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Supplemental Material

This article presents the first publicly available version of the NExt STrOng Related
Earthquake (NESTORE) software (NESTOREv1.0) designed for the statistical analysis of
earthquake clusters. NESTOREv1.0 is a MATLAB (www.mathworks.com/products/
matlab , last accessed August 2022) package capable of forecasting strong aftershocks
starting from the first hours after the mainshocks. It is based on the NESTORE algorithm,
which has already been successfully applied retrospectively to Italian and California seis-
micity. The code evaluates a set of features and uses a supervised machine learning
approach to provide probability estimates for a subsequent large earthquake during a
seismic sequence. By analyzing an earthquake catalog, the software identifies clusters
and trains the algorithm on them. It then uses the training results to obtain forecasting
for a test set of independent data to estimate training performance. After appropriate
testing, the software can be used as an Operational Earthquake Forecasting (OEF)
method for the next stronger earthquake. For ongoing clusters, it provides near-real-time
forecasting of a strong aftershock through a traffic light classification aimed at assessing
the level of concern. This article provides information about the NESTOREv1.0 algorithm
and a guide to the software, detailing its structure and main functions and showing the
application to recent seismic sequences in California. By making the NESTOREv1.0 soft-
ware available, we hope to extend the impact of the NESTORE algorithm and further
advance research on forecasting the strongest earthquakes during seismicity clusters.

Introduction
Usually, earthquake clusters can be divided into two types:
swarm-like and mainshock–aftershock. Swarm-like sequences
usually consist of many events of similar magnitude with not
well-identified mainshock. Mainshock–aftershock clusters
consist of a large event that triggers further events that decay
with time according to the modified Omori law (Utsu et al.,
1995). For both types, if they have a magnitude comparable
to or greater than that of the mainshock (Mm), they pose a
significant threat from a disaster management perspective.
Namely, they have the potential to cause further damage to
already weakened buildings, increasing the risk of collapse
and thus further damage and loss of life. A well-documented
case is the 2010–2011 Canterbury cluster where, five months
after the magnitude 7.1 earthquake, a magnitude 6.3 aftershock
caused major additional destruction and killed numerous peo-
ple (Kaiser et al., 2012; Potter et al., 2015).

To determine the probability of occurrence of strong forth-
coming earthquakes, a machine learning algorithm, NExt
STrOng Related Earthquake (NESTORE), was recently devel-
oped and successfully applied to Italian and California

seismicity; the algorithm and the results were shown in
Gentili and Di Giovambattista (2017, 2020, 2022). The related
software, NESTOREv1.0, written in MATLAB, is now suffi-
ciently mature to be distributed to the scientific community
for applications and testing in new areas.

As recommended in the Open Science agenda, for good sci-
entific practice, not only the data but also research software
should be Findable, Accessible, Interoperable, and Reusable
(FAIR) to allow full repeatability, reproducibility, and reuse
of results. This allows replication of results and ensures that
the scientific community can apply the methodology to their
data without having to rewrite the calculation codes. In addi-
tion, the use of the same software by multiple researchers
allows for comparable results when evaluating performance
on different datasets.
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The primary goal of this article is to demonstrate the
validity of NESTOREv1.0 by describing the algorithm and
implemented methods in detail. NESTOREv1.0 makes use
of several parameters and pattern recognition techniques.

The main idea of this code is to extract seismicity informa-
tion from data reported in the earthquake catalog, such as loca-
tion, time of occurrence, and magnitude of events at increasing
time intervals after the occurrence of the main earthquake.
Specifically, parameters related to the number of earthquakes,
their energy, and spatiotemporal distribution (hereafter
referred to as “features”) are measured to determine the prob-
ability of occurrence of strong subsequent events for the
ongoing seismic cluster using a multiparameter pattern recog-
nition approach. Recently, several studies analyzing the mag-
nitude difference (Dm) between the main earthquake and the
strongest subsequent earthquake have been proposed to pro-
vide methods for forecasting Strong Subsequent Earthquakes
(SSEs). The studies are based on the Omori–Utsu law
(Shcherbakov, 2014; Shcherbakov et al., 2018), Epidemic
Type Aftershock Sequence (ETAS) (Zhuang et al., 2002,
2004, 2005, 2008; Zhuang and Ogata, 2006; Shcherbakov
et al., 2019), b-value (Helmstetter and Sornette, 2003;
Shcherbakov and Turcotte, 2004; Gulia and Wiemer 2019,
2021; Gulia et al., 2020), or mainshock properties (Persh
and Houston, 2004; Tahir et al., 2012; Rodríguez-Pérez and
Zúñiga, 2016; Gentili and Di Giovambattista, 2017).

Vorobieva and Panza (1993) and Vorobieva (1999) pro-
posed an SSE forecasting method based on several different
seismicity features. They divided the clusters into two classes
based on the magnitude value of the SSE: “type A” if the SSE
has a magnitude Ma ≥ Mm − 1 and “type B” otherwise. The
aim of the method was to forecast clusters of type A, and each
feature contributed to the estimate of the probability of their
occurrence using a threshold-based approach. NESTORE fol-
lows the same approach, but differently from Vorobieva’s algo-
rithm, it considers a wider set of features, performs its analysis
considering smaller time intervals after the mainshock (Gentili
and Di Giovambattista, 2017), requires a smaller magnitude
range for the analysis (Gentili and Di Giovambattista, 2020),
and performs accurate feature’s performance validation during
the training (Gentili and Di Giovambattista, 2022). These fea-
tures increase both the ability of the method to differentiate
between the clusters belonging to the two classes and the num-
ber of clusters available. This leads to a more reliable validation
of the method, making NESTORE a robust method suitable
for semi-real-time seismic exposure mitigation. It is important
to note that the classification approach of this method does not
divide the clusters into the two classes “foreshock-mainshock-
aftershocks” (also called Omori sequences) and “swarms”—as
it is common in the literature, but the distinction between the
classes is based only on the difference in magnitude between
the mainshock and the strongest aftershock. Although swarms
are class A clusters and class B clusters are Omori sequences,

an Omori sequence can be type A if the magnitude of the
strongest aftershock is sufficiently high.

Structure of NESTOREv1.0
NESTOREv1.0 is written in MATLAB (required toolboxes:
“Mapping toolbox” and “Statistics and Machine Learning tool-
box”), and the source code is freely available under a GPLv3
license in a dedicated GitHub repository (see Data and
Resources). It analyzes the evolution of seismicity at different
time intervals after a strong event using a multiparameter pat-
tern recognition approach. In particular, given the occurrence
of a strong mainshock, it aims to estimate the probability that
the ongoing seismic cluster is type A. The software uses a
supervised machine learning approach and is optimized to
be trained even when the number of available clusters is
small, that is, on the order of a few tens, even requiring decades
of seismic data records in certain regions. To this end,
NESTOREv1.0 computes features for each cluster and distin-
guishes between type A and B clusters by training a separate
one-level decision tree for each feature, minimizing the prob-
ability of overfitting due to the small training set. During the
training process, the trees that provide the best classification
are selected. After training, the classifications of the selected
trees are merged using a Bayesian approach. NESTOREv1.0
consists of four main parts:

1. The cluster identification module extracts clusters from an
input catalog and provides their actual classification and
statistical information about them.

2. The training module computes the features for each cluster
and estimates thresholds and probabilities using a machine
learning approach to obtain a reliable forecasting of type
A cases.

3. The testing module allows the user to check the results of
the training procedure on a different set of clusters.

4. The near-real-time classification module performs a near-
real-time analysis of an ongoing cluster, providing the prob-
ability of occurrence of a cluster of type A.

The workflow of the algorithm is illustrated by the flowchart
in Figure 1.

Each of the modules consists of a main script and its asso-
ciated functions. To make the correspondence between the
main script, its functions, and its subfunctions easily recogniz-
able, we have chosen a naming scheme based on logical
dependence. In particular, each subfunction name contains
the name of its “parent” function. An exception occurs when
the subfunction belongs to MATLAB programs of other
authors; in that case, the name is left unchanged. A detailed
list of functions can be found in the supplemental material,
available to this article, and under the software link in the
Data and Resources. The structure of the NESTOREv1.0 fold-
ers is shown in Figure 2. The input and output data flows of the
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main program of each module with the directories containing
the data are also shown.

Cluster Identification Module
This module identifies seismicity clusters within a given area
using a window-basedmethod: first, all events in the input catalog
whose magnitude is greater than a fixed threshold ThM are con-
sidered mainshocks; then, for each of these events, a time window
τ and a spatial distance r are estimated as a function of their mag-
nitude Mm. Only earthquakes occurring in the time window τ
after the mainshock and within a circular area of radius r around
the location of the mainshock are assigned to the corresponding
cluster. The code automatically merges the overlapping clusters.
Different types of r and τ functions have been proposed in the
past (Gardner and Knopoff, 1974; Uhrhammer, 1986; Knopoff,
2000; Kagan, 2002; Lolli and Gasperini, 2003; Gentili and Bressan,
2008) because the functions depend on the analyzed region; in the
NESTOREv1.0 software, the user can specify the most appropri-
ate function for the region under study through a dedicated input
file. This module also selects the foreshocks for future extension
of the NESTOREv1.0 software. Spatial selection of foreshocks is
done using a circular region of radius x · r, in which r is the radius
previously specified for the aftershocks and x is a variable that can
be chosen by the user (the default is x = 1.5). The time window for
the foreshock can be selected by the user (the default is one
month). The cluster identification module provides as output
for each cluster the mainshock and the list of foreshocks and
aftershocks. It also provides information about the SSE and
the completeness magnitudeMc of the cluster. The completeness

magnitude is evaluated with the function “calc_Mc” by D.
Schorlemmer and J. Woessner, which belongs to the
software Zmap (Wiemer, 2001). The function allows to choose
the method to evaluate the completeness magnitude by calling
different functions. In NESTOREv1.0, we use the function
“calc_McMaxCurvature,” which uses the maximum curvature
method, to which we added a correction factor of 0.2, as recom-
mended byWoessner andWiemer (2005). The error is estimated
by bootstrapping. A user with average MATLAB programming
experience can add other functions of Zmap to choose a different
method or develop a new method autonomously.

Figure 3 shows an example of a possible input configuration
file of the cluster identification module. The user can specify
the equation for determining the cluster identification window,
the lower limit of mainshock magnitude, the x-value and the
time duration for foreshocks, and so forth. The detailed
description of the input file for each module is distributed with
the software in the “documents” folder.

Training Module
The training code takes as input the clusters identified by the
previous module and extracts nine features based on the energy
and seismic productivity of each cluster. Machine learning
approach is then used to estimate an appropriate set of

Cluster iden�fica�on module

Clusters,
type class

Ongoing seq. 
catalog

Near-real-�me 
classifica�on 

module
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module

Tes�ng
module

Training catalog

Features 
thres., prob.,

good 
interval,

num. of A/B 

Clusters,
type class

Training
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Prob (A) for 
ongoing 
cluster

Cluster iden�fica�on module

Figure 1. NESTOREv1.0 flowchart. The color version of this figure
is available only in the electronic edition.
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thresholds for the features to differentiate type A cases from
type B cases. The training procedure consists of four parts:
(1) features extraction, (2) decision trees training, (3) selection
of a time interval characterized by good performance for each
feature (good interval), and (4) inheritance and validation.

Feature extraction
The features are extracted from events with
magnitude ≥ Mm − 2 for increasing time intervals Ti from
the occurrence of the mainshock (Gentili and Di
Giovambattista, 2017, 2020). Of the nine features (see supple-
mental material), two relate to the number and spatiotemporal
distribution of events (the number of events N2 and the linear
concentration of events Z), four to the source area and mag-
nitude trend over time (the cumulative change in magnitude
between events Vm, the normalized source area of events S,
and the cumulative deviation S from the long-term trend with
two different approaches SLCum and SLCum2), and three to
the energy contribution E of the individual event over time (the
radiated energy Q and the cumulative deviation Q from the
long-term trend with two different approaches QLCum and
QLCum2). E is estimated as a function of magnitude M as fol-
lows:

Log10�E� �
3
2
M � 4:8: �1�

All features are computed by considering events occurring
from 1 minute after the mainshock on increasing time intervals
ending every 6 hr during the first day and every 24 hr during

the first week (10 time intervals). The starting time of the
analysis was chosen to avoid problems related to the increase
of Mc after the mainshock (see Gentili and Di Giovambattista,
2022 for more details).

Decision trees training
Nine one-node decision trees are trained for each of the 10
time periods Ti. Considering the small training set available
for NESTORE applications, we used linear classification deci-
sion trees implemented in the “fitctree” function in MATLAB,
thus avoiding more complex algorithms that provide optimal
performance for large training sets (see also Gentili and Di
Giovambattista, 2017). Specifically, for each feature and period
Ti, the corresponding tree finds a threshold such that most
clusters of type A have feature values above the threshold.
If no threshold meets this condition, the threshold is set to
“Not a Number” (NaN).

Selection of good interval
To ensure high reliability of the determined thresholds, a
detailed statistical analysis is performed to verify the perfor-
mance of the decision trees through a procedure called “good
interval selection.” Specifically, the “Leave One Out” (LOO)

NESTOREv1.0

documents

Run_clus_identifica�on

Run_training

Run_testing

Run_nrt_class

Catalogs

Clusters

Training_output

Testing_output

Nrt_output

src

user data

Figure 2. Folders’ scheme of NESTOREv1.0. Green rectangles
denote main runs. Arrows denote input (red) and output (blue)
data flows between the main runs and subfolders of “data”
directory (blue rectangles). The color version of this figure is
available only in the electronic edition.
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method is used to calculate four statistical evaluators of
the performance of each decision tree corresponding to
different feature and time period. The adopted evaluators
are Accuracy, Precision, Recall, and Informedness (Gentili
and Di Giovambattista, 2020). The first three evaluators range
from 0 to 1, which correspond to the worst and best perfor-
mance, respectively, and the last one ranges from −1 to 1 (−1
= worst, 1 = best). According to the results of different tests
(Gentili and Di Giovambattista, 2017, 2020, 2022), these four
performance evaluators increase with Ti up to a maximum
value; for the subsequent intervals, their trend is constant
or decreases. Let s2 be the value of Ti for which the
Informedness is maximum; NESTOREv1.0 defines “good
interval” as the set of periods of Ti in which:

1. Accuracy, Precision, and Recall are strictly above 0.5;
2. Accuracy is equal to or greater than that of a tree that

classifies every cluster in the more populated class;
3. Informedness is strictly greater than 0; and
4. Ti ends at a time less than or equal to s2.

The decision to use only features for Ti that are in the “good
interval” allows us to consider features with good and stable

performance. In particular,
point 2 guarantees that
imbalances in classes A and B
do not lead to unrealistic esti-
mates of the algorithm’s ability
to distinguish between the two
classes. For times longer than
s2, the features are still used
in combination with the
others, but both the value of
the features and the thresholds
are “inherited” from the time
interval ending at s2. This
selection is essential to obtain
reliable results when the num-
ber of training examples is
small. An example of such a
selection can be found in
Figures 4 and 5 in the
Application of NESTOREv1.0
section and supplemental
material figures.

Inheritance and
validation process
The last part of the procedure
of the training module
involves the validation of the
computed or inherited fea-
tures and their thresholds.

In particular, NESTOREv1.0 again applies a LOO method
to the training set and computes the percentage of correct
classifications for clusters of type A (hit rate), comparing
it with the percentage of incorrect classifications for cases
of type B (false alarm rate). For Ti periods in which the
hit rate is less than or equal to the false alarm rate, the thresh-
old is set to NaN, and the feature is ignored in the classifi-
cation phase.

The training module outputs are four vectors containing:

1. the “good range ” limits for individual features (Validity
vector),

2. the feature threshold for each Ti (Threshold vector),
3. the probability for seismicity clusters to be type A above and

below the threshold for each feature and time period
(Probability vector), and

4. the number of type A and type B clusters available for each
Ti in the training set (NAB vector).

The training module also shows some figures representing
the performance of feature classification as a function of the
interval of periods Ti chosen by the user (see the supplemental
material for more details).

Figure 3. Cluster identification module input file. The color version of this figure is available only in
the electronic edition.
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Testing Module
In this module, the information obtained from the training
procedure is used to provide forecasts of type A clusters in
a test catalog. After the cluster identification step, the pro-
cedure extracts the features for each cluster over the time peri-
ods Ti specified in the validity vector and inherits the values for
longer time periods. Then for each Ti and each cluster, the
Threshold vectors are compared with the corresponding com-
puted features; if the corresponding threshold is not a NaN,
NESTOREv1.0 uses the Probability vector to estimate

pn,i � P�AjFn,i�, �2�

which is the probability that the cluster is type A given the
value of the nth feature Fn at the period Ti. Using a
Bayesian approach (Gentili and Di Giovambattista, 2020),
NESTOREv1.0 combines all feature probabilities pn,i, to obtain
the probability Pi for cluster to be a type A cluster at time Ti:

Pi�F1…FN��
�N�B�i�N−1

Q
N
n�1 pn,i

�N�B�i�N−1
Q

N
n�1 pn,i��N�A�i�N−1

Q
N
n�1�1−pn,i�

,

�3�

in which N A� �i and N B� �i are the number of clusters of type A
and B in the training database, respectively, during the time
interval Ti; they are both listed in the NAB vector. The inclu-
sion of the number of A and B clusters allows the code to
account for the possible imbalance between type A and type

B classes in the training set, which is very common in statistical
seismology applications. The information about the actual
class of test clusters is compared with the classification output
to obtain an estimate of the algorithm’s performance. The
outputs of this module are the cluster classification list along
with the Receiving Operating Characteristics (ROC) and the
Precision–Recall graphs, which summarize the performances
of the training on a testing database. For further details on
the graphs, see the Application of NESTOREv1.0 section
and the previous articles on NESTORE (Gentili and Di
Giovambattista, 2017, 2020, 2022). In addition to the perfor-
mances of the single feature classifiers and the final Bayesian
NESTORE classification, the two graphs also show, for com-
parison, the result of a simple voting procedure applied to
the results of the single classifiers. The Application of
NESTOREv1.0 section and the supplemental material show
some examples of the two graphs.

Near-Real-Time Classification Module
The latest module of NESTOREv1.0 is designed to provide
near-real-time forecasting of cluster typology during an
ongoing seismic cluster. First, the cluster is extracted from
the catalog of current seismic activity and its features are com-
puted. Then these are compared with the thresholds and prob-
abilities obtained from the training module for the study area,
and the Bayesian approach is applied to estimate the probabil-
ity that it is a type A cluster. It is important that the training
module stores its results in output files so that the near-real-
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Accuracy values for the selection of the good range. The red line
represents response of a classifier that classifies all clusters as B.
The color version of this figure is available only in the electronic
edition.
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time classification module can use these results later, when
needed, and its run time is not affected by the previous modules
one. The outputs of the module, in addition to a map of the
cluster and a time–magnitude diagram, are the classification
of the cluster over time, the class forecasting, the information
about the time range corresponding to the forecast, and the
space after and around the mainshock for which the forecasting
of strong aftershocks was performed. The final class forecasting
is summarized using a simple traffic light classification similar to
the method of Gulia and Wiemer (2019). The authors proposed
a Foreshock Traffic Light System (FTLS) based on the temporal
analysis of the b-value measured during foreshocks and after-
shocks, which can output three alert levels for the occurrence
of a strong aftershock. The near-real-time classification module
of NESTOREv1.0 considers an AFtershock-based Traffic Light
System (AFTLS) based on the events following a strong earth-
quake (considered as aftershocks) that is based on the value of
type A probability estimated in all analysis periods. Similar to
the FTLS of Gulia andWiemer (2019), the AFTLS displays green
and red traffic lights when the probability of occurrence of a
strong aftershock is low and high, respectively, whereas the yel-
low traffic light indicates an uncertain estimate. It is important
to remark that the proposed traffic light system is not an
Adaptive Traffic Light System (ATLS), for which the threshold
is based on a quantitative risk assessment (e.g., Mignan et al.,
2017) but rather, as in Gulia andWiemer (2019), uses thresholds
based on expert judgement to summarize information contained
in the other output figures.

Software Development Principles
When writing the NESTOREv1.0 code, we considered princi-
ples of agile software development such as KISS (Keep It Short
and Simple) and DRY (Don’t Repeat Yourself; Hunt and
David, 1999; Misra, 2004). The first principle recommends
keeping things as simple as possible, for example, by splitting
complex parts into simple subfunctions, and the second sug-
gests not including duplicate program parts. The advantages of
these approaches are easier code maintenance and greater flex-
ibility when making changes or refactoring. The principles are
independent of the application domain of the code: for exam-
ple, KISS has been recently used by clinical oncology software
(Zhou et al., 2021) and healthcare information technology
(Herzlinger et al., 2013), and DRY has been used in experimen-
tal business programs (CORAL, Shaffner, 2013) and web appli-
cations (Jaiswal and Kumar, 2015). We followed the approach
of KISS using separate functions that have a specific and simple
goal. We also considered DRY, reusing the same functions in
different modules (e.g., the near-real-time classification mod-
ule shares several functions with the other three modules).

According to Wilson et al. (2014), the NESTOREv1.0
code was written with the idea that code should be written
for humans, not computers; we made the function names
descriptive and adopted a naming convention in which each

subfunction name contains the name of the corresponding func-
tion plus the specification of the particular subtask. To simplify
the use of NESTOREv1.0, all input parameters are listed in a
commented input file (one for each module) that can be saved
for later recording of the run. A folder structure is included to
separate the inputs and outputs of each module. The examples
shown in the following sections are provided along with readme
files that explain the use of the code, folders, and input file struc-
ture. The modularity of the package and the storage of results in
files allow the user to perform slower operations (e.g., cluster
identification) only when necessary, avoiding wasted time in
analysis. We have made the code available on GitHub to share
the developed tools with the whole seismological community.
Any suggestion or bug report is welcome to improve the code.
Depending on feedback and end-user requirements, a Python
version could also be considered.

Application of NESTOREv1.0
Previous versions of the NESTORE algorithm were success-
fully applied to all of Italy, northeastern Italy, western
Slovenia, and California (Gentili and Di Giovambattista, 2017,
2020, 2022). In the following, we show the results of the new
version of the code on California databases. To follow modern
open-science principles and ensure that experimental results
are versioned, openly accessible, and reproducible, we make
all input files available in a dedicated GitHub repository along
with the NESTOREv1.0 code, thus providing the “reproduc-
ibility package” (Savran et al., 2022, see Data and Resources
for link).

Training module
In this example, we show the application of the NESTOREv1.0
training module to seismicity in California by presenting the
key parameters and results. The training was performed on 55
magnitude >4 clusters that occurred in southern California
from 1980 to 2019. Data were extracted from southern
California earthquake catalog (see Data and Resources). The
good interval is automatically selected based on four evaluators
of the feature thresholds performance calculated for each time
interval (see the Training module section). After evaluating
the good range for each feature, the code displays the results.
Here we present two of the outputs: Informedness (Fig. 4) and
Accuracy (Fig. 5), which respectively indicate the amount of
information provided by the feature and the performance of
a feature in terms of the normalized percentage of correct pre-
diction (Powers, 2011; Gentili and Di Giovambattista, 2017). In
both figures, the blue empty areas mark the thresholds that the
algorithm automatically sets to discard features with poor per-
formance. The images allow an immediate evaluation of the
time periods Ti in which the features perform better.

After evaluating the good interval for a given feature, for
longer time intervals, the features and corresponding thresh-
olds are “inherited” to subsequent time intervals to be used
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together with other features. For each time interval,
NESTOREv1.0 shows the trade-off between benefits (normal-
ized percentage of correctly classified type A clusters—true-
positive rate) and costs (normalized percentage of incorrectly
classified type B clusters—false-positive rate) through an ROC
diagram (see Fig. 6). Features in the area below the diagonal (in
the example QLcum, Vm,Z) that are underlined in a blue tri-
angular box have worse performance than random guessing
and are therefore not included in the training output.

Testing module
The testing module evaluates the performance of the algorithm
by testing it on an independent test set and comparing the
actual cluster class to the forecasted one. To show these per-
formances, it provides as output the confusion matrix, the
ROC graph, the Precision-Recall graph, and the classification
of clusters in time. Unlike the ROC graph, for which the best
performances correspond to the upper left corner, the best per-
formances for the Precision-Recall graph correspond to the
upper right corner. Although Recall coincides with true pos-
itive rate, Precision provides information on how well the
model identifies type A clusters.

Figures 7 and 8 refer to the application of the NESTOREv1.0
testing procedure to an independent test set of nine clusters in
northern and southern California (extracted from the ComCat
catalogue; see Data and Resources). In particular, Figure 7 shows
the performances in terms of Precision-Recall graph. The final
NESTOREv1.0 classification (Bayesian approach; see equation 3)

is shown by a magenta star, and the simple voting, in this case
coincident, is represented by a green triangle. Although not all
features (e.g., QLcum) perform well, the merging the classifica-
tion of multiple features gives the best results.

Figure 8 shows the final result of the testing module, that is,
the Bayesian probability estimate for each cluster to be a type
A, for increasing user-specified time periods. NESTOREv1.0
provides this figure along with a detailed table containing
the performance of each feature for each time period and clus-
ter. In the figure, the color of the curve refers to the actual clus-
ter type, that is, red or blue for type A or type B, respectively. In
this way, the user can immediately check whether the type A
and type B clusters are correctly classified (above and below the
0.5 line, respectively). If the forecasting of the cluster type in
the last period is wrong, the corresponding window is under-
lined in yellow (not shown in the example).

Near-real-time classification module
During the occurrence of a new cluster, the near-real-time clas-
sification module can be applied, starting 6 hr after the main-
shock. After the cluster is identified, the algorithm displays both
the distribution of aftershocks around the epicenter of the main-
shock and their magnitude versus time. Figure 9 shows the map
of aftershocks of a cluster of the training set for which a near-
real-time application is simulated 18 hr after the mainshock.

NESTOREv1.0 then uses the information from the training
procedure to evaluate the probability for the cluster of being a
type A. The classification of each feature for each time interval

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Tr

ue
 p

os
iti

ve
 ra

te
Observation time 7.00 (days)

Random
S
Z
SLcum
QLcum
SLcum2
QLcum2
Q
Vm
N2
Excluded values

Figure 6. Receiving operating characteristics (ROC) graph show-
ing the performance of the feature thresholds during training.
The symbols represent the performances of the different fea-
tures. The black dashed line corresponds to the random
guessing. The color version of this figure is available only in the
electronic edition.
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is displayed in detail to the user to understand how the features
contribute to the final probability estimate (see the supplemen-
tal material for further details). As in the case of testing pro-
cedure, the classification of each feature for each time interval
is used to determine the final probability estimate.

In Figure 10, for each time interval Ti, the Bayesian overall
probability that the running cluster is of type A is given. Unlike
the testing module, in near-real-time applications, the actual
classification is not known, and the color of the probability
curve is related to the forecasting of the cluster type: it is
red if the probability value is >0.6 in all analysis periods, blue
if the probability is always <0.4, and black otherwise. Similarly,
the AFTLS classification, referred to all analysis periods, shows
a red light if the type A probability value is always >0.6 (strong
aftershock alert), a green light if it is confined <0.4 (no strong
aftershock alert), and a yellow light in all other cases. The algo-
rithm also provides the radius of the circular area (centered on
the position of the mainshock), the time period after the main-
shock for which the forecasting is performed, and the mini-
mum magnitude (Mm − 1) investigated for forecasting. If
the forecasted class is the same for all studied periods and
is outside the range [0.4, 0.6], the corresponding class name
is displayed.

Even if the classifications of
a few individual features do not
provide very clear results for a
given period, the integration of
different classifiers can provide
more accurate results. This
makes the multiple feature
based approach more robust
than the single feature based
approach.

Conclusions
NESTOREv1.0 is a new free
and fully automated
MATLAB-based software
package for forecasting a
strong aftershock following
the occurrence of a strong
event. This toolbox uses a
multiple feature–based
machine learning approach
and, after a training and testing
procedure, is able to provide a
near-real-time classification of
the current seismicity cluster.
The forecasting starts 6 hr after
the intense earthquake (opera-
tive mainshock), refers to a
well-defined time and space
window depending on the

magnitude of the earthquake, and can be repeated at larger
time intervals ≤7 days after the mainshock. In this article,
we showed an example of application to the California seismic-
ity. Performance is estimated and presented by the testing
module in the form of ROC and Precision-Recall graphs.

The NESTOREv1.0 package is organized in a folder
scheme that helps the user to distinguish the main module
codes from their functions, clearly discern input data from
output data, and easily retrieve the main figures generated
by the algorithm. Previous versions of the NESTOREv1.0
algorithm have been successfully applied to areas in Italy
and California (Gentili and Di Giovambattista 2017, 2020,
2022). The current improved version is being applied in
Italy (Brondi et al., 2023) and Greece (Gentili et al., 2023).
Because NESTOREv1.0 is the first version of a MATLAB-
based toolbox for strong aftershocks forecasting, we expect
that the algorithm will be improved and extended in sub-
sequent versions. We hope that public availability will be use-
ful for applying the code to many different seismotectonic
domains, for further discussion on this topic, and for improv-
ing the method. Depending on the end users’ feedback and
requirements, we are planning to write a Python version
as well.
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Data and Resources
The NExt STrOng Related Earthquake (NESTOREv1.0) toolbox is
available for free download from GitHub at https://github.com/
StefaniaGentili/NESTORE (last accessed March 2023), and the repro-
ducibility package is available in Zenodo at https://zenodo.org/
account/settings/github/repository/StefaniaGentili/NESTORE (last
accessed March 2023). At these links, the code is proposed together with
the reproducibility package for the examples in this article, including a
detailed readme for software usage. The tests shown in this article were
obtained using data of the southern California earthquake catalog of the
Southern California Earthquake Data Center (SCEDC), 2013 that was
downloaded at https://service.scedc.caltech.edu/eq-catalogs/ (last
accessed August 2021). Caltech dataset, doi: 10.7909/C3WD3xH1,
was downloaded at https://service.scedc.caltech.edu/eq-catalogs/date_
mag_loc.php (last accessed August 2021) and from the Comprehensive
Earthquake Catalog (ComCat) that was downloaded from the U.S.
Geological Survey (USGS) at https://earthquake.usgs.gov/earthquakes/
search/ (last accessed January 2021). The supplemental material for this
article includes an accurate definition of the features used for the clas-
sification, tables on the Central Processing Unit (CPU) computational
time required for the tests of the reproducibility package on different
machines, and some figure of the code output that allow the user to better
understand the classification procedure.
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