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Abstract
In the framework of the WISELAND project, funded by MIUR, we tested the integration 
between LiDAR and hyperspectral methodologies in the Valoria landslide (Modena 
province, Italy), a high risk area with vulnerable elements, subjected to periodic and 
abrupt reactivations. Multitemporal LiDAR Digital Terrain Models (DTMs) allowed 
the calculation of a differential surface, highlighting absolute height variations, 
recognizing the main landslide components and identifying depletion and accumulation 
zones. Hyperspectral data helped in the landslide terrain roughness characterization, 
performing the Principal Component Analysis (PCA) and correlating the results with 
Flatness and Organization geomorphometric parameters derived from LiDAR DTM.
Keywords: Landslide, Remote Sensing, Light Detection and Ranging (LiDAR), 
Hyperspectral Imagery, Digital Terrain Model (DTM).

Integrazione di dati LiDAR e iperspettrali per il monitoraggio di frane:analisi del 
sito di Valoria

Riassunto
Nell’ambito del progetto WISELAND, finanziato dal MIUR, si è testata l’integrazione tra le 
metodologie LiDAR e iperspettrale per il monitoraggio della frana di Valoria (provincia di 
Modena), area ad alto rischio per la presenza di elementi vulnerabili e soggetta a periodiche 
riattivazioni. Un’analisi multitemporale di Modelli Digitali del Terreno (DTM) ha permesso di 
calcolare un differenziale tra le superfici, che ha messo in luce le variazioni assolute di quota, 
le componenti principali della frana, le zone di accumulo e di  deplezione. Il dato iperspettrale 
è servito per caratterizzare la rugosità del terreno, correlando l’Analisi delle Componenti 
Principali (PCA) con l’analisi dei parametri geomorfometrici derivati dal DTM LiDAR.
Parole chiave: Frana, Telerilevamento, LiDAR, Iperspettrale, Modello Digitale del 
Terreno (DTM).
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Introduction
Landslide occurrence is related to a variety of factors such as underlying geology, 
mechanical properties of soil and rocks, degree of weathering, groundwater conditions, and 
the presence (or absence) of geological structures such as joints, faults, and shear zones 
[Fell et al., 2000]. Because of this complexity, landslide monitoring is commonly adopted 
both in the early detection of risk factors and as an effective tool for landslide hazard 
management and analysis [Sassa e Canuti, 2008].
This paper’s aim is to demonstrate the possibility to successful apply high resolution LiDAR 
and hyperspectral airborne remote sensing techniques to landslide monitoring in the special 
case of an active, large earthflow characterised by rapid to moderate rate of movement (the 
Valoria landslide, Northern Apennines, Italy). The airborne platform is preferable instead 
of the terrestrial one because it allows the acquisition of remote sensing data in large areas 
like the Valoria landslide. Other works using these methodologies to study landslides can be 
found on the web, but there are no examples of the integration between differential LiDAR 
and hyperspectral data in literature. 
The activities described in this paper are part of the research project WISELAND (Integrated 
Airborne and Wireless Sensor Network Systems for Landslide Monitoring) funded by the 
Italian Government (financial years 2007-2009).
The Valoria landslide is a large, active earthflow which mostly involves low-plasticity scaly 
clays [Manzi et al., 2004; Corsini et al., 2006]. It has been completely reactivated in 2001, 
and since then it has been intermittently active with displacements that in one season could be 
in the order of hundreds of meters. This recent evolution has caused a significant modification 
in the slope morphology, with quite distinct depletion and accumulation zones.

Data Acquisition And Processing
Laser scanning and hyperspectral imagery
The possibility to directly acquire a high density and accurate 3D point cloud has made 
LiDAR (Light Detection and Ranging) the preferred technology for topographic data 
collection; high-resolution DSMs (Digital Surface Models) and DTMs (Digital Terrain 
Models), in forestry areas are some example of the potentiality of this methodology [Wehr 
et al., 1999; Holmgren, 2004; Coren et al., 2006].
A typical LiDAR system consists of a laser ranging and scanning unit, together with a POS 
(Position and Orientation System), which encompasses an integrated Differential Global 
Positioning System (DGPS) and an Inertial Navigation System (INS) [Cramer, 1999]. The 
laser ranging unit measures the distances from the sensor to the mapped surface, while the 
onboard GPS/INS component provides the position and orientation of the platform. LiDAR 
data collection is carried out in a strip-wise fashion and the ground coordinates of the laser 
footprints are derived [Baltsavias, 1999].
The LiDAR we used is an Optech ALTM3100; it is a small footprint LiDAR system that 
is able to acquire data up to 100 kHz frequency. In spite of very dense and precise spatial 
data, these systems are rather poor in spectral sensitivity [Coren et al., 2006]. In order to 
overcome this problem, a hyperspectral dataset has been acquired. 
Hyperspectral remote sensors, on the other hand, collect image data simultaneously in 
dozens or hundreds of narrow, adjacent spectral bands. These measurements allow to derive 
a continuous spectrum for each image cell. After adjustments for sensor, atmospheric, and 
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terrain effects are applied, these image spectra can be compared with field or laboratory 
reflectance spectra, in order to recognize and map surface materials such as particular types 
of vegetation or land soils.
The hyperspectral system we used is an AISA Eagle system [Hyvärinen, 2003]. It is a 
hyperspectral sensor allowing the acquisition of a maximum of 252 bands, ranging from 
visible bands to near-infrared ones. This sensor is the most appropriate to precisely detect 
many different terrain features. AISA Eagle is a complete, pushbroom system, consisting of 
a hyperspectral sensor head, a miniature GPS/INS sensor, a data acquisition unit in a rugged 
PC with display unit and power supply.

Data acquisition
In this study the LiDAR Optech ALTM 3100 sensor was used to investigate the Valoria 
landslide (Modena Province, Italy). LiDAR datasets have been acquired in 2006, 2007 and 
2009. The study area was surveyed from an altitude of 1500m above ground level (agl), 
with a mean sampling density of about 4 points/m2; the radiometric resolution of LiDAR 
data, scan frequency and scan width were 12bits, 70Hz and ±25° respectively. The last 
LiDAR survey was performed on 30th March 2009 with the same sensor and the same 
acquisition parameters. 
Hyperspectral data were acquired on 16th June 2009, using the AISA Eagle system. The 
flight was performed at 3000 m of altitude (agl), acquiring 252 bands and setting a ground 
resolution of 2 m.

Data pre-processing
All LiDAR datasets were processed using Applanix PosPac software for the trajectory 
computation. The final point cloud was obtained using Optech DashMap software, while 
TerraScan software (produced by Terrasolid Corporation) was used for data classification, 
in order to produce a good high resolution digital terrain model  of Valoria landslide 
[Axelsson, 1999]. Typical vertical accuracy is lower than 0.10 m while horizontal accuracy 
is in the order of 0.5 m or lower, as reported by Optech Incorporated, [www.optech.ca]. The 
heights are ellipsoidal. The LiDAR data have been classified generating the ground class 
by applying the Axelsson algorithm [Axelsson, 1999] embedded in Terrascan software. 
DTM data have been gridded and interpolated on a regular 2m x 2m grid. This operation 
was necessary because the geomorphometrical algorithms can’t be applied on point cloud 
and needs gridded data. An error have certainly been introduced, but it has been considered 
of no importance in this study.
The final geocoded hyperspectral dataset was obtained using a self-made software called 
HSP (Hyper-Spectral Processor), developed by Istituto Nazionale di Oceanografia e di 
Geofisica Sperimentale - OGS.
All the remote sensing datasets are in the following projection: WGS84 ellipsoid, UTM32 
North projection.

Data Analysis
Geomorphometric analysis
The m������������������������������������������������������������������������������          orphometric analysis of LiDAR derived Digital Terrain Model (DTM) for Valoria 
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landslide has been performed using MicroDEM software [Guth, 2008]. In this paragraph 
we focus on some theoretical concepts about morphometric parameters and their 
computation.
Slope and aspect are calculated in correspondence of every DTM grid point; the vector 
normal to ground is so defined by applying the steepest neighbor algorithm [Chapman, 
1952]. The direction cosines of this normal vector are then calculated. A 3m x 3m matrix is 
computed, containing the sum of cross products values. Eigenvalues and eigenvectors are 
extracted from this matrix, normalizing the eigenvectors. Eigenvalues are indicated as S1, 
S2 e S3; usually S1> S2> S3.
The morphometric terrain analysis is usually performed considering these indexes, [Guth, 
2003]:
1) Flatness: defined as:

lnf
S
S 3

2

1= c m 6 @

Large values indicate flat terrain, low values rugged terrain. It correlates strongly and 
negatively with slope or relief. 
2) Organization: defined as:

lnt
S
S 4

3

2= c m 6 @

Large values indicate a dominant linear fabric to the terrain, low values isotropic 
topography.
3) Orientation: trend of S3. It indicates the dominant trend to the terrain fabric; its direction 
is between 0 and 180°. It is used in eigenvector analysis of SSO diagrams, [Guth, 2008]. 
4) Strength: defined as:

lnc
S
S 5

3

1= c m 6 @

Large values indicate flat terrain, low values rugged terrain. It looks very similar to the 
flatness parameter. It correlates strongly and negatively with slope or relief. 
5) Shape: defined as:

k
t
f

6= 6 @

Large values indicate a dominant linear fabric to the terrain, low values isotropic topography. 
It correlates moderately with terrain organization.
In this study we principally considered Flatness and Terrain organization; the other 
parameters are supposed to be analyzed in future further investigations.

Principal Component Analysis (PCA)
When dealing with hyperspectral images, as for Valoria landslide analysis, where a large 
number of useful bands has been acquired, a fundamental task is to perform the so-called 
Principal Components Analysis (PCA) [Jolliffe, 2002; Coren et al., 2005] generally used 
to reduce the amount of data to a smaller but significant dataset. In fact, in such images 
it is very likely that subsets of spectral bands are highly correlated one to each other. If 
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this is the case, you will discover that the accuracy and reliability of a final classification 
image will suffer if you include highly correlated variables. As a general principle, PCA is 
a mathematical procedure, often applied in geodesy, transforming a number of (possibly) 
correlated variables into a (smaller) number of uncorrelated variables, called “principal 
components”. Referring to hyperspectral image processing, the objective of PCA is to 
reduce the number of bands of the dataset but contemporary to retain most of the original 
variability in the hyperspectral data.
The first principal component accounts for as much of the variability in the data as possible, 
and each succeeding component accounts for as much of the remaining variability as 
possible. A PCA is concerned with explaining the variance covariance structure of a high 
dimensional random vector through a few linear combinations of the original component 
variables. Considering a p-dimensional random vector:

, , ...,X X X X 1p1 2=
"

6 6@ @

The k principal components of X


 are the k (univariate) random variables. 

Let’s consider kYYY ,...,, 21 , which are defined by the following relationship:

. , ... ,Y X Y X Y X 2k k1 1 2 2$ $ $ $ $ $= = =m m m
" " "

6 @

where the coefficient vectors , , ..., k1 2$ $m m m  are chosen in order to satisfy the following 
conditions:

- 1-st principal component: the linear combination X1m
"

that maximizes ( )Var X1m
"

 
and 11 =m , where Var is the variance;

- 2-nd principal component: the linear combination X2m
"

that maximizes ( )Var X2m
"

 
and 12 =m ;

- ( , )Cov X X 01 2 =m m
" "

, where Cov is the covariance;

- j-th principal component: the linear combination Xjm
"

that maximizes ( )Var Xjm
"

 and 

1j =m ;

- ( , )Cov X X 0k j =m m
" "

; for all k < j.
This means that the principal components are the linear combinations of the original 
variables which maximize the variance of the linear combination and which have zero 
covariance (and hence zero correlation) with the previous principal components.
The numerical computation involving a PCA analysis is quite complicated for hyperspectral 
data, and only some specific software can truly accomplish it; ENVI software is one of the 
most extensively used for this purpose. 

Data Integration and Results
Differential LiDAR DTMs
In the past some photogrammetric digital elevation models have been computed and 
analysed. For instance, the differential analysis of a DEM of 1973 and of a DTM of 
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2003 resulted in a clear enough identification of major depletion and accumulation zones 
occurred after the 2001 reactivation event [Corsini et al. 2007]. However it was impossible 
to compute volumes precisely, because of an inconstant misalignment between elevation 
values even in stable zones, due to the stochastic errors relative to accuracies of acquisition 
techniques.
In this study, LiDAR data from 2006, 2007 and 2009 have been processed, and the relative 
DTMs have been differentiated. This technique allowed a rather precise quantification of 
depletion in the source area and of accumulation along the slope and at the landslide toe. 
LiDAR data bracket in time a quite significant acceleration event occurred in winter 2008-
2009. Therefore, a significant picture of slope modification in given by the differential 
analysis of 2007 and 2009 DTMs (Fig. 1). More specifically, a depletion of about 460.000 
m3 has been estimated for the landslide’s head zone. At the same time, the landslide toe 
has shown a marked bulging, associated to downslope sliding. This has been the result of 
movements that, on the basis of topographic total station monitoring data, have exceeded 
200 m in some slope sectors.

Figure 1 – The Valoria landslide. Interpreted differential DTM (2007 – 2009). Top left corner 
coordinates: 44° 20’ 09.37’’, 10° 30’ 57.19’’. Bottom right coordinates: 44° 18’ 16.63’’, 10° 34’ 24.51’’. 

Geomorphometry and PCA integration
The application of morphometric algorithms appeared as a powerful methodology to 
monitor the Valoria landslide. Flatness and Terrain organization of Valoria landslide DTM 
were calculated by applying the formulas previously mentioned: see Figure 2 and Figure 
3, representing Flatness and Terrain Organization respectively. Top left corner coordinates 
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of these images are: 44° 19’ 30.10’’, 10° 32’ 39.03’’. Bottom right coordinates are: 44° 18’ 
31.29’’, 10° 33’ 35.19’’. 
In Figure 2 we can observe low Flatness values (from 1 to 2) corresponding to zones with 
a higher differential displacement (see highlighted zones 1 to 5); low Flatness values are 
associated to rough terrains, and roughness appears to be proportional to stress on landslide 
surface. Zones highlighted in this figure correspond to high displacement zones in Figure 1.

Figure 2 - Flatness strength map 
superimposed on Google Earth image.

Figure 3 - Organization strength map 
superimposed on Google Earth image.
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Figure 4 - Slope map superimposed 
on Google Earth image.

In Figure 3 we can observe that Terrain Organization values are, instead, quite high in four 
zones (1 to 4). It’s an interesting phenomenon, associated to the presence of a dominant 
linear fabric; topography generates very clear lineaments on landslide flux directions.
Zones highlighted in Figure 3 are not characterized by high slope values (see Fig. 4); high 
slope values don’t correspond therefore to high Terrain Organization values. It means that 
in Valoria the zones where slope is relatively high are not moving very fast.

Figure 5 - PCA image obtained from 
hyperspectral data.
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The PCA calculation has been performed for the Valoria landslide (see Figure 5) considering 
210 bands: 42 bands were not taken into account because strongly affected by noise, 
especially in the Near Infrared field. It produced a new image, totally unlinked to the original 
one from a spectral point of view; each pixel contains the radiance information of each 
band, so it is proportional to the original information. In this way, a better discrimination 
of different terrain surfaces properties can be done, due to the consequent possibility to 
remove noisy bands. In Figure 5 it is possible to remark a very low PCA values in zones 1-
4. It means that the band decorrelations of the hyperspectral data are very strong, probably 
due to the terrain roughness. Top left corner coordinates of this image are: 44° 19’ 30.10’’, 
10° 32’ 39.03’’. Bottom right coordinates are: 44° 18’ 31.29’’, 10° 33’ 35.19’’.
Interesting results come from the analysis of the hyperspectral image after applying the 
PCA algorithm (see Fig. 5). In the four zones previous mentioned (1 to 4), PCA values are 
very low; it means that terrain roughness strongly affects hyperspectral bands decorrelation. 
This is a very interesting result and demonstrates that hyperspectral images can find a direct 
application to landslides monitoring, even if this is to be improved in further studies. 
Also between Figure 2 and 5 we see a correspondence among zones 1, 2, 3 and 4. Zones 
characterized by a Flatness value equal to 2 or less than 2 correspond to zones affected 
by a higher bands decorrelation in PCA image (low PCA values). The same zones are 
characterized by a high Terrain organization value; it means that the predominant Fabric 
alignment is clearly marked. 
Extending the analysis to Figure 4, we can observe that  zones 1, 4 and 5 are also affected 
by a relevant slope; zones 2, 3 and 6 are instead characterized by a low slope value, even 
if Flatness and Terrain organization are sensibly relevant. Zone 4 is an accumulation zone 
and a high slope value is expected; zone 2 and 3 are instead depletion zones, so this result 
needs to be further investigated.
Zone 6 can be differently interpreted depending on the dataset analyzed; a correlation 
between results coming up from all the datasets (especially from PCA and DTM analysis) 
doesn’t seem to exist.
As overall conclusion we can state that morphometric analysis performed jointly with the 
use of PCA algorithms seems a promising methodology for landslides monitoring. Analysis 
described in this paper open the access to new research fields. Especially hyperspectral 
methods are worthwhile to be applied to landslide monitoring. PCA algorithms help identify 
some key structure in landslide dynamic. Further hyperspectral analysis may try to refine 
existing geological maps and to identify the spatial distribution of previously unmapped 
or unknown faults and shear zones through the detection of minerals alteration. Although 
existing spectral-map libraries can be used to identify minerals; the spectra of a particular 
mineral can vary depending on the specific host rock; collection of field spectral data will 
be necessary to ground-truth the remotely sensed data. This analysis hasn’t been included 
in this paper because the work is still in progress and some field measurements are still to 
be completed; soon we’ll have some preliminary results.

Conclusions
The study demonstrates the capabilities of remote sensing techniques to recognise the essential 
features of an active, rapid earthflow. Using a differential high resolution DTM approach a 
displacement can be easily detect and the zones with major displacement identified. LiDAR 
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acquisitions in different periods need so to be performed and considered.
Areas subjected to a strong landslide activity have been identified by direct DTM analysis. 
Zones subjected to high relative differential displacements are associated low Flatness 
values in the DTM analysis; these indicate rough terrains. The same zones are associated a 
dominant linear fabric; it doesn’t seem to be correlated to the local slope obtained by DTM 
analysis.
Hyperspectral data revealed themselves to be very useful in roughness estimate. PCA 
analysis is a very useful and powerful methodology to characterize the surface landslide 
features because of its sensitivity to surface roughness. Future studies will focus on terrain 
classification by supervised algorithms applications, in order to better identify the landslide 
lithology, and on the integration of Wireless Sensor Network technologies, in order to 
complement the existing remote sensing techniques and increase their accuracy [Rosi et 
al. 2010].
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