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As the ocean warms, the thermal tolerance of marine invertebrates is key to
determining their distributional change, where acclimation to low pH may
impact the thermal range of optimal development. We compared thermal
tolerance of progeny from a low pH-acclimated sea urchin (Arbacia lixula)
population from the CO2 vents of Ischia (Italy) and a nearby population
living at ambient pH. The percentages of normally developing gastrulae
and two-armed larvae were determined across 10 temperatures representing
present and future temperature conditions (16–34°C). Vent-acclimated sea
urchins showed a greater percentage of normal development at 24 h, with
a larger optimal developmental temperature range than control sea urchins
(12.3°C versus 5.4°C range, respectively). At 48 h, upper lethal temperatures for
50% survival with respect to ambient temperatures were similar between con-
trol (+6.8°C) and vent (+6.2°C) populations. Thus, acclimation to low pH did
not impact the broad thermal tolerance of A. lixula progeny. With A. lixula’s
barrens-forming abilities, its wide thermotolerance and its capacity to acclimate
to low pH, this species will continue to be an important ecological engineer in
Mediterranean macroalgal ecosystems in a changing ocean.
1. Introduction
The latitudinal range of marine ectotherms is closely linked to adult [1,2] and
planktonic stage [3] thermal tolerance. Early developmental stages, such as
embryos and larvae, often have the narrowest thermal tolerance and have been
shown to predict the realized thermal niche and adult distribution [3–5]. Climate
change-driven range shifts have occurred in a plethora of marine invertebrates
[1,6], such as the poleward invasion of the sea urchin Centrostephanus rodgersii to
Tasmania aswaters reached temperatures favourable for larval development [3,7].

The effects of multiple stressors have been examined for marine invertebrate
development, where effects of temperature on larval development can interact
with other environmental variables [8,9]. Ocean warming can ameliorate the
negative effects of acidification on calcification [9]. Whether adult acclimation
to low pH affects the developmental thermal tolerance range of progeny is
not well understood. It could be expected that temperature thresholds would
be reduced as negative transgenerational effects have been observed on the
survival of amphipod progeny from adults maintained at low pH [10]. For
several crab species simultaneously exposed to low pH and high temperature,
the thermal tolerance window was reduced [11,12]. On the other hand, a study
of five echinoderm species found that thermal tolerance of early development
was not impacted by decreased pH [13].
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CO2 vent systems are used as proxy laboratories to under-
stand potential impacts of ocean acidification and provide
insights into specific adaptations that animalsmight need to sur-
vive in lowpH [14–16]. The sea urchinArbacia lixula investigated
here has occupied a low pH vent site in Ischia, Italy, with mean
pHT 7.78, for approximately 30 years [15]. At these vent sites, sea
urchins are similar in abundance and size to those in nearby
ambient regions [17,18]. We compared the thermal range for
optimal development, and the upper and lower lethal tempera-
tures for offspring of vent-acclimated and nearby ambient
A. lixula populations. Arbacia lixula adjusts its physiology to
allow it to inhabit low pH vent sites [19]—whether this adjust-
ment has flow on impacts for offspring thermal tolerance is not
known. The potential that acidification may narrow the thermal
range of offspring would have important consequences for
species’ distribution as oceans continue to change.

The Mediterranean Sea is warming 20% faster than the
global average [20], with predicted warming of up to 5.8°C
by 2100 [21]. Warming has favoured the expansion of
native and alien thermophilic species towards northern
regions of the sea [22,23]. With progressive species’ shifts
towards the northern winter minimum 14°C isotherm [23],
there are major consequences for the biogeography of the
region [24]. In conjunction with warming, pH is expected to
drop between 0.25 and 0.46 units by 2100 [25].

Arbacia lixula is one of the most abundant echinoids in
the Mediterranean Sea, particularly in the south basin [26]. It
is a keystone engineer due to its barrens-forming abilities
[27,28]. Being a species of tropical affinity [29],warminghas sup-
ported an increase in A. lixula abundance in the Mediterranean
[28]. Considering its potential to greatly impact shallow rocky
reefs [26], it is important to assess whether the broad develop-
mental thermotolerance of A. lixula [30] is modulated by
acclimation to low pH.

For the first time, we determined the developmental ther-
mal tolerance of a population of sea urchins residing in a low
pH vent system. We compared the thermal range, the optimal
and lethal temperatures of the offspring of vent-acclimated and
ambient A. lixula populations. We hypothesized that the ther-
mal tolerance of the embryos and larvae of vent-acclimated
animals would be lower than that of the control population.
These findings would have important consequences for this
ecologically important sea urchin in a future ocean.
2. Material and Methods
(a) Echinoderm collection and spawning
Ten Arbacia lixulawere collected from each of two sites in Septem-
ber 2017 during their spawning season (May–October, [31]). Site
one at S. Pietro (40°44046.7000 N; 13°56040.9500 E), approximately
4 km from the vent site, had ambient pH levels (pHT 8.001).
Site two at the North side of the Castello Aragonese, Ischia
(40°43055.8400 N; 13°57052.0200 E) had decreased pH (mean pHT ±
s.d. of 7.69 ± 0.23, determined through two weeks of monitoring
with a SeaFET™ (n = 296)). Ischia seawater ranges from 14.5 to
26.0°C (Gambi MC, Lorenti M 2016, unpublished data). Ambient
temperature at the time of the experiment was 24°C [32], and
this was considered the control temperature. Upon collection,
the urchins were kept in cool boxes with seawater from their
place of origin and spawned within a few hours by injection of
2–4 ml of 0.5 M KCl, with eggs directly collected into beakers
(500 ml) of fresh filtered seawater (FSW 0.22 µm) at ambient
pH and temperature (24°C). Sperm was collected dry and kept
on ice until use. After spawning, sea urchins were returned to
their collection sites.

(b) Fertilization procedure
Three independent fertilizations were performed with urchins
from the two sites, creating three individual male–female
crosses per site. All fertilizations were performed at the control
temperature (24°C) with ambient FSW.

For each fertilization, one male and one female were spawned.
After determining egg density in counts of 100 ml aliquots from
the original collection, approximately 200 000 eggs were trans-
ferred to a 2.5 l beaker filled with FSW. Sperm was activated
with FSW just prior to fertilization. Haemocytometer counts
were used to determine the amount of sperm required to achieve
a final concentration of 104 sperm ml−1. After 10 min, fertilization
success was checked and was approximately 90–95%. The ferti-
lized eggs were rinsed to remove excess sperm, counted and
placed at a concentration of 10/mL in 30 ml glass vials, with
each vial filled with ambient FSW at control temperature. For
each cross, timepoint (24 and 48 h) and temperature treatment,
there were 3–6 individual replicate vials.

(c) Temperature treatments
Ten temperatures were tested (16–34°C in 2°C increments; elec-
tronic supplementary material, table S1) using 10 water baths.
Each bath consisted of a 15 l tray with an aquarium heater
(Tronic 50 W) and aquarium pump (Askoll Micromega pump
320 L h−1, 5.5 W) used to control temperature evenly throughout
the bath. Temperature was checked every 4 h during the exper-
imental period of 48 h (electronic supplementary material, table
S1) using a Mettler Toledo SevenGo meter. Vials were placed
in temperature treatments within 1 h of fertilization, and devel-
opment was scored at 24 h (gastrulae) and 48 h (two-armed
larvae). At each timepoint, 50 embryos from each vial were
scored live under the microscope in a temperature-controlled lab-
oratory (approx. 24°C) to determine the percentage of normal-
developing embryos. Abnormal embryos included those that
were dead, undeveloped, asymmetrical or malformed.

(d) Statistical analyses
We examined the role of temperature on developmental success
using generalized linear models (GLM) with the lme4 package
within R v. 3.5.0. Because separate sets of vials were used for the
two timepoints, two separate GLMs were created for each time-
point (24 and 48 h). The full model for normally developing
embryos included temperature as a quadratic fixed effect and
urchin population (control or vent) as a fixed effect, with cross
(three for eachurchin population) nestedwithin population, includ-
ing the interactions between the fixed effects. Data were modelled
with a polynomial binomial model with probit link. Visual inspec-
tion of model diagnostic plots showed that model assumptions
were met. The GLMs were used to determine Topt (temperature
range with survival greater than 75%), and the lower and upper
lethal temperatures with greater than 50% mortality (LT50).
3. Results
At 24 h, temperature had a significant effect on the percen-
tage of normally developing embryos, which was less than
25% at 32°C for both vent and control populations (table 1
and figure 1). Sea urchin population was significant, as well
as the interaction between population and temperature,
where vent sea urchins had a wider Topt range (12.3°C)
than control sea urchins (5.4°C). Additionally, the upper
LT50 of vent sea urchins was slightly higher than for control
sea urchins (+6.3 versus +5.7°C, respectively; tables 1 and 2).



Table 1. Results of the GLMs examining the roles of temperature, population and cross on developmental windows. Significant effects are indicated in italics.

factor estimate s.e. Z p

24 h

temp −7.8334 2.996 −3.406 0.000658

temp2 −10.9931 2.3222 −4.452 8.5 × 10−6

population 0.9065 0.3508 2.584 0.00976

temp * population −10.957 3.7072 −2.956 0.003121

temp2 * population −4.2515 3.8659 −1.100 0.271454

control cross 2 −0.1247 0.3139 −0.397 0.691095

vent cross 2 0.0448 0.3719 0.120 0.904093

control cross 3 −0.1372 0.3157 −0.435 0.663786

vent cross 3 −0.9189 0.4102 −2.240 0.025069

48 h

temp −16.82079 3.09511 −0.5435 5.49 × 10−8

temp2 −16.90874 3.66511 −4.613 3.96 × 10−6

population −0.07085 0.41018 −0.173 0.86287

temp * population −0.24803 4.14794 −0.060 0.95232

temp2 * population 3.22267 4.69878 0.686 0.49281

control cross 2 −0.01133 0.45009 −0.025 0.97992

vent cross 2 0.29493 0.36831 0.801 0.42327

control cross 3 −0.07978 0.44400 −0.180 0.85741

vent cross 3 −0.76242 0.38657 −1.972 0.04858
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Figure 1. Thermal tolerance for normally developing Arbacia lixula embryos and larvae across 10 temperatures. The curves were modelled using a binomial GLM
with the shading reflecting the 95% confidence interval of the fitted curves. For each population of sea urchin (vent or control), three crosses were examined, each
displayed separately here. Graphs (a–c) represent the results from 24 h with (d–f ) from 48 h.
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For vent sea urchins, cross three performed significantly
differently from the others, where the upper LT50 was 2°
C lower than the other two populations. The lower LT50

was not reached by any vent sea urchin cross (table 1;
electronic supplementary material, table S2). For control
sea urchins, all crosses performed similarly to similar
upper and lower LT50’s (electronic supplementary material,
table S2).

At 48 h, temperature was significant, where a reduction in
the percentage of normal larvae was seen at 32°C for both
vent and control populations (figure 1). At this timepoint, how-
ever, population was not significant and did not significantly



Table 2. Mean thermal optimum range (Topt) with survival greater than or
equal to 75% and upper temperatures with greater than 50% mortality
(LT50) in A. lixula after 24 and 48 h. Results for the three crosses per
population and the lower LT50 (only obtained for one population at one
timepoint) are shown in electronic supplementary material, Table S2.

population Topt (greater than 75%) upper LT50

24 h

control 20.3–25.7 29.7

vent 16.2–28.5 30.3

48 h

control 16–29.2 30.8

vent 16.3–28.2 30.2
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interactwith temperature (table 1). Both populations performed
similarly across all temperatures examined, where the Topt
range was comparable for control (13.2°C) and vent (11.9°C)
sea urchins with similar upper LT50’s for control (+6.8°C) and
vent (+6.2°C) populations (table 2).

Similar to 24 h, vent cross three performed significantly dif-
ferently from the others (figure 1), where the upper LT50 was
approximately 2°C lower than the other two populations.
The lower LT50 was not reached for any population where all
control crosses performed similarly (electronic supplementary
material, table S2).
4. Discussion
We examined whether acclimation to low pH would affect
the developmental thermal tolerance of A. lixula progeny.
Although the percentage of normally developing embryos
was higher in vent sea urchins than in control sea urchins
at 24 h, the upper thermal limits were similar, with steep
decreases in the percentage of normally developing embryos
at 32°C. By the larval stage, vent and control sea urchins had
similar thermal curves, with similar Topt ranges and upper
LT50. Therefore, we found no evidence for deleterious trans-
generational impacts of ocean acidification on the thermal
limits of early development for this species.

Thermal tolerance can vary across life-history stages. For the
control population, larvae exhibited a higher percentage of nor-
mally developing embryos in comparison to gastrulae. For vent
urchins, the numbers of normally developing embryos were
similar across both stages. The higher percentage of normal gas-
trulae for vent urchins in comparison to control urchins may be
due to differences in maternal provisioning, including cellular
defences that protect early embryos [33]. The egg jelly coats of
vent-acclimatedA. lixula are more resistant to low pH than con-
trol sea urchin jelly coats, reflecting a strategy used to allow
embryos to inhabit low pH vents and increase fertilization suc-
cess [14]. Thus, it is likely that egg constituents also support
enhanced embryo resilience in A. lixula.

Similar to other studies, the results show thatA. lixula larvae
have a low cold tolerance,where the lower LT50was not reached
for the majority of crosses examined here. ForA. lixula from the
Northwestern Mediterranean, larvae were able to develop at
temperatures down to 16°C [31], although research suggests
its reproductive behaviour is impacted by suboptimal tempera-
tures in this region [34]. For A. lixula larvae from the Southern
Mediterranean, optimal development occurs at 24°C [30], simi-
lar to our findings and coincidingwith the thermal history ofA.
lixula adults during the time of our experiment. While it has
been hypothesized that the range for normal development of
A. lixula in the Mediterranean could be as large as 16–26°C
[28], our results show a broader Topt range of approximately
16–29°C (based on 75% success) for larvae of control popu-
lations. As the upper thermal LT50 of all populations, except
one vent cross, was greater than the worst-case warming scen-
ario by 2100 for theMediterranean, i.e. +5.8°C [21],A. lixulawill
continue to thrive in a warming ocean.

For the thermophilous sea urchin A. lixula, decreasing
pH may not represent a barrier to range expansion, where
progeny show a similar thermal tolerance when parents are
acclimated to low pH. With expansion not limited by gene
flow [35], A. lixula has the potential to maintain its distri-
bution in the Southern Mediterranean with ocean warming
facilitating further expansion in the NW, especially as
temperature approaches Topt.

Further experiments combining the temperature treat-
ments with pH would help determine whether resilience to
low pH is transferred to progeny, as well as resilience to sim-
ultaneous changes in pH and temperature. Future work
contrasting the lipid and protein profiles of eggs from the
different sea urchin populations would be important in
understanding long-term impacts of low pH on maternal
provisioning. Lastly, examining thermal tolerance of later
developmental stages and whether they match the adult ther-
mal niche will help to more accurately model range shift
patterns of A. lixula in a warming ocean.

These results emphasize the concerns of the negative
impact of A. lixula on Mediterranean ecosystems, where its
ability to acclimate to low pH in conjunction with a wide
thermotolerance will contribute to the colonizing ability of
this species in a future ocean. In particular, tolerance to acid-
ification and warming may create an amplifying impact of
the barrens created by A. lixula, with serious consequences
for coastal habitats of the Mediterranean Sea [27].
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