021). Focal mechanisms from Scognamiglio et al., 2006. (b) A-A', (c) B-B', (d) C-C' along dip cross-sections 
of seismicity from 2009 to 2016 (24th August), where is apparent the almost flat shear zone (SZ) in the middle crust. In (c), a simplified scheme of the top of SZ (TSZ) 
and the normal fault.
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Then, to better define the fault properties, we investigate the temporal clustering in terms of the coefficient 
of variation of interevent times (Kagan & Jackson, 1991) and seismic moment ratio evolution over time (e.g., 
Cabrera et al., 2022). The first defines the level of temporal clustering as close to 0 for periodic seismicity and 
greater than 1 for temporally clustered sequences; the second provides indications when most of the seismic 
moment can be associated with a single event (values close to 1) or when no prevailing event is found (values 
relative to 0). We also explore the mechanical properties of the activated faults and surrounding regions by focus-
ing on the presence of repeating earthquakes (Figure S8 in Supporting Information S1). In particular, we adopt a 
method that combines both seismic waveform similarity, using a cross-correlation function and differential S-P 
travel time measured at each seismic station (Sugan et al., 2022). Details about the parameters and the approach 
adopted to declare repeating earthquakes are provided in Supporting Information S1 (Text S4).

3.  Results
In the 8-year preceding the Amatrice earthquake, template matching helped detect approximately 91,000 new 
events (Catalog_TM in Supporting Information  S1), lowering the magnitude of completeness (MC) of the 
augmented catalog by about 1 degree of magnitude, reaching MC = 0.4 (Figures S9a and S9b in Supporting 
Information S1). The resulting catalog reflects the seismic data availability over time (Figure S4 in Supporting 
Information  S1), including events with a high degree of waveform similarity (cross-correlation values  >0.9; 
Figure S9c in Supporting Information S1).

The augmented catalog identifies microseismic activity in key sectors of the complex system of faults that have 
been activated during the sequence. Most seismicity is located below 7 km, while the 2016 main sequence spreads 
a broader range, including the shallower crustal volume (<7 km; Figure S10 in Supporting Information S1).

We analyze the pre-sequence augmented catalog by dividing the events according to their position above and 
below the SZ top (TSZ). By applying a tuned ridge estimator of the scattered seismicity (Amini & Roozbeh, 2015), 
we identify a smooth 3D surface at TSZ (Figure S11 in Supporting Information S1).

The TSZ east-dipping boundary is evident below and north of the 2016 fault system, while in the southern sector, 
it mixes up in terms of both seismic activity (e.g., aftershocks) and geometry with the deeper and low-angle 
portion of the Campotosto fault, activated with a series of 5 < MW < 6 events during the 2009 L'Aquila sequence 
(Valoroso et al., 2013). TSZ depth values range from 7 to 12 km and do not differ significantly from the TSZ 
reconstructed in Vuan et al. (2017).

A space and time representation of the 8-year augmented catalog and the corresponding yearly frequency of 
events are shown in Figure 2. Seismicity is projected along the 2016 main faults mean strike (336°–N24 W, 
Tinti et al., 2016) with positive and negative offset values, respectively, toward the north and south of the 24th of 
August Amatrice mainshock hypocenter. Figure 2 highlights two main features: (a) the migration in time of the 
shallower activity (above the TSZ) from Campotosto to the Amatrice region (Figures 2a and 2b) and (b) the lack 
of activity along the SZ right below the Amatrice fault (Figures 2c and 2d).

From 2009 to 2013, the clustering of events above the SZ migrates off-fault from Campotosto to the southernmost 
edge of the Amatrice fault, activating later the main fault volume (Figure 2b and Movie S1).

While remaining active during the 8-year time window, the SZ concentrates the events north and south of the 
Amatrice main fault edges (see Figures 2c and 2d, and Movie S2). Below this fault, a lower seismicity rate is 
found (Figure 2d).

The period from 2009 to the end of 2011 is characterized by a concentration of events in the Campotosto area 
(south of the 2016 main fault: Figure 2). We interpret this activity as part of the still ongoing aftershocks activity 
of the 2009 L'Aquila sequence, presumably extended in time due to the triggering effect of the pore pressure 
diffusion process, also described by Malagnini et al. (2012). Our new catalog confirms the migration process 
occurring in Campotosto and in a larger area than the one observed by Malagnini et al., 2012. However, the 
apparent diffusivity values ∼50–70 m 2/s we retrieve using 2 years of seismic activity (Figure S12a in Supporting 
Information S1) are consistent with previous observations made by Malagnini et al. (2012), using only the first 
month of aftershocks. From 2009 to 2010 (Figure S12b in Supporting Information S1), we observed an average 
migration velocity of about 7 km/decade, pointing to the 2016 leading fault. After 2013, we still observe activ-
ity in the southern part of the Amatrice fault (Figures 2a and 2c), in the Campotosto area, even if the number 
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of events decreases (Figures 2b and 2d). Inside the Amatrice fault volume, clusters above the TSZ have been 
observed starting from 2013 (Figures 2a and 2b). At the same time, sparse unclustered seismicity is active close 
to the northern fault edge within the SZ (Figures 2c and 2d). Movies S1–S3 to the supplement show the events' 
migration and the activation of different critical areas around the main fault area.

In the following, we apply a space-time nearest-neighbor technique (Zaliapin & Ben-Zion,  2016,  2020) to 
distinguish clustered from background activity (Figure  3), plus a frequency-magnitude distribution crite-
rion (Ogata & Katsura, 2012) for classifying the identified clusters as swarm-like, foreshock-mainshock, and 
mainshock-aftershock.

Within our 8-year catalog, we identify approximately 670 clusters (with a number of events higher than 10) 
lasting from days to months and a maximum magnitude generally lower than ML 3 (Figure S13 in Supporting 
Information S1). These clusters constitute almost 51% of the total seismicity and are mainly foreshock-mainshock 
(22%) or swarm-like sequences (28%); there are very few typical mainshock-aftershock.

Figures 3a and 3b help distinguish reference areas with clustered or unclustered distributed seismicity above and 
below TSZ. In the shallow crust (Figure 3a), clusters are mainly found in the hanging wall of the fault system 
(Movie S3) and predominate in the southern sector (S) or within the fault volume (F). Few clusters characterize 
the northern sector (N). Below the TSZ (Figure 3b), swarms and fore-mainshock sequences are more abundant in 
the S sector. The N and F sectors show very few clusters.

The along-strike projection of the clusters over time, above and below the TSZ, is shown in Figures 3c and 3d, 
respectively. Above the TSZ, clusters migrate from S toward the F sector (Figure 3c). We do not observe accel-
eration in foreshock sequences immediately before the 24th August mainshock (Figures 3c and 3d; Figure S14 

Figure 2.  (a) Spatiotemporal distribution of the augmented catalog in the shallow crust above the TSZ and (b) the yearly frequency of events projected along the main 
fault strike (336°). Only events with M ≥ Mc are plotted. (c, d) panels as (a, b) for events below the TZS. Red dotted lines represent the northern and southern edges of 
the 24th August Mw 6.0 Amatrice main fault. Faults are projected at the surface for the Amatrice mainshock (red), Visso (orange), and Norcia (blue). The black stars 
mark the 24th August Amatrice epicenter as a reference, and the red stars mark M > 3.5 events.
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in Supporting Information S1). Clusters below the TSZ evolve differently: we find swarm-like sequences in the 
S sector up to 2015 (Figure 3d), while few foreshock-mainshock clusters develop within and around the F sector.

We also find repeating earthquakes, doublets characterized by low interevent time (usually less than 1  day), 
following a similar migration path (Figure S8 in Supporting Information S1) toward the hypocenter of the 24th 
August mainshock.

Figure 3.  (a) Map showing swarm-like, foreshock-mainshock clusters and background seismicity above the TSZ, (b) as (a) below the TSZ. Only clusters with at least 
10 events are shown. Dashed black lines identify the faults regions (F), the southern regions (S), where clusters prevail, and the northern region (N), where background 
seismicity prevails. (c) along-strike section of the clusters above the TSZ and (d) below the TSZ. Only events in the red dashed box are projected. Faults are projected 
for the Amatrice mainshock (red), Visso (orange), and Norcia (blue); the star marks the position of the 24th Amatrice mainshock as a reference. Only events with 
M ≥ Mc are plotted. The arrows mark the cluster migration observed in the shallower crust.
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To better investigate the difference in the mechanical properties of the fault system, we use temporal clustering 
as a proxy for identifying areas and periods of different coupling. Generally, weaker temporal clustering charac-
terizes creeping volumes where the coupling is lower (Liu et al., 2022). Differently, locked volumes with higher 
coupling show a more pronounced temporal clustering.

The coefficient of variation of interevent times (Figures 4a and 4b), the seismic moment ratio (Figures 4c and 4d), 
and the cumulative number of events over time (Figures 4e and 4f) are computed for the volume hosting the fault 
(area F in Figure 3) and for the N and S sectors of Figure 3 (Figures S15 and S16 in Supporting Information S1) 
to evaluate the degree of coupling above and below the TSZ.

Low and high coefficients of variation are often alternated in F. At the same time, an evident increase in temporal 
clustering was found in 2013 when the activity above the TSZ changed from Poissonian to clustered (Figure 4a), 
while below the TSZ (Figure 4b), unclustered distributed seismicity prevails.

The moment ratio is generally low after the beginning of 2013 (Figures 4c and 4d), indicating clustered swarm-
like sequences, often observed elsewhere during increased over-pressurized fluids in the fault volume (Zhu 
et al., 2020). The cumulative events are higher above the TZS than below, rising from 2013 (Figures 4e and 4f).

In the north-northwestern sector (N), the coefficient of variation above the TSZ indicates temporal clustering 
lower (Figure S15a in Supporting Information S1) than in the F sector (Figure 4a). Below the TSZ, seismicity 
appears more sparse than in F (Figure 4b), with no apparent temporal clustering and Poissonian (Figure S15b in 
Supporting Information S1). Moment ratios slightly increase from 2012 above TSZ (Figure S15c in Supporting 
Information S1). Despite the higher density of events below the TSZ than above (Figure S15d in Supporting 
Information S1), moment ratios are lower than 0.5, confirming distributed low-magnitude seismicity. The weaker 
temporal clustering suggests low coupling for N.

South of the main fault volume (Campotosto area, S in Figure 3a), a relatively low coefficient of variation value 
is observed above TZS up to 2011. Subsequently, the values rise for clusters starting from the second half of 2011 
(Figure S16a in Supporting Information S1).

The moment ratio shows prevailing mainshock-aftershock and foreshock-mainshock sequences up to mid-2011, 
followed by predominant swarm-like clusters and foreshock-mainshock (Figures S16c and S16d in Supporting 
Information S1). The high cumulative number of events that characterizes this sector from 2009 to mid-2011 is 
still related to the L'Aquila 2009 aftershock sequence (Figures S16e and S16f in Supporting Information S1).

4.  Discussion
The nucleation of a dynamic rupture is related to the variations and evolution of stress and strength in the fault 
system volume. The two end-member models describing such a process are the cascade-up (e.g., Ellsworth 
& Bulut, 2018) and the pre-slip (e.g., Tape et al., 2018). Between these models, there is also the progressive 
deformation localization one (Ben-Zion & Zaliapin, 2020; Kato & Ben-Zion, 2021), which supposes evolving 
localized deformation, leading to a primary slip zone prone to a significant dynamic rupture (e.g., Amitrano 
et al., 1999; Renard et al., 2019).

In the pre-slip model, foreshocks are the product of an underlying quasi-stable slip process occurring around the 
nucleation patch. In contrast, in the cascade model, foreshocks are the engine triggering the subsequent dynamic 
rupture of the large earthquake (e.g., Mignan, 2014). Differently, in the progressive localization model, a more 
regional shear localization process induces the generation of clusters (e.g., foreshocks) along diverse minor faults 
surrounding the rupture zone, leading to a large earthquake (Ben-Zion & Zaliapin, 2020). In this context, moni-
toring microseismic activity could be crucial for tracking the evolving localization process leading to the nuclea-
tion of the mainshock rupture (Kato & Ben-Zion, 2021).

The 8-year seismicity patterns we observe show analogs with the progressive localization model proposed by 
Kato and Ben-Zion (2021). Before the 2016 central Italy sequence, we observe seismicity around a future rupture 
zone in terms of seismicity localization and coalescence of events into growing clusters in the final ∼4 years 
before the large earthquakes of the sequence, possibly producing crustal weakening on a multi-annual scale.

The newly retrieved catalog shows seismicity mainly occurring along a SZ (Figures 1b–1d) located below ∼7 km 
and bounding at depth the system of normal faults (Figure 2c, Movies S2 and S3). We observe a lower activity 
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Figure 4.  Coefficient of variation (COV) values of interevent times above (a) and below (b) the TSZ. Moment ratio (M0) of interevent times above (c) and below 
(d) the TSZ. Dashed lines show the associated standard deviation. The cumulative number of events above (e) and below (f) the TSZ is also shown. The analysis is 
performed for the fault volume (F in Figures 3a and 3b). Only events with M ≥ Mc are plotted.
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rate along the SZ, right below the Amatrice fault (Figure  2d). While seismicity above the TSZ is organized 
in clusters, mainly foreshocks-mainshock and swarms, nucleating around the main fault zone (Figures 2a, 2b, 
and 3c), toward the Amatrice fault zone (Figures 2b and 3c, Movies S1–S3).

Above the SZ, it looks like the events migrate (Figures 2a and 2b) from the Campotosto area to the Amatrice 
epicenter and localize, from the end of 2012, in a 20–25 km along-strike sector. The migration observed at shal-
low depth from the southern portion to the fault volume (Figure 3c) and confirmed in the pattern of repeating 
earthquakes (Figure S8 in Supporting Information S1) suggest evidence of fluids and an aseismic slip process 
in this preparatory phase. Similarly, Vičič et al. (2020), using GPS data preceding the mainshock, suggest that 
aseismic deformation plays a fundamental role in loading surface faults of the 2016 sequence.

Observations of aseismic transients in the shallow continental crust are less common than in subduction zones 
(e.g., Kato et al., 2012, 2016; Uchida et al., 2016), and in areas characterized by low strain rate values such as 
the Apennines (Gualandi et al., 2017). It is hypothesized that slow slip requires a rich content of over-pressurized 
fluids and higher temperatures, components that are not often found in the colder, drier continental crust (Bouchon 
et  al.,  2013). Over-pressurized fluids (CO2) are instead well documented along this sector of the Apennines 
(Chiodini et al., 2013; Lombardi et al., 2010; Trippetta et al., 2013); thus, fluid-driven slow slip can be possible 
in the extensional framework showing clustered activity with the presence of swarm and foreshocks. Malagnini 
et al. (2022) and Chiarabba et al. (2020) interpreted the 2016 Central Italy sequence as an extended episode of 
fluid diffusion occurring within a crust with abundant fluids. Thus, the final preparation phase leading to large 
earthquakes could be driven by a mixture of slow-slip transients and fluids where tiny seismic transients, testified 
by the presence of migrating swarm-like clusters, can contribute to the build-up of shear stress around mainshock 
hypocenter sites and stress changes induced by foreshock ruptures (Kato & Ben-Zion, 2021).

In 2013 within the fault volume (Figures 3 and 4a), we observed an intermittent, step-like fault slip behavior with 
typical swam-like clusters. This intermittent slip could represent a combination of slow and fast failure modes, 
increasing the stress on the eventual rupture zone and producing local variations in loading rates that modify the 
effective frictional behavior of the main fault.

Assuming the temporal clustering as a proxy of the main fault volume coupling, we identify the existence of a 
creeping activity along a basal detachment characterized by low coupling (Figure 4b), increasing the loading on 
the above locked high-angle normal faults (higher coupling from 2013, Figure 4a). We highlight a northwestern 
creeping region, where unclustered distributed seismicity prevails below the TZS (Figure S15b in Supporting 
Information S1), and a southern region with moderate coupling below TSZ (Figure S16b in Supporting Infor-
mation S1), where fluid diffusion occurs (Figure S12 in Supporting Information S1). The low number of small 
magnitude events found 1 month before the mainshock and immediately before it (Figure S14 in Supporting 
Information S1) seems not to support the cascade or pre-slip models. At the same time, the 8-year seismicity 
patterns find more similarities with the progressive localization model.

5.  Conclusions
The novel and increased catalog we generated, composed of about 114,000 events, highlights a progressive local-
ization of seismicity before the first Mw 6.0 mainshock of the 2016 Central Italy sequence.

Our 8-year observations show seismic activity involving structures surrounding the nucleation and main rupture 
zone. The pre-sequence seismicity patterns along the almost horizontal SZ probably triggered clusters and seis-
micity within the main fault volume. Localization of seismicity and growing clusters migrating within the main 
fault volume produce crustal weakening around the future rupture zone, with progressive unlocking of surround-
ing zones and loading the main fault.

Migrating clusters, mainly formed by foreshocks-mainshocks and swarm-like clusters, also including repeating 
earthquakes, advocate the occurrence of slow slip transients, probably boosted by fluids.

Data Availability Statement
Seismic waveforms and station metadata (see STATION_LIST in Supporting Information S1) (from 1st January 
2009 to 24th August 2016) used in this article are available via EIDA (the European Integrated Data Archive 
infrastructure within ORFEUS) at http://www.orfeus-eu.org/webdc3/. The seismic catalog presented in this study 
is deposited in Zenodo Open Access repository, https://doi.org/10.5281/zenodo.7515062.
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