
Geophys. J. Int. (2020) 221, 1941–1958 doi: 10.1093/gji/ggaa111
Advance Access publication 2020 March 18
GJI Seismology

Migration-based near real-time detection and location of
microearthquakes with parallel computing

Mariangela Guidarelli , Peter Klin and Enrico Priolo
National Institute of Oceanography and Applied Geophysics - , 34010 Sgonico, Trieste, Italy. E-mail: mguidarelli@inogs.it

Accepted 2020 March 11. Received 2020 January 22; in original form 2019 February 11

S U M M A R Y
Prompt detection and accurate location of microseismic events are of great importance in
seismic monitoring at local scale and become essential steps in monitoring underground
activities, such as oil and gas production, geothermal exploitation and underground gas storage,
for implementing effective control procedures to limit the induced seismicity hazard. In this
study, we describe an automatic and robust earthquake detection and location procedure that
exploits high-performance computing and allows the analysis of microseismic events in near
real-time using the full waveforms recorded by a local seismic network. The implemented
technique, called MigraLoc, is based on the space–time migration of continuous waveform
data and consists of the following steps: (1) enhancement of P and S arrivals in noisy signals
through a characteristic function, by means of the time–frequency analysis of the seismic
records; (2) blind event location based on delay-and-sum approach systematically scanning
the volume of potential hypocentres; (3) detection notification according to the information
content of the hypocentre probability distribution obtained in the previous step. The technique
implies that theoretical arrival times are pre-calculated for each station and all potential
hypocentres as a solution of the seismic-ray equation in a given 3-D medium. As a test case, we
apply MigraLoc to two, low-magnitude, earthquake swarms recorded by the Collalto Seismic
Network in the area of the Veneto Alpine foothills (Italy) in 2014 and 2017, respectively.
Thanks to MigraLoc, we can increase the number of events reported in the network catalogue
by more than 25 per cent. The automatically determined locations prove to be consistent with,
and overall more accurate than, those obtained by classical methods using manual time-arrival
picks. The proposed method works preferably with dense networks that provide signals with
some degree of coherency. It shows the following advantages compared to other classical
location methods: it works on the continuous stream of data as well as on selected intervals
of waveforms; it detects more microevents owing to the increased signal-to-noise ratio of the
stacked signal that feeds the characteristic function; it works with any complex 3-D model
with no additional effort; it is completely automatic, once calibrated, and it does not need any
manual picking.

Key words: Time-series analysis; Computational seismology; Earthquake monitoring and
test-ban treaty verification; Earthquake source observations.

1 I N T RO D U C T I O N

Microseismicity detection and location has become an increasingly
important research topic in the last years because it provides impor-
tant information on active processes in the subsurface (Grigoli et al.
2017). It is especially important in connection with the monitoring
of the seismicity possibly induced by several industrial activities
(oil and gas reservoirs, mines, water reservoirs, geothermal sys-
tems, etc.) that cause stress field perturbations in the seismogenic
layer. Improving the event detection sensitivity will not only ben-
efit the understanding of the geomechanical processes that drive

induced seismicity but also allow the prompt application of safety
procedures (Grigoli et al. 2017). Microseismic monitoring requires
continuous data acquisition and therefore the processing of many
events for picking (i.e. determination of phase onset arrivals) and
location in near real-time. Automated and robust procedures for
systematically detecting and locating microevents are mandatory
(Cesca & Grigoli 2015; Grigoli et al. 2017). The main difficulty
in the implementation of these procedures consists in dealing with
the low signal-to-noise ratio (SNR), which characterizes the traces
of the microevents collected by local seismic networks. Most of
the standard automated location routines rely on a detection step in
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Figure 1. Location of the Collalto Seismic Network (blue triangles) and the stations of the Northeast Italy Seismic Network used in this study (green triangles).
The yellow star marks an event occurred in the study area used to illustrate the methodology (01.05.2014, 13:26:24.01UTC, Lat = 45.880, Lon = 12.196,
depth = 9.6 km, after manual location). The irregular area marked by a green line corresponds to the surface projection of the Collalto gas storage reservoir.
The red dots show the location of the seismic events from the May 2014 swarm as reported in the OGS catalogue, while orange dots show the locations from
the February 2017 swarm.

which the identification and association of the P- and S-wave first
arrivals are performed. This part includes the precise estimation of
the P- and S-phase arrival time, that is, automatic picking.

The most commonly used algorithm of signal detection is the
STA/LTA detector proposed by Allen (1982), which is based on the
ratio of a short-term average (STA) to a long-term average (LTA)
calculated on sliding windows over a characteristic function (CF)
extracted from the trace. Baer & Kradolfer (1987) introduced the
envelope function as the CF and used a dynamic threshold to detect
signals buried in noise. Sleeman & van Eck (1999) and Leonard
& Kennett (1999) proposed auto-regressive (AR) techniques, based
on the Akaike Information Criterion (AIC; Akaike 1974), to pick
the phase onset. Saragiotis et al. (2002) suggested the application of
higher order statistical functions (skewness and kurtosis) to seismic

traces for phase picking. Küperkoch et al. (2010) added the AIC to
Saragiotis’ method and developed a quality-weighting scheme for
picks. For most of the picking algorithms, the P onsets can be accu-
rately picked, while for S and later seismic phases the performance
is limited especially by both the presence of noise in the data and
the overlapping of phases (Cesca & Grigoli 2015). A positive de-
tection starts the location step, which is based on the minimization
of the difference between the observed and predicted arrival times
of the considered seismic phases. If we exclude the joint hypocen-
tre and velocity inversion approach, which requires a dense array
of receivers and a large number of events (e.g. Davenport et al.
2015), the prediction of arrival times requires a previously deter-
mined velocity model. Even though homogeneous horizontal layers
are routinely used for travel-time calculation, the application of 3-D
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Migration-based detection and location 1943

Figure 2. Flow diagram of the detection and location algorithm.

velocity models may improve the earthquake location in case of
significant lateral structural variations (e.g. Chen et al. 2006).

In the recent years, alternative techniques for automated seismic
event location, similar to the migration techniques used in reflec-
tion seismics, have been developed. These methods are based on the
concept of delay and stack of seismic waveforms and do not need
prior phase picking nor phase identification. Kao & Shan (2004,
2007) proposed the Source Scanning Algorithm (SSA) that local-
izes seismic events on regional scale making use of the maxima of
a brightness function defined in space and time. The value of the
brightness function at a given time is defined in a volume of po-
tential hypocentre locations as the sum of the absolute value of the
normalized seismogram sample recorded at different stations and
anticipated by the predicted traveltime from the potential hypocen-
tre location to the station. In SSA, the predicted traveltime refers to
the S-wave velocity model, since it is assumed that S waves produce
the largest amplitudes. Other authors proposed approaches that fol-
low the same principle as SSA: Baker et al. (2005) used the term
image instead of brightness function in an approach which consists
in summing up the envelopes of the three components, considering
P traveltimes for the ray parallel component and S traveltimes for
the other two components, respectively. Gharti et al. (2010) pro-
posed to find the maxima of the objective function (as they renamed
the brightness function) with a search algorithm instead of the sys-
tematic full grid search. Grigoli et al. (2013a,b) substituted the
waveform envelopes with STA/LTA traces, using the waveform en-
ergy as CF. Their approach enhances the contribution of the arrivals
recognizable by STA/LTA to the coherence function (their equiv-
alent of the brightness function) and uses polarization analysis to
enhance P- and S-wave arrivals. Grigoli et al. (2016) recently im-
proved their previous methodology combining the waveform stack-
ing approach with some features of the relative location methods, in
order to reduce the dependency of the results on the crustal velocity
model. The previous methods work on already identified seismic
events and they do not include any event detection scheme, but
in the recent years some methodologies have been introduced for

the simultaneous detection and location of seismic events. Langet
et al. (2014) presented an automatic earthquake detection and loca-
tion technique also based on the migration of continuous waveform
data, pre-processed using a kurtosis estimator instead of STA/LTA.
Higher order statistics was also used by Poiata et al. (2016). They
developed a method for simultaneous detection and location of seis-
mic sources based on multiband filtering and higher-order statistic
characterization of the signal. Then, back-projection and stacking of
time-delay functions, evaluated by cross-correlation of transformed
signals, are used to produce 3-D spatial images representing the
likelihood of each point to be part of a seismic source. Grigoli et al.
(2017) introduced a detection method based on a modified version
of the waveforms stacking location method developed by Grigoli
et al. (2013a). Most of these studies are based on the information
provided by P-wave arrivals only (e.g. Langet et al. 2014) and ig-
nore the contribution from S waves. They also perform earthquake
detection using simple triggering algorithms applied on time-series,
generally coherency functions, and simplified strategies for error or
resolution estimation.

In this paper, we present a modified implementation of the SSA
approach, which allows the automatic detection and location of mi-
croseismic events in near real-time using data recorded by regional
and local seismic networks. We make use of information provided
by both P- and S-wave arrivals and introduce the definition of en-
tropy to investigate the presence of a seismic event within the CFs
obtained from the analysed seismic data. Our procedure is based on
the following steps:

(1) enhancement of possible P and S arrivals in noisy signals by
transforming waveforms into CFs, obtained by a time–frequency
(TF) polarization analysis of the signals;

(2) delay-and-sum of the CFs for a set of points elected as
hypocentre candidates in a pre-defined investigated volume (typ-
ically a grid). Parallel computing is adopted in order to manage
huge numbers of points. The product of the stacked CFs for P and
S waves defines an objective function (F) over the points;

(3) notification of the event detection based on the information
content in F.

In parallel computing, we denote a problem as ‘perfectly paral-
lel’ or ‘embarrassingly parallel’ if we can solve it by decomposing
the workload in a number of parallel (concurrent) tasks which are
independent of each other. This is the case of the evaluation of
the objective function F in our procedure: we can assign the cal-
culation of F on subsets of points to different tasks, which do not
need to communicate among them during the calculations. The
perfect parallelism of the F evaluation problem at step 2 allows a
straightforward application of high-performance computing (HPC)
approaches in order to reduce the execution time of the code below
the duration of the analysed signals, making it possible the near
real-time application of the procedure.

In the following sections, we first describe our methodology
for automatic detection and location of microseismic events in
detail. Next, we apply the procedure to synthetic waveforms in
order to evaluate its robustness and performance. Finally, we de-
scribe two real case applications, corresponding to two swarms
of low-magnitude earthquakes recorded in the area monitored by
the Collalto Seismic Network (northeast Italy, see Fig. 1; Priolo
et al. 2015; Moratto et al. 2019). First, we use the manual picks
and locations (www.rete-collalto.crs.inogs.it) of the first swarm
to finely tune our method; then, we apply our method to the
second swarm, and compare the automatic detections and loca-
tions with those obtained manually by the monitoring operators
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Figure 3. Waveforms related to the ML1.4 seismic event denoted by the yellow star in Fig. 1 and recorded by station ED08. We show the three component
seismograms and the characteristic function for the P waves and for the S waves.

(a) (b)

Figure 4. (a) Speedup and efficiency as a function of number of cores used for the code runs on the HPC resources of the CINECA consortium, Bologna. (b)
Running time as a function of number of cores: the orange dashed line corresponds to one-day time interval.

(www.rete-collalto.crs.inogs.it). The comparisons indicate that the
procedure is at least as accurate as a trained analyst. MigraLoc runs
in near real-time on the HPC resources available at the CINECA
consortium, Bologna, Italy.

2 M E T H O D O L O G Y

The first step of our approach consists in the partition of the data flow
received from the seismic network into overlapping time windows
that will be processed sequentially. The window length is chosen
according to the maximum possible delay in the S-wave arrival
among the recording stations that could be expected for a hypocentre
in the investigated volume. The overlap is estimated as the maximum
expected difference between P- and S-wave arrival times.

The procedure for the detection and localization is repeated on
each time window (as illustrated schematically in Fig. 2). Each iter-
ation can be divided in three steps: (i) transformation of waveforms
in CFs, (ii) ‘blind’ localization with the estimation of the hypocen-
tre objective function and (iii) identification of the event. Below we
describe the three steps of the proposed methodology.

2.1 Characteristic functions

Since the localization procedure depends on the individuation of P-
and S-phase onsets in the recorded waveforms, we process the wave-
forms in order to transform them in adequate time-series, called CFs,
in which these onsets are enhanced.
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(a)

(c)

(b)

(d)

Figure 5. (a and b) Examples of a characteristic function for the vertical component of a signal containing a seismic event and random noise, respectively;
(c and d) examples of the projection on the horizontal plane of the maximum values of the objective function F along the Z-direction obtained from signals
containing a seismic event and random noise, respectively.

Table 1. Seismic properties of the horizontally layered medium used to
compute synthetic seismograms and arrival times (Model 1).

Model 1 VP (km s−1) VP/VS ρ (kg m−3)

Layer 1 5.85 1.78 2.7
Layer 2 6.80 1.78 2.9
Half-space 8.00 1.78 3.3

Table 2. Location results after synthetic tests and comparison with true
source location.

Source location

x (km) y (km) z (km) t0 (s) F H

True 12.4 12.4 1.0 0.0
0% noise 12.4 12.4 1.0 0.025 0.997 0.9887
10% noise 12.4 12.4 1.0 0.025 0.992 0.9917
30% noise 12.4 12.4 1.0 0.045 0.981 0.9934
70% noise 12.4 12.4 1.0 0.045 0.962 0.9910
Real noise 12.4 12.4 1.0 0.045 0.9980 0.9932
Wrong model 12.2 12.3 0.8 -0.036 0.716 0.9713
Event not in the regiona 12.1 0.0 16.8 0.114 0.632 0.9961
aThe true location for the event is outside of the study region: (x, y, z) =
(13.4, −5.4, 1.0). Units in km.

A key factor in the construction of our CFs is the polarization
analysis. The analysis of particle motion recorded in three com-
ponent seismographs can be used to determine the seismic wave
type as shown by Flinn (1965), Montalbetti & Kanasewich (1970),
Rosenberger (2010) and Baillard et al. (2014). Like Ross & Ben-
Zion (2014), Ross et al. (2016) and Jurkevics (1988), we use the
covariance matrix eigenvectors and eigenvalues to compute a set of

polarization attributes. These quantities can be applied to identify
body wave phases because compressional and shear waves exhibit
a high degree of linear polarization in contrast to any Rayleigh-type
wave (Flinn 1965).

The covariance matrix for a set of n points taken over three-
component seismic waveform is computed as

σ =
⎡
⎣cov (u1, u1) cov (u1, u2) cov (u1, u3)

cov (u1, u2) cov (u2, u2) cov (u2, u3)
cov (u1, u3) cov (u2, u3) cov (u3, u3)

⎤
⎦ , (1)

where u1 and u2 are the horizontal components and u3 is the vertical
component and cov is the covariance operator. As in Ross & Ben-
Zion (2014), we compute σ using a sliding window with appropriate
length τ . Ross & Ben-Zion (2014) and Baillard et al. (2014) found
that 3–4 s long sliding windows are mostly appropriate to evaluate
the covariance matrices; however, in our application, dealing with
small magnitude events on short distances, sliding windows with
shorter lengths can provide better results. Some tuning is therefore
required in order to find the optimal value for τ . As described more
in detail in Sections 3 and 4, the tuning consists in iterating the
procedure with different values of τ on a smaller set of waveforms,
which contains a number of known events, and selecting the τ value,
which allows the highest number of earthquake detections. We use
the eigenvalues (λ1≥ λ2≥ λ3) and the corresponding orthogonal
unitary eigenvectors e1, e2 and e3 of σ to estimate the rectilinearity

r = 1 −
(

λ2 + λ3

λ1

)
(2)

and the cosine of the apparent vertical incidence angle

cos (ϕ) = e13. (3)
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Figure 6. F resulting from the synthetic test, projected on cross-sections through the true source location: (a) xy-plane, (b) xz-plane and (c) yz-plane. The true
source location is shown by the green dot.

With these quantities, we modulate the three-component data
(e.g. Rosenberger 2010) to enhance the P waves in the vertical
component and the S waves in both horizontal components:

u P = u3 r cos (ϕ)

uS1 = u1 r (1 − cos (ϕ))

uS2 = u2 r (1 − cos (ϕ)) . (4)

As an alternative to the polarization analysis based on the real
covariance matrix, it is possible to use the complex covariance
matrix as computed by Vidale (1986).

To further enhance the first arrivals, we perform the TF anal-
ysis by applying a bank of N Gaussian narrow-band frequency
filters

Gi = exp

[
−αi

(
ω − ωi

ωi

)2
]

i = 1, . . . , N , (5)

where ω is the circular frequency and ωi and αi are parameters
controlling the central frequency and relative width of filters, re-
spectively. We consider 64 Gaussian filters with central frequencies
ωi, logarithmically distributed over a frequency interval to build a
TF representation UP(ωi,t), US1(ωi,t), US2(ωi,t) of the records mod-
ulated as in eq. (4). The multiple filter technique aims at minimizing
the effect of background noise (e.g. Alvarez et al. 2013), processing
separately each band that can be affected by noise in different ways.

We use Gaussian filters because they do not affect the phase of the
signal and they can be easily applied in the frequency domain.

The characteristic function is calculated from the TF represen-
tation by stacking the envelopes obtained in each frequency band.
Finally, to further reduce the noise in each channel, a threshold is
applied to the envelope

env (Ui ) =
{

1 if env (Ui ) ≤ thr
env (Ui ) /thr if env (Ui ) > thr

. (6)

The threshold ‘thr’ is chosen as a percentile of the amplitude
of env(Ui ) for each component. In our application, we used the 90
per cent percentile after some preliminary tests, as described in the
fourth paragraph. Then env(Ui ) is normalized to the peak value and
we finally obtain

CFP (t) =
⎛
⎝ ∑N

i=1 env (UP (ωi , t))∥∥∥∑N
i=1 env (UP (ωi , t))

∥∥∥
∞

⎞
⎠

2

(7)
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(a) (b)

(c) (d)

Figure 7. Synthetic seismograms (vertical component) used for synthetic tests, with different noise levels: (a) 10 per cent of the maximum amplitude; (b) 30
per cent of the maximum amplitude; (c) 70 per cent of the maximum amplitude; (d) real noise conditions.

and

CFS (t) = 1

2

⎡
⎢⎣

⎛
⎝ ∑N

i=1 env (US1 (ωi , t))∥∥∥∑N
i=1 env (US1 (ωi , t))

∥∥∥
∞

⎞
⎠

2

+
⎛
⎝ ∑N

i=1 env (US2 (ωi , t))∥∥∥∑N
i=1 env (US2 (ωi , t))

∥∥∥
∞

⎞
⎠

2
⎤
⎥⎦ (8)

where env() denotes the envelope and ||-||∞ denotes the infinity
norm that corresponds to the maximum absolute value. In Fig. 3,
we show an example of characteristic functions calculated for a
seismic event (the yellow star in Fig. 1) at station ED02.

2.2 Estimation of the objective function

At each iteration, we use the characteristic functions CFP and CFS in
a location procedure without any prior attempt to recognize whether
they are describing an earthquake signal or not; we therefore refer
to this step as blind location. The location approach we use is based
on the delay-and-sum process introduced by Kao & Shan (2004)
and successively modified by several authors (Baker et al. 2005;
Kao & Shan 2007; Gharti et al. 2010; Grigoli et al. 2013a,b). The

scheme we use in this study is similar to that described by Grigoli
et al. (2013a,b). We sample the investigated volume of possible
hypocentres with a regular 3-D grid. The spatial sampling is chosen
according to the extension of the study area and the time sampling
step of the seismic input data. The theoretical P and S first arrival
times at each station, for each trial location in the grid, are computed
using the velocity model before the execution of the procedure. To
this aim, we use the NonLinLoc software (Lomax et al. 2000)
based on the finite-difference solution of the eikonal equation by
Podvin & Lecomte (1991). The CFP and CFS are then shifted in
time according to the theoretical P- and S-wave arrival times at
each station and stacked. The product of the stacked CFP and CFS

defines our objective function (F) at each grid point, similarly to the
coherence matrix used by Grigoli et al. (2013a,b):

F
(
x j , yk, zl

) =
[(∑M

m=1
CF(m)

P

(
t − t (m)

P

(
x j , yk, zl

)))
×

(∑M

m=1
CF(m)

S

(
t − t (m)

S

(
x j , yk, zl

)))]
∞

, (9)

where M is the number of stations, tP
(m)(xj,yk,zl) and tS

(n)(xj,yk,zl)
are the theoretical arrival times and (j,k,l, j = 1,. . . ,nx, k = 1,. . . ,ny,
l = 1,. . . ,nz) are the grid point indexes. The term objective function
was already used by Gharti et al. (2010) to indicate an analogous
function. In theory, if the velocity model is correct, an event with
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(a)

(b)

(c)

(d)

(e)

Figure 8. F resulting from the synthetic test, projected on cross-sections through the true source location: (left) xy-plane, (centre) xz-plane and (right) yz-plane;
the yellow triangles represent the stations used for synthetic tests; the green dot represents the location of the event obtained by the automated procedure.
(a) Noise level at 10 per cent; (b) noise level at 30 per cent; (c) noise level at 70 per cent; (d) wrong crustal model; (e) event occurred outside of the 3-D
computation grid. F for the synthetic test with real noise conditions is not reported, being similar to the case with noise level at 30 per cent.
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Table 3. Seismic properties of the horizontally layered medium used to
compute synthetic seismograms (Model 2).

Model 2 VP (km s−1) VP/VS ρ (kg m−3)

Layer 1 5.03 1.86 2.7
Layer 2 5.14 1.85 2.7
Layer 3 5.90 1.82 2.7
Layer 4 5.78 1.83 2.7
Layer 5 6.14 1.83 2.7
Layer 6 6.12 1.83 2.7
Half-space 8.00 1.78 3.3

hypocentre in the investigated volume will produce an F with a sharp
peak at the point corresponding to the hypocentre. Nevertheless, the
generally used velocity models are only approximations of the real
velocity structure, hence we expect at best that F shows a smooth
peak in the neighbourhood of the hypocentre. On the other hand, in
case of no events, we expect an F with a random pattern. We discuss
how to discriminate the presence/absence of an event within F in
Section 2.3.

The discrete domain of F may be considerably large (several tens
of million points). For example, to test our application we used a
grid of 250 × 250 × 250 points. To accomplish the location in
near real-time, the wall-clock computational time requested by F
should be kept shorter than the time window under analysis. In or-
der to achieve this performance in the case of large computational
domains, we parallelize the algorithm following the data decompo-
sition approach, that is, we subdivide the volume of potential source
locations among the available computational cores of the computer.
The parallel algorithm is coded using the Message Passing Interface
(MPI) paradigm (Message Passing Interface Forum, 2015) .

Tests performed with the HPC resources available at the Ital-
ian Consortium for supercomputing (CINECA) demonstrate that
we can estimate F for 10 three-component station data, with 0.01
sampling interval, on a 250 × 250 × 250 points grid over 24 hr
of seismic data in 14 hr 46 min using 32 computational cores on
Intel Broadwell processors. We recall that in parallel computing the
speedup measures the relative performance of a parallel algorithm
in respect to the best sequential algorithm for the same problem and
it is evaluated as the ratio of the runtime of the serial code to the
runtime of the parallel code on a given number of computational
cores. In the ideal case, we expect a speedup equal to the number of
computational cores. The parallel efficiency is defined as the ratio
of parallel speedup to the number of processors and in the ideal
case it should remain 100 per cent but in practice lower values are
typically observed. In our case, we observe an efficiency of above
80 per cent, which we consider an acceptable value.

In Fig. 4(a), the code speedup and efficiency as a function of the
used cores are plotted. As shown in Fig. 4(b), the present version of
the code requires a minimum of 20 cores to work in near real-time
with the volume of potential sources corresponding to our tested
application.

The main purpose of this test is to check the scalability of the
implemented parallelization of the code and therefore to infer the
feasibility of near real-time location considering the available com-
putational resources and the given number of potential hypocentres.
Of course, the same code would require significantly less compu-
tational resources if a smaller number of potential hypocentres was
considered. However, we do not discuss here possible strategies one
can adopt in order to optimize the number of potential hypocentres
in respect to the investigated volume, the given velocity model and

network geometry. Apart from the raw parallelization, we do not
discuss here other possible optimizations in the procedure, either.

2.3 Detection and location

The objective function F(x,y,z) is computed for subsequent time
windows without prior knowledge about whether an earthquake has
occurred within the corresponding time interval. In the following
paragraphs we illustrate how we use the information contained in
F(x,y,z) to detect an earthquake. We denote the points that sam-
ple our investigated volume with xi and for the sake of simplicity
Fi = F(xi).

In the case an event happened in the investigated volume during
the analysed time window the function described in eq. (9) implies
that values of F are higher in a restricted neighbourhood of the
hypocentre location than in rest of the volume. If N is the number of
points in which the investigated volume is discretized, we propose
to describe the normalized F:

p (xi ) = F (xi )
/∑N

i
F (xi ) (10)

as a weight we assign to the hypothesis that the hypocentre is in
xi, on the basis of the adopted velocity model and the considered
CFs. We can also describe pi as the probability that an independent
experiment (ideally error-less) would individuate the presence of an
event in xi.

The weight pi determines how much information will be added to
our knowledge if we find out that xi is in fact a hypocentre, thanks to
the independent experiment. The amount of added information will
be high if the calculated pi is low (we underestimated the probability
that the ith point could be the hypocentre from our calculations) and
on the contrary, the gained knowledge will be low when pi is high
(we already calculated that xi is a probable hypocentre). Following
Shannon (1948), we can assign the information value to each point
as

si = −log2 pi . (11)

The weighted average of si is called information entropy

H = −
N∑
i

pi log2 pi (12)

which ranges continuously between the extremes Hmin = 0 and
Hmax = log2N. As we can infer from the previous reasoning, if the
objective function returns a low H, then an independent experiment
telling us there is an event in the volume will not increase signifi-
cantly our knowledge because the event is already evident from the
objective function by construction. We can therefore declare a de-
tection as soon as the information entropy of the objective function
drops below a threshold value Hthr. In that case we can associate the
‘expected’ hypocentre position as

xh =
N∑
i

pi xi . (13)

The origin time is then calculated from the P- and S-wave time-
shifts associated with the point xh. The point xh should not be
interpreted as ‘the’ hypocentre but only as a ‘guess’ for it in the
case pi is sufficiently ‘regular’. On the contrary, a high value of
H indicates that the objective function does not provide us any
evidence for an event in the volume. Of course, a high H does not
imply that there was no event, but only that we are unable to detect
it from the objective function.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/221/3/1941/5809358 by Istituto N

azionale di O
ceanografia e G

eofisica Sperim
entale - O

G
S user on 23 N

ovem
ber 2020



1950 M. Guidarelli, P. Klin and E. Priolo

Figure 9. Results of the location for a synthetic test, considering synthetic waveforms corresponding to 15 sources located in different parts of the volume,
which mimic a real case scenario for the RSC network. The yellow triangles represent the seismic stations; the red dots represent the true seismic sources; the
blue open circles represent the calculated locations. The red lines represent the boundary of the grid of test hypocentres for which traveltimes are calculated.

We can estimate Hthr, by applying to the daily sequence of entropy
values a low-pass Butterworth filter with a corner frequency 40 per
cent of the sampling frequency of the time sequence; this value
was determined empirically considering the sampling period of
the entropy sequence and its signal-to-noise ratio. This provides
filtered time-series that represents the baseline, or threshold, for
the earthquake detection. When the entropy value in the original
time-series is larger than the value in the corresponding point of the
baseline, we consider a positive detection in the signal time window
for which that entropy values was obtained. By considering a time
dependent baseline as threshold we account for noise fluctuations
that affect the event detection throughout the day.

To give a first idea of the uncertainty associated to the
location results, we calculate the covariance matrix from the
F function; the eigenvalues of the covariance matrix can be
used to define the semi-axes of a covariance ellipsoid. The
3-D distribution of the objective function has the potential
to provide a formal framework for defining confidence re-
gions, but we leave the development as subject for future
research.

Fig. 5 shows the example of two F images. One corre-
sponds to seismic traces that contain a seismic event while the
second example corresponds to seismic traces without seismic
events.
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(a) (b)

(d)

(c)

Figure 10. (a–c) F resulting from the location procedure of a microseismic event occurred on 2014 May 1 at 13:26:24; (d) vertical component traces
representative of the event and corresponding characteristic functions. The yellow triangles represent the seismic stations used to locate the event; the green
circle is the location of the event obtained by the automated procedure while the purple star is the location obtained by the manual procedure.

3 S Y N T H E T I C T E S T S

To evaluate the performance of MigraLoc, we apply it to a synthetic
data set of seismograms for a given seismic network and a set of
hypocentre locations. First, we tune the procedure on the ideal noise-
free and exact velocity model case, then we investigate the effects
of noise in the waveforms and the adoption of an incorrect velocity
model.

We compute the seismograms with the wavenumber integration
method (Herrmann 2013) for the horizontally layered medium listed
in Table 1 (Model 1) and consider the receiver locations corre-
sponding to 10 three-component seismic stations resembling the
existing Collalto Seismic Network (Fig. 1), that is, the seismic
monitoring infrastructure of the natural, underground gas storage
located in Collalto, at the foothills of Southern Alps, in northeastern
Italy (Priolo et al. 2015). We compute synthetic seismograms for a
strike slip point source at depth = 1.0 km, with moment magnitude
Mw = 2.0. The 3-D grid of possible source points has an extension of
25 × 25 × 25 km3, and 100 m grid spacing. As a first experiment, we
use synthetic tests to tune the parameters of the signal enhancement
part of our procedure, that is, the sliding window τ for the covari-
ance matrix, the width of the Gaussian filters α, and the frequency

pass-band 	f. Considering that the maximum possible delay in the
arrival times at the stations is 12 s, the length of the investigated time
windows was set to 15 s. We detect the event and retrieve exactly the
location used to calculate the synthetic seismograms with τ = 0.1 s,
α = 50 and 	f = 1–50 Hz; the resulting F and entropy values are
listed in Table 2. The F reveals a clear global maximum, as shown in
Fig. 6. In a second experiment, we contaminate the synthetic wave-
forms with white noise, using different noise levels (10, 30 and 70
per cent of the maximum waveform amplitude, respectively; Fig. 7)
and with real noise as in Grigoli et al. (2018). Even with high noise
levels, our approach retrieves both the location and the origin time
used for the simulated event, with time shifts between 0.035 s and
0.060 s from the true origin time. The F images relative to these
tests show a clear maximum for all the three noise levels (Figs 8a–c),
with a reduction of the F maximum and an increase of the entropy
at increasing noise levels. The test demonstrates the effectiveness
of our procedure in identifying the events and retrieving the correct
source location parameters with noise levels up to 70 per cent of
the maximum waveform amplitude. On the other hand, as we use
entropy values as a criterion to detect seismic events, it is likely that
a larger level of noise in seismic signals, may degrade the process
of event detection. We therefore tested MigraLoc with increasing
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(a) (b)

(c)

(d)

Figure 11. (a–c) F resulting from the location procedure of a microseismic event occurred on 2014 May 1 at 22:22:57; (d) vertical component traces
representative of the event and corresponding characteristic functions. The yellow triangles represent the seismic stations used to locate the event; the green
circle is the location of the event obtained by the automated procedure while the purple star is the location obtained by the manual procedure.

Table 4. Location results for two events of the 2014 May 1 swarm.

Origin
time

Latitude
automated

Longitude
automated

Depth
automated Latitude manual

Longitude
manual Depth manual

13:26:24.13 45.876 12.196 10.2 45.880 12.196 9.6
22:22:57.23 45.882 12.192 4.2 45.888 12.186 10.0

noise level. The results show that with noise level corresponding
to 90 per cent of the maximum amplitude the algorithm fails the
detection; however, this is a case of very low SNR with the signal
almost completely masked by seismic noise.

Crustal models used to locate earthquakes are described by a
limited number of parameters and include some approximation with
respect to the true Earth. It is therefore important to consider the
possible presence of errors in velocity models and possibly estimate
and test the sensitivity of the locations to those errors. We tested
the methodology against the presence of errors in the crustal model
using different velocity models for the computation of the synthetic
waveforms (Model 2 in Table 3) and arrival times (Model 1 in
Table 1). Model 2 is the result of a tomographic study for a larger
area surrounding that of the Collalto underground gas storage and
including the Montello hills (Anselmi et al. 2011). The results for
hypocentral coordinates show errors up to 0.2 km in x, y and z, and

the maximum of F is lower than the previous case. We also consider
the case of a seismic event whose source lies outside of the volume
of possible source points, used to calculate the theoretical arrival
times. The results for hypocentral coordinates are clearly not correct,
because the procedure can scan only the points in the predefined 3-
D search volume, F is sensibly lower than in the previous synthetic
tests, and the event is attributed to a source located within the 3-D
search volume.

In the final experiment, we test possible location misfits due
to network geometry by simulating a real case scenario seis-
mic network with sources arranged in different locations with
respect to it in the 3-D search volume. In particular, we use
synthetic waveforms, with no noise added, corresponding to 15
sources located in different zones of the volume; the results are
plotted in Fig. 9. While all sources internal to the 3-D search
volume are correctly detected and located, it is evident that
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Migration-based detection and location 1953

Figure 12. Location of the events of the 2014 May 1 seismic swarm. The figure compares the manual locations of the RSC catalogue (blue dots) to those
obtained automatically by MigraLoc (red and orange dots), respectively. Locations are projected on the three Cartesian planes. The cyan triangles represent
the stations. The red and orange dots represent MigraLoc locations for events present and not present in the RSC catalogue, respectively; error bars correspond
to the confidence ellipsoids’ major axes.

the location results deteriorate close to the boundaries of the
volume.

The results of synthetic tests confirm the robustness of our ap-
proach: MigraLoc can retrieve the correct location in both cases
of noise-free data and data contaminated with different noise lev-
els, using a station configuration that mimics an existing seismic
network. As it is expected with any location procedure, results de-
teriorate when the crustal model is not correct, or events occur at
the periphery of the network.

4 A P P L I C AT I O N T O R E A L C A S E S

We test MigraLoc on two seismic swarms recorded by the Collalto
Seismic Network (Priolo et al. 2015; Moratto et al. 2019), hereafter
called RSC according to its Italian name (Fig. 1). The RSC is the
infrastructure used to monitor the natural and induced seismicity of
the natural gas storage concession known as Collalto Stoccaggio.
The Collalto gas storage concession, held by Edison Stoccaggio
S.p.A., is located at the foothills of the southeastern Alps, at the
northern margin of the Venetian Plain. The reservoir is a geologic
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(a) (b)

(c)

(d)

Figure 13. (a–c) F resulting from the location procedure of a microseismic event occurred on 2017 February 6 at 13:23:40; (d) vertical component traces
representative of the event and corresponding characteristic functions. The yellow triangles represent the seismic stations used to locate the event; the green
circle is the location of the event obtained by the automated procedure while the purple star is the location obtained by the manual procedure.

trap, with porous and permeable rock layers a few meters thick,
sealed by impermeable formations and located at 1500–1600 m
depth. It extends approximately over a 10 × 4 km2 area (Fig. 1). The
RSC was developed by the OGS—National Institute of Oceanogra-
phy and Applied Geophysics following the recommendation of the
Italian Ministry of the Environment, as Edison Stoccaggio S.p.A.
was authorized to increase the storage pressure to the original con-
fining pressure at which the gas was found in the reservoir. Since
the region is characterized by medium–high seismic hazard, seis-
mic monitoring is a key not only to identify the microseismicity
possibly induced by gas storage operations, but also to understand
whether and how this activity may interact with the tectonic struc-
tures surrounding the reservoir. The RSC started operating on 2012
January 1. It consists of 10 stations equipped with extended-band
borehole seismometers (T ≥ 10 s), and it is integrated by some
other stations of the North-East Italy Seismic Network managed by
the OGS (rts.inogs.it). Data are acquired with sampling frequency
set at 200 Hz. The RSC has a fully automatic real-time detection
and location system. All automatic locations are revised manually
by the OGS seismologists and relocated by Hypo71 (Lee & Lahr
1975). The RSC catalogue reaches a completeness magnitude of 0.2
in the target area for the microseismicity (named area A in Priolo
et al. 2015). Full information and data of the RSC (OGS 2012) are
available at www.rete-collalto.crs.inogs.it.

In our test, we consider the two seismic swarms occurred on May
2014 and February 2017 in the area monitored by the RSC, and
compare the results obtained by MigraLoc to those contained in
the RSC catalogue. For the purpose of convenience, we decided to
use waveform data recorded by the 10 RSC stations and 2 stations
of the North-East Italy Seismic Network (OGS 2016). We applied
MigraLoc to one-day long continuous seismic traces. Each detec-
tion was visually confirmed and compared to the results obtained
manually. Before processing the continuous seismic data for earth-
quake detection and location, we apply a basic pre-processing by
removing the mean and band-pass filtering (1–25 Hz) in order to
remove the long period noise that is usually present in the data.
Similar operation is performed routinely by the real-time automatic
processing. The continuous waveforms are partitioned into overlap-
ping time windows 30 s long, with overlapping time of 10 s; those
values are estimated from the calculated arrival times, as described
in paragraph 2.

The 2014 May 1 swarm features 25 events, located in the central
part of the RSC and with local magnitudes ML in the range −0.7
to 1.4. As a first step, we tune MigraLoc parameters (τ and α, 	f,
and threshold) on the continuous waveform data set. We test five
frequency ranges (1–40, 5–12, 15–25, 25–40, 1–25 and 5–25 Hz),
three τ values (0.5, 1.0 and 3.0 s), four α values (5, 50, 100 and
1000) and four threshold levels (95, 90, 75 and 50 per cent). The
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(a) (b)

(c)

(d)

Figure 14. (a–c) F resulting from the location procedure of a microseismic event occurred on 2017 February 7 at 22:45:50; (d) vertical component traces
representative of the event and corresponding characteristic functions. The yellow triangles represent the seismic stations used to locate the event; the green
circle is the location of the event obtained by the automated procedure while the purple star is the location obtained by the manual procedure.

Table 5. Location results for two events of the 2017 February 6 and 7 swarm.

Date
Origin

time
Latitude

automated
Longitude
automated

Depth
automated

Latitude
manual

Longitude
manual

Depth
manual

6.2.2017 13:23:40.18 45.963 12.214 11.3 45.944 12.218 11.3
7.2.2017 22:22:57.23 45.951 12.224 4.9 45.946 12.271 10.3

grid of possible source points used for direct search has an exten-
sion of 36 × 36 × 25 km3 and grid spacing of 200 m; P and S
traveltimes were computed using the same velocity model used for
the manual location of the RSC catalogue (Model 1 in Table 1). As a
result of the tuning, the parameters that allow the detection of
the largest number of microseismic events are: 1–25 Hz for fre-
quency range, 0.5 s for τ , 1000 for α, and 90 per cent for thresh-
old level. Considering that the maximum possible delay in the
arrival times at the stations is 27 s, the length of the investi-
gated time windows was set to 30 s. The procedure then computes
the objective function F for the 24 h continuous waveforms and,
for each F, the corresponding entropy H at 30 s time intervals.
The sequence of entropy values is filtered according to paragraph
2.3 to obtain a time-series that represents the threshold for event
detection.

For the 2014 May 1 swarm, the methodology recovered all the
25 events present in the RSC catalogue plus 5 more events and 5
false positives. As an example of the results obtained for a weak
earthquake well detected by the whole network, Fig. 10 shows the
waveforms and the F images calculated for the event of 2014 May
1 (13:26:24), with magnitude ML 1.4. Fig. 11 shows instead the
results for the smallest microearthquake located by the RSC, that
is, the event 2014 May 1 (22:22:57) with magnitude ML −0.7.
The hypocentre parameters are reported in Table 4. In both cases
the F shows a clear maximum, its value being lower for the 22:22
microearthquake, which also features a large smearing, especially in
depth. The hypocentral locations retrieved by MigraLoc are close to
those obtained manually for the entire data set, the largest difference
being for the depth of the 22:22 microearthquake owing to the lower
SNR of the signals.
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Figure 15. Location of all events of the 2017 February 6 and 7 seismic swarm. Other details as in Fig. 12.

Fig. 12 shows the location of all events obtained by MigraLoc
and manually, respectively. They are very similar to each other,
with horizontal distances < 1 km for most cases. The comparison
of the hypocentral parameters obtained by manual and automated
locations is given in Fig. S1 (Supporting Information). Especially
for events with very low magnitude (ML < 0.0) manual locations
were obtained using a small number of seismic phases (only four in
some cases) while with MigraLoc we use the full set of stations and
exploit all the possible information contained in the three component
seismic signals.

In general, location methods based on waveform stacking are
designed to work with many stations well distributed around the
seismic source area (e.g. Grigoli et al. 2013b). With a view to

the application of MigraLoc to real-time data analysis, we test its
performance in the worst-case scenario, with seismic events that
occur at the boundary of the RSC target area, that is in the case of
bad azimuth coverage of the stations, in particular for what concerns
depth estimation.

The second test with real data was then performed on the seismic
swarm occurred on 2017 February 6 and 7 near the town of Vittorio
Veneto, about 12–15 km northeast of the RSC, and with magni-
tudes ML in the range −0.3 to 2.5. The location was performed
using the same input parameters used for the May 2014 case. We
decided to apply the MigraLoc code to one-day long seismic traces,
one for each day of seismic recordings. The RSC catalogue reports
122 events for this swarm. MigraLoc identifies all the 122 mi-
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croearthquakes reported in the catalogue and 35 unreported events.
The detection process is as described for the May 2014 swarm, the
only difference being that the baseline was estimated for each day
separately.

Figs 13 and 14 show an example of the waveforms and F im-
ages for the events occurred on 2017 February 6 (13:23:40) with
magnitude ML 2.0 and on 2017 February 7 (22:45:50) with magni-
tude ML −0.1, respectively. The hypocentre parameters of the two
events are reported in Table 5. The differences between MigraLoc
and catalogue locations are larger in this case than those obtained
for the May 2014 swarm. While there still is a good control on
epicentral coordinates and depth for the ML 2.0 earthquake, the au-
tomatic location is about 3 km away from the manual one and the
depth estimation is loose for the ML −0.1 event. The reason can
be understood from Fig. 14(d): only the three closest stations could
record the event while the signal is hardly recognizable in the other
traces (e.g. ED07 in Fig. 14d). The comparison of the hypocentral
parameters obtained by manual and automated locations is given in
Fig. S2 (Supporting Information). Fig. 15 represents the map of the
locations of February 2017 swarm. The map shows that the auto-
mated locations are characterized by quite large errors bars in this
case, especially in depth. Nevertheless, the results are encourag-
ing: MigraLoc has the potential to detect and locate, at least with a
certain approximation, more events than classical manual method-
ologies. Even if the seismic swarm occurred at the boundary of the
RSC area, we could detect more events than the standard procedures
and obtain a first overview of the swarm location.

5 C O N C LU S I O N S

We have presented MigraLoc, a new procedure for automated de-
tection and location of microseismic events in near real-time using
waveforms recorded by local seismic networks. Our procedure is
based on space–time migration of characteristic functions computed
by a TF polarization analysis, and it is designed to process continu-
ous traces recorded by a dense seismic network on moderate number
of computer cores.

We tested the procedure on both synthetic seismograms and real
data. The results obtained by the synthetics show that MigraLoc is
reliable and allows the detection and location of events also with
noisy traces, since it exploits all the information contained in the
three component seismic signals. The application to the real data
recorded by the RSC reveals that our procedure detects and localizes
with a good accuracy not only all microseismic events recognized
by the standard manual location implemented in the RSC (several
of which with negative magnitudes), but it finds more events. As
expected, the location accuracy decreases for very weak events
occurring at the periphery of the network, especially for depth. In
general, we proved that MigraLoc is sensitive and robust in detecting
and locating events, and especially microevents.

It is important to note that in its present version MigraLoc uses
a time window with fixed length, so it is possible that it fails in
the detection of multiple events contained in the same time window.
The success of the detection process is also a function of the entropy
threshold chosen. An elevated detection threshold may compromise
detection sensitivity while a too low threshold may introduce many
false positives events.

The proposed methodology is not limited to microseismic events,
but it can be applied in principle to earthquakes in other ranges of
magnitude and distance as well. Regional networks will require a
larger grid for hypocentre search, while large magnitude events will

require longer time windows and appropriate TF analysis param-
eters. The application of the methodology to different-scale earth-
quakes must take into account that, in general, waveform-based
algorithms work more efficiently when used with dense networks,
with stations well distributed around the seismic source area (Grigoli
et al. 2013b, 2017).

6 DATA A N D R E S O U RC E S

Information and data on the RSC can be found at http://rete-col
lalto.crs.inogs.it (last accessed October 2019). The full data set of
continuous waveforms of the RSC is freely available at the National
Institute of Oceanography and Applied Geophysics (OGS) Archive
System of Instrumental Seismology (OASIS; http://oasis.crs.inogs.
it/, last accessed February 201), which is the database that archives
the instrumental seismological data of the OGS.
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