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Abstract—Backus and Wyllie equations are used to obtain

average seismic velocities at zero and infinite frequencies,
respectively. Here, these equations are generalized to obtain aver-

ages of the seismic quality factor (inversely proportional to

attenuation). The results indicate that the Wyllie velocity is higher

than the corresponding Backus quantity, as expected, since the ray
velocity is a high-frequency limit. On the other hand, the Wyllie

quality factor is higher than the Backus one, following the velocity

trend, i.e., the higher the velocity (the stiffer the medium), the

higher the attenuation. Since the quality factor can be related to
properties such as porosity, permeability, and fluid viscosity, these

averages can be useful for evaluating reservoir properties.
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1. Introduction

The amplitude of seismic waves plays a key role

in determining the properties of rocks. Amplitude

variations highly depend on frequency since forma-

tions are generally heterogeneous and anelastic,

especially those saturated with liquids and gas.

Depending on the wavelength, the behaviour of sig-

nal differs (Pride et al. 2004; Mainardi 2010). A

typical sedimentary rock environment consists of

sequences of thin beds, where a thin bed can be

defined as a stratigraphic unit that has a thickness less

than the predominant wavelength. Seismic velocity

and attenuation are affected by the layer thicknesses

and intrinsic properties of the single layers. Carcione

(1992) first described loss in fine layering, obtaining

exact expressions numerically and analytically. Fur-

ther progress has been achieved by Zhu et al. (2007),

who developed approximate solutions by assuming

that the velocity and attenuation contrasts, as well as

the interval velocity- and attenuation-anisotropy

parameters, are small by absolute value. At high

frequencies, the medium is heterogeneous and the

wavefield can be represented by rays. In this case, the

so-called Wyllie time average equation holds (Wyllie

et al. 1956). At low frequencies, the medium is

effectively homogeneous and Backus averaging can

be used to obtain the seismic properties (Backus

1962). These equations are well known regarding

seismic velocity [e.g., Carcione et al. 1991; Stovas

and Ursin (2007)], but the corresponding averages

for attenuation have not been obtained to our

knowledge.

The purpose of this note is to obtain averages for

the seismic quality factor, Q, (inversely proportional

to attenuation), at a given frequency or at the low-

and high-frequency limits. We verify the Backus

average using full-waveform numerical simulations.

The modeling is based on the Zener mechanical

model and the differential equations are solved in the

space–time domain using a direct method based on

the Fourier pseudospectral method (Carcione

1992, 2014).

The quality factor can be related to properties

such as porosity, permeability, and fluid viscosity by

means of the mesoscopic-loss mechanism (e.g., Car-

cione 2014). In fact, this mechanism seems to be the

most important at seismic frequencies. For instance,

for mesoscopic patches of gas in a water-saturated

sandstone, diffusion of pore fluid in and out between

different patches dissipates energy through conver-

sion of energy to the diffusive slow mode (e.g.,
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Carcione 2014), and this conversion is highly affec-

ted by permeability. The increasing awareness in the

scientific community that energy loss is providing

useful micro-structural information implies that the

expressions developed in this work will be important

for seismic interpretation, e.g., when the average Q of

a set of layers is required to be related to the prop-

erties of the single layers to obtain information about

its lithology, porosity, permeability, or fluid type.

2. Backus Averaging

Let us assume n isotropic layers of thickness hi,

density qi, and P-wave velocities ci, and let H ¼P
i hi and pi ¼ hi=H be the total thickness of the

formation and proportion of each single layer,

respectively. Backus (1962) obtained the effective

elastic constants of a finely layered medium in the

long-wavelength case. The stiffness constant normal

to the layering is as follows:

c33 ¼
X

i

pi
qic2i

 !"1

: ð1Þ

The equivalent medium is transversely isotropic. Let

us now assume that the layers are anelastic based on

the Zener model, each with a maximum quality factor

Qi at the frequency f0 and that ci is the unrelaxed

(high-frequency) velocity. The complex velocity as a

function of the frequency f ¼ x=ð2pÞ is as follows:

viðf Þ ¼ ci

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
if=f0 þ 1=ai
if=f0 þ ai

s

; ai ¼ Q"1
i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q"2

i

q

ð2Þ

(e.g., Carcione 2014). The relaxed (low-frequency)

velocity is ci=ai. By high frequency, we intend here a

wavelength much larger than the thickness of the

layers, i.e., the long-wavelength approximation still

holds.

The complex stiffness is obtained by replacing

Eq. (2) into Eq. (1):

p33 ¼
X

i

pi
qiv2i

 !"1

: ð3Þ

The Backus average complex velocity is as follows:

vB ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i piqi

p
X

i

pi
qiv2i

 !"1=2

; ð4Þ

where we have assumed an arithmetic average for the

density. The Backus phase velocity is 1=Reð1=vBÞ
(Carcione 2014) (in the following ‘‘Re’’ and ‘‘Im’’

denote real and imaginary parts, respectively), that is

cB ¼ Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i

piqi
X

i

pi
qiv2i

s0

@

1

A

2

4

3

5
"1

: ð5Þ

The relaxed and unrelaxed values are as follows:

cBr ¼
X

i

piqi
X

i

pia
2
i

qic2i

 !"1=2

ð6Þ

and

cBu ¼
X

i

piqi
X

i

pi
qic2i

 !"1=2

; ð7Þ

respectively.

For uniform density, Eq. (5) reads

cB ¼ Re

ffiffiffiffiffiffiffiffiffiffiffiffiX

i

pi
v2i

s0

@

1

A

2

4

3

5
"1

: ð8Þ

The average-quality factor is as follows:

QB ¼ Reðv2BÞ
Imðv2BÞ

¼ "Reðv"2
B Þ

Imðv"2
B Þ

¼ "

P
i

pi
qi
Reðv"2

i Þ
P

i

pi
qi
Imðv"2

i Þ
ð9Þ

(Carcione 2014). The quality factor of each single

layer at the frequency f0 is as follows:

Qi ¼ "Reðv"2
i Þ

Imðv"2
i Þ

: ð10Þ

3. Wyllie Equations

In the case that the signal wavelength is very short

(infinite frequency), the travel time through the layers

is as follows:
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t ¼ H

cW
¼
X

i

hi
ci
; ð11Þ

where

cW ¼
X

i

pi
ci

 !"1

ð12Þ

is the Wyllie average velocity.

Next, we propose a similar equation to obtain an

average-quality factor of the stack of layers. A plane

wave in a lossy medium attenuates as follows:

Pi expð"aihiÞ & Pi exp " x
2ciQi

hi

" #
; ð13Þ

(e.g., Carcione 2014), where ai is the attenuation

factor of each layer. The approximation of the

attenuation factor in Eq. (13) holds for a low-loss

medium. An exact expression for any level of loss

can be found in Carcione (2004, eq. 2.122). We may

re-write (13) as follows:

exp "x
2

X

i

hi
ciQi

 !

; ð14Þ

or

A ¼ exp " xH
2cWQW

" #
; ð15Þ

where

QW ¼ cW
H

X

i

hi
ciQi

 !"1

¼ cW
X

i

pi
ciQi

 !"1

ð16Þ

is the average quality factor. Note that if we define

the traveltime of each layer as ti ¼ hi=ci, the average
or equivalent quality factor is as follows:

QW ¼
X

i

ti=
X

i

ti
Qi

; ð17Þ

i.e., the weighted average of the single Q factors

where the weights are the transit times.

4. Full-Waveform Modeling Method

The full-waveform synthetic seismograms are

computed with a modeling code based on the

viscoacoustic stress–strain relation corresponding to a

single relaxation mechanism, represented by the

Zener mechanical model. The equations are given in

Sect. 2.10.4 of Carcione (2014). The 1D particle

velocity–stress formulation describing propagation

along the x-direction is as follows:

_v ¼ 1

q
oxr;

_r ¼ qc2 oxvx þ eð Þ þ s;

_eþ e

sr
þ 2

s0Q

" #
oxvx ¼ 0;

ð18Þ

where v is particle velocity, r is stress, s is the source

(explosion), e is a memory variable, sr denotes a

relaxation time, and a dot above a variable indicates

time differentiation. The relaxation time is as follows:

sr ¼ s0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q"2 þ 1

p
" Q"1

$ %
; ð19Þ

where Q is the minimum quality factor and

s0 ¼ 1=2pf0. If fp is the central frequency of the

source wavelet, we assume that the relaxation peak is

located at x0 ¼ 1=s0 ¼ 2pfp. The velocity c in these

equations corresponds to the unrelaxed or high-fre-

quency limit velocity. The preceding equations hold

for each single layer and for the equivalent medium.

The numerical algorithm is based on the Fourier

pseudospectral method for computing the spatial

derivatives and a fourth-order Runge–Kutta tech-

nique for calculating the wavefield recursively in

time (e.g., Carcione 2014).

5. Results

Let us consider a periodic system of two layers

with proportions p1 and p2, velocities c1 = 2 km/s and

c2 = 2.5 km/s, densities q1 = 2.1 g/cm3 and q2 = 2.3 g/

cm3, and quality factors Q1 = 10 and Q2, the values of

which are given below. We assume f0 = 50 Hz (re-

laxation peak) and a frequency f ¼ f0. Backus

averaging assumes that the layer thicknesses are

much smaller than the wavelength c2=f0 = 50 m,

while the Wyllie wavelength is zero. Figure 1 shows

the phase velocities as a function of proportion p1
(p2 ¼ 1" p1) for Q2 = 25. As can be seen, the Wyllie

velocity is an upper limit. On the other hand. Figure 2
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shows Backus and Wyllie quality factors for Q2 = 25

and Q2 = 40, where it can be seen that the Wyllie

average shows less attenuation. The asterisks are the

results of the following simulations.

We perform 1D simulations to compare the results

with Backus averaging and check the use of Eq. (9) to

obtain averaged Q values at the long-wavelength

limit. The number of grid points is 3465 and the grid

size is 1 m. We consider ten sets of the previous

media defined by the subindices 1 and 2 above (a

distance 10 H) with different proportions p1 = 0.25,

0.5, and 0.75, such that each set has four grid points

(H = 4 m). The fine layers, therefore, are located

between grid points 1732 and 1772. The source is a

Ricker wavelet with a dominant frequency fp equal to

f0 (e.g., Carcione 2014, p. 547) and is located at grid

point 1731, while the receiver is placed at grid point

1773 (see Fig. 3). The algorithm stepping time is 0.1

ms. Figure 4 shows the wavefield for three different

values of p1 and Q2 = 25. According to an expo-

nential decay of the form

A ¼ exp½"10Hx=ð2cBQBÞ(, where 10 H is the

source–receiver distance in this case, the quality

factor can be approximately obtained as follows:

QB & " 10Hpf0
cB lnA

; ð20Þ

Figure 1
Backus and Wyllie phase velocities as a function of p1

(a)

(b)

Figure 2
Backus and Wyllie quality factors as a function of p1, where a and

b correspond to Q-factor contrasts (Q2=Q1) of 2.5 and 4,

respectively. The results obtained with Eq. (20) are shown as

asterisks

Figure 3
Discrete representations of the three modeled sets of fine layers,

each of which is repeated ten times between grid points 1732 and

1772, with varying configurations of medium 1 (grey) and medium

2 (white)
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where A is the ratio between the maximum of the

wavefield (at the receiver) and the maximum of the

reference field (at the source). The results of the

simulations are represented by asterisks in Fig. 2,

showing that the agreement with the Backus curve is

satisfactory, mainly for the case of higher contrast

between Q factors. In summary, we have computed

average Q values at two limits, i.e., Backus (low

frequencies) and Wyllie (high frequencies).

It has to be clear that the asterisks in Fig. 2 are not

the central result of the paper but an estimation of the

Backus quality factor using an approximation. One

could use the frequency-shift or the spectral-ratio

methods, or any other method to obtain these values.

We intended to show that the Backus average is a

lower limit and this is reflected in Fig. 2. The central

results of this work are the solid lines in this fig-

ure [obtained with Eqs. (9) and (17)]. In any case,

even if equation (20) is an approximation, we can see

that of the six points shown, three coincide with the

curves and the other three are well below. This leaves

no doubt that Eq. (9) provides, first, a lower limit and,

second, agreement with Eq. (20). One problem could

be the relatively small difference between the Backus

and Wyllie averages, at least in the examples shown,

which could be difficult to estimate in real data,

mainly when the signal-to-noise ratio is low. How-

ever, this is a problem of the Q inversion algorithm.

6. Conclusions

Backus and Wyllie equations are expressions

widely used to obtain average seismic velocities at

the long and short wavelength limits, respectively.

For instance, Backus averaging is used to downscale

log data at seismic resolution and the Wyllie equation

is often used for inferring porosity from well logs, as

well as an in-situ indicator of pore fluid type. Here,

those equations are generalized to obtain averages of

seismic attenuation. The results indicate that the

Wyllie phase velocity and quality factor are higher

than the corresponding Backus quantities, where the

first result (regarding the velocity) is that expected,

since the ray velocity is a high-frequency limit. Since

the quality factor can be related to properties such as

porosity, permeability, and fluid viscosity (e.g.,

mesoscopic or wave-induced fluid-flow loss), these

averages can be useful for evaluating reservoir

properties.
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