
Hypoxia extreme events in a changing climate: Machine learning methods 
and deterministic simulations for future scenarios development in the 
Venice Lagoon

Federica Zennaro a,b, Elisa Furlan a,b, Donata Canu c, Leslie Aveytua Alcazar c, Ginevra Rosati c,  
Cosimo Solidoro c, Andrea Critto a,b,*

a Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Venice, Italy
b Fondazione CMCC - Centro Euro-Mediterraneo sui Cambiamenti Climatici, Italy
c National Institute of Oceanography and Experimental Geophysics (OGS), 34010 Trieste, Italy

A R T I C L E  I N F O

Keywords:
Hypoxia
Extreme events
Future scenarios
Machine learning
Coupled hydrodynamic-biogeochemical model
Climate model

A B S T R A C T

Climate change pressures include the dissolved oxygen decline that in lagoon ecosystems can lead to hypoxia, i.e. 
low dissolved oxygen concentrations, which have consequences to ecosystem functioning including biogeo-
chemical cycling from mild to severe disruption. The study investigates the potential of machine learning (ML) 
and deterministic models to predict future hypoxia events. Employing ML models, e.g. Random Forest and 
AdaBoost, past hypoxia events (2008–2019) in the Venice Lagoon were classified with an F1 score of around 
0.83, based on water quality, meteorological, and spatio-temporal factors. Future scenarios (2050, 2100) were 
estimated by integrating hydrodynamic-biogeochemical and climate projections. Results suggest hypoxia events 
will increase from 3.5 % to 8.8 % by 2100, particularly in landward lagoon areas. Summer prediction foresee a 
rise from 118 events to 265 by 2100, with a longer hypoxia-prone season. This model is a valuable tool for 
developing hypoxia scenarios, aiding in identifying restoration hotspots for climate-threatened lagoons.

1. Introduction

Climate change is leading to the breaking of climate extremes (e.g., 
floods, heat waves, drought) long-standing records by large margins 
(Fisher et al., 2021). Less widely known but equally impactful and 
dangerous are extreme events that undermine water bodies such as 
marine heat waves, eutrophication, and hypoxia (Gruber et al., 2021). In 
this regard, hypoxia, or dissolved oxygen (DO) at low enough levels to 
impair organisms (Diamond et al., 2023), is one of the most dangerous 
and most potentially prone to increase in number and entity due to 
climate change (Du et al., 2018).

Hypoxia is defined in terms of measurable consequences reflected in 
the ecosystem, such as the oxygen concentration at which fisheries 
collapse (Renaud, 1986) or a particular biological function is impaired 
(Diaz and Rosenberg, 1995). Regarding the threshold chosen in this 
methodology, it is important to consider that hypoxia thresholds pro-
posed in the literature range from 2 mgO2/l (Diaz and Rosenberg, 2008) 
to 4 mgO2/l (Paerl, 2006). 2 mgO2/l refers to the oxygen level for 
fisheries mortality, but there is ample experimental evidence that 2 

mgO2/l may be insufficient to describe the onset of hypoxia for many 
organisms that experience hypoxic effects at higher oxygen concentra-
tions, i.e. up to 4 mgO2/l (Pezner et al., 2023; Tellier et al., 2022; 
Vaquer-Sunyer and Duarte, 2008). Accordingly, 4 mgO2/l is the selected 
threshold within this methodology, as more representative of the 
ecosystem depletion.

In aquatic systems, hypoxia can commonly be attributable to natural 
causes such as diurnal oscillations in algal respiration, seasonal flooding, 
and stratification. Nevertheless, the current landscape reveals a 
heightened frequency and intensity of hypoxic events (Sampaio et al., 
2021): this alarming trend can be traced back to diminishing oxygen 
concentrations (i.e., deoxygenation) that have been declining since at 
least the mid-20th century (Baxter, 2019). This phenomenon is one of 
the most critical issues in aquatic systems driven by both climate change 
and human activities; depending on i) elevated temperatures, ii) 
increased CO2 levels, iii) heightened nutrient inputs, and iv) shifts in 
marine species' abundance and distribution (Breitburg et al., 2018). 
Hypoxia puts at high risk the survival of aquatic organisms, indeed a 
certain level of DO concentration is essential to sustain the metabolic 
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and behavioural demands of aquatic life, such as oxygen uptake rate, 
deed activity, reproduction, respiration, and habitat selection (Justić 
et al., 1996). Among all the water bodies, transitional environments 
such as lagoons are particularly at high risk of hypoxia due to their 
delicate interface between land and sea. Monitoring, identifying, eval-
uating, and predicting hypoxia in transitional environments is a topic of 
high importance. Nevertheless, there is a lack of studies and methods 
devoted to this in the literature. Most studies focus on the evaluation of 
past hypoxia events and their consequences on the ecosystem (Brigolin 
et al., 2021; Munari and Mistri, 2011; Solidoro et al., 2010) but as for 
future climate change predictions, studies addressing this topic are not 
so widespread in the literature. The few case studies that handle future 
scenarios of hypoxia in coastal ecosystems have a common aspect which 
is the development of the scenarios using deterministic models, such as 
physical models rather than biogeochemical or hydro-ecological. For 
example, (Lehrter et al., 2017) describe the application of a coastal 
ocean ecosystem model to assess the effect of a future climate scenario of 
plus +3 ◦C air temperature and +10 % river discharge on hypoxia in the 
northern Gulf of Mexico. They applied a deterministic model that esti-
mates a warmer and wetter future climate will, on average, worsen the 
extent and duration of hypoxia in the analyzed system. Or Meier et al. 
(2021) developed an ensemble deterministic model composed by Earth 
system, regional, catchment, atmospheric, and Baltic Sea ecosystem 
models, to investigate whether climate change will intensify hypoxia in 
the Baltic Sea. Their scenario simulations have suggested an expansion 
of the hypoxic area in a future climate of the analyzed region. Duvall 
et al. (2022) developed and calibrated a three-dimensional hydrody-
namic model for Pensacola Bay, a shallow subtropical estuary in the 
northeastern Gulf of Mexico. They found that the impacts of climate 
change on estuarine stratification have important implications for the 
development of hypoxia in shallow, subtropical systems. To quantify 
potential changes in the frequency and duration of hypoxia near the 
mid-Bay channel, they compared timescales of biological production 
and respiration to vertical mixing.

The present work represents the first attempt to address hypoxia and 
climate change in the Venice Lagoon. Among all the transitional envi-
ronments at risk, the Venice Lagoon is one the most exposed and 
vulnerable due to its fragile nature of sea-land interface, its past of 
anthropogenic stress and modifications, and its valuable economic, 
historical, social, and ecosystemic importance (Anelli Monti et al., 
2021). Nowadays the Lagoon is overall well‑oxygenated (Çevirgen et al., 
2020), and it might be classified as a well-mixed estuary (i.e., the water 
column is completely mixed, making the estuary vertically homoge-
neous), defined by a strong inshore salinity gradient (Bendoricchio and 
De Boni, 2005; Solidoro et al., 2004). Nevertheless, the increase in the 
frequency of summer heat waves and drought due to climate change 
could lead to an increase of hypoxic events occurrence and extent 
(Brigolin et al., 2021). Indeed, during the last years, the Lagoon has 
faced several hypoxic crises (Facca et al., 2014; Brigolin et al., 2021) 
that often resulted in mass fish and benthic invertebrate mortalities 
(Vaquer-Sunyer and Duarte, 2008). Moreover, it has to be considered 
that the local climate adaptation strategy for protecting the Lagoon and 
the city from sea levels in this area (Zanchettin et al., 2020) could 
exacerbate hypoxia events in the future. Indeed, in recent years, 
increasing sea levels have prompted the construction of the mobile 
barriers (MOSE project) to protect the city of Venice from high tides and 
storm surges (CVN, 1997). The MOSE project aims to defend the city 
from inundations by blocking water inflows at the Lagoon inlets when 
the sea level rises beyond a certain threshold. In this regard, consider-
able can be side effects on WQ and on the entire Lagoon ecosystem 
caused by the interrupted water circulation (i.e. prolonged residence 
time). In fact, as the barriers are expected to be continuously closed for 
very long tidal periods (more days) due to sea level rise and extreme 
storms, very low DO concentrations and other harmful effects are likely 
to occur in a more massive way (Umgiesser, 2020; Melaku Canu et al., 
2001; Leoni et al., 2022).

In this context, this paper aims at developing a reliable method able 
to disentangle emerging patterns from the complex interactions between 
hypoxia events, water quality (WQ) and climate drivers, and to predict 
their future patterns in order to obtain robust hypoxia scenarios under 
future climate change conditions. As for all extreme events, detecting 
hypoxias that represent a small part of events in large datasets is a major 
challenge, precisely because of their nature of infrequent events. The 
more updated and resolute biogeochemical model for the Venice 
Lagoon, named SHYFEM-BFM model (Canu et al., 2023), provides the 
daily average of various biogeochemical variables including DO. How-
ever, as the majority of deterministic models, it has a limited capability 
to capture the entire range of natural variability reproducing fluctua-
tions and extremes, especially when biological dynamics are involved 
(Kwiatkowski et al., 2020) due to: i) the inherent assumption and 
simplification adopted to represent all components of the system 
considered to be relevant for capturing the main system features and is 
therefore, by design, ineffective to reproduce all fluctuations and ex-
tremes. Furthermore, the model's capability to reproduce extreme 
events is reduced by the lack of high variability in the external forcings 
(i.e., rivers input), which is filtered off by the (low) frequency of the 
forcing monitoring systems (Zennaro et al., 2023). For this reason, in 
this methodology it is chosen to combine the deterministic model with 
the emerging Machine Learning (ML) approach, including various al-
gorithms such as Random Forest (RF), AdaBoost, XG Boost, Multi-Layer 
Perceptron (MLP), Logistic Regression (LR) and Weighted Support 
Vector Machine (SVM) as well as their ensemble versions using the 
Stacking ensemble technique. The objective is to test their capacity to 
provide accurate analysis on an imbalanced dataset, such as that of 
hypoxia events versus normal conditions. This decision leverages recent 
advancements in ML, that has strong predictive capabilities and capi-
talizes on the synergies between these capabilities and the strengths of 
deterministic simulations. Indeed, recent advances in the modeling of 
oxygen depletion, show that ML have provided valuable insights into the 
impacts of climate change and human activities on aquatic ecosystems. 
Several pioneering studies have explored innovative methods for pre-
dicting DO dynamics. Yu et al. (2020) introduced a model combining 
empirical orthogonal functions and neural networks to track DO 
changes, while Liang et al. (2023) integrated spatiotemporal charac-
teristics to enhance forecasting capabilities. Additionally, Pezner et al. 
(2023) investigated future hypoxia on coral reefs under climate change 
scenarios.

In this paper specifically, the methodology attempts to improve the 
evaluation of oxygen depletion events in the Venice Lagoon over ten 
years (2008–2019) and the prediction of potential changes in the mid 
(2050) and far (2100) future, under the Representative Concentration 
Pathways (RCP) 8.5 scenario (Intergovernmental Panel on Climate 
Change, 2014; Riahi et al., 2011), chosen as in line with the current 
trajectory of emissions and with the pathway promoted by policy- 
makers championing the use of fossil fuels such as coal-fired power. 
The process involves the ML models fine-tuning (training, validating and 
testing) using a suite of biogeochemical and meteorological (i.e. the 
variables that can infer deviations in the triggering of hypoxias dy-
namics, e.g. strong solar radiation and meteorological drought (Beck 
and Bruland, 2000; Cladas et al., 2016; Pérez-Ruzafa et al., 2019; Xu 
et al., 2021)) response variables to classify extreme hypoxia events.

Building on this methodology, this study may be useful in developing 
of reliable hypoxia scenarios for alarming these extreme events and, 
ultimately, be effective for the management of the lagoon, thus pursuing 
the EU Mission Starfish 2030 (European Commission, Directorate- 
General for Research and Innovation, Lamy et al., 2020) goals. Indeed, 
the Mission proposes to address hypoxia with specific targets and actions 
to regenerate marine and coastal ecosystems by 2030. The method 
advanced here is envisioned to be a prototype of future digital twins 
used by stakeholder groups, such as the aquaculture industry, managing 
the risk of hypoxia potentially killing their farmed organisms, and 
observational scientists, aiming to expand their observed data to new 
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variables.
In the next sections, after a brief description of the case study 

(Section 2), the datasets and methodological approach underpinning the 
extreme event modeling are explained (Section 3). Finally, the results of 
future climate change hypoxia event scenarios are presented (Section 4) 
and discussed (Section 5).

2. Study area

Venice Lagoon is located in the northern part of the Adriatic Sea 
(location 45◦N, 12◦E), it is the largest transitional environment of the 
Mediterranean Sea (Fig. 1). The Lagoon is a very polymorphous envi-
ronment and it hosts abundant fauna and flora that are of relevant 
natural and socioeconomic importance (Bon et al., 2001). It is a shallow 
coastal ecosystem covering an area of about 550 Km2, of which nearly 
400 km2 characterized by open waters, and the remaining part by 
extensive fish farms (locally called “valli da pesca”) where the water 
circulation and the fish species movement is controlled (Anelli Monti 
et al., 2021). Its hydrodynamic regime is dominated by the tide. It ex-
changes around 385 × 106 m3 of water per day with the sea, through 
three inlets (Lido, Malamocco and Chioggia), and it is crossed by a 
network of channels, which for the most part are shallower than 2 m 
(Melaku Canu et al., 2001). The Lagoon exhibits a mean depth of ca. 
1.0–1.2 m, but in the main channels and inlets depth ranges between 10 
and 20 m with an exception in the Malamocco inlet which is the deepest 
site of the northern Adriatic Sea (ca. 50 m). The tidal sea-water exchange 
through three inlets is approximately 1.46 × 109 m3 at each tidal cycle 
(12h), which is more than half of the entire water loading, although the 
water renewal in the inner areas may take ca. 10–20 days (Sfriso et al., 
2009). The system of mobile gates (MOSE), designed and built to protect 
the historical town from the effects of high tides, was recently completed 
(2020). This system allows one to disconnect the Lagoon from the open 
sea in case of forecasted high tide, maintaining a lower level of water 
inside the lagoon. (Anelli Monti et al., 2021; Çevirgen et al., 2020; 
Bendoricchio and De Boni, 2005; Solidoro et al., 2004; Facca et al., 
2014; Sfriso and Facca, 2007; Brigolin et al., 2021; Vaquer-Sunyer and 
Duarte, 2008; Umgiesser, 2020; Melaku Canu et al., 2001).

As a result of hydrodynamic and morphological heterogeneity, 
accompanied by differences in the proximity of water bodies to 
anthropogenic pressures, there is high spatial variability in the WQ of 
the Lagoon, such as salinity gradients (Solidoro et al., 2004), concen-
tration of nutrients and Chl-a (Berti et al., 2022; Facca et al., 2014; 
Micheletti et al., 2011; Solidoro et al., 2004). For example, Facca et al. 
(2014) observed a clear gradient in total nitrogen between the northern 
and southern Lagoon, with decreasing concentrations seaward and 
higher concentrations of total phosphorous, total carbon, and inorganic 
carbon in the central basin. Similarly, Solidoro et al. (2004) reported 
high nutrient and Chl-a concentrations in the central Lagoon, with less 
bloom in areas with greater sea influence. In general, higher concen-
trations of nutrients and other contaminants are found in areas close to 
urban canals (e.g. Venice city center), industrial canals affected by ef-
fluents, confined areas with limited hydrodynamics (longer residence 
time) and landward areas affected by tributary discharges, fish farm 
outfalls and runoff from the mainland (e.g. Berti et al., 2022). As the 
landward areas of the Lagoon receive most of the inputs from the 
catchment, higher concentrations of pollutants exceeding the environ-
mental quality standards (DM 23/04/1998, DM 367/2003) were also 
found there by Micheletti et al. (2011).

In response to changes caused by multiple pressures (Solidoro et al., 
2010) the Venice Lagoon is continuously evolving. In addition to the 
intensive anthropogenic activities in and around the Lagoon, the prev-
alence of several climate-related pressures in the area, and in the Med-
iterranean region in general, may alter the water quality and ecological 
status of the Lagoon. For example, climate-related pressures prevalent in 
the region include variations in precipitation and consequent river 
flooding (e.g. Pesce et al., 2018), variations in wind regimes (Solidoro 

et al., 2010), storm events (Lionello et al., 2021), as well as drought in 
the Mediterranean region (Tramblay et al., 2020). These hazards can 
lead to the alteration of the hydro-morphodynamic processes that 
determine the WQ of the lagoon. In particular, they can affect the 
release, transport and redistribution of nutrients and/or pollutants, and 
alter WQ parameters such as temperature, salinity, turbidity, pH, and 
DO, with consequent effects on primary productivity and higher trophic 
levels.

3. Data and methods

This paper presents a novel modeling methodology that aims to 
study trends in past hypoxia events (2008–2019) and to estimate po-
tential changes in their occurrence due to climate change in the mid and 
far future (2050 and 2100 scenarios). The research is based on historical 
onsite monitored data and future projections, and consists in the 
development of a multiple machine learning, hydrodynamic, biogeo-
chemical and climate model, herein ML-BGC&Climate, aimed at esti-
mating extreme oxygen depletion as defined by the specific threshold 
(Section 3.3). The methodology (Fig. 2) follows two consecutive phases: 
first, the binary classification of hypoxia events or normal conditions using 
a set of ML algorithms and their Staked ensemble version trained on 
historical data; second, the integration of the selection and application 
of multiple ML models with the projections of the deterministic 
hydrodynamic-biogeochemical and climatemodels. Here, the selection 
of the multiple MLs is based on the MLs performances on the test set and 
the multiple models aim to reduce the uncertainties in the predictions 
associated with the use of a single model.

The following sections report the datasets and variables implicated 
(Sections 3.1 and 3.2) in the study. Additionally, it offers a detailed 
description of the methodology, starting from the hypoxia threshold 
employed (Section 3.3), and an in-depth explanation of the multiple ML- 
BGC&Climate model development, by describing the ML models 
(Section 3.4) and the hypoxia scenarios (Section 3.5) design.

3.1. Features selections and historical data

3.1.1. Input variables
The choice of the input variables for the ML models are connected to 

the processes driving oxygen depletion. The oxygen cycle is driven by a 
network of biological, physical, and meteorological processes, whose 
imbalances may lead to hypoxic conditions, causing large-scale damage 
to aquatic life (Pena et al., 2010; Oschlies et al., 2018). In particular: i) 
surface water oxygen concentrations are substantially influenced by air- 
sea gas exchange, dependent on the gas saturation levels and water 
turbulence, both affected by temperature, as well as ii) oxygen produc-
tion through photosynthesis by phytoplankton macroalgae, and mac-
rophytes, and iii) oxygen sinks through the collective respiration by all 
the living marine species. In the deeper part of the water column, oxygen 
concentrations are impacted by iv) vertical transport, which depends on 
the levels of vertical mixing and the pycnocline, and v) respiration, 
especially by microbes remineralizing non-living organic matter at the 
bottom, or in the sediments. Finally, as most biogeochemical tracers, 
oxygen is also influenced by vi) water advection, and vii) diffusion 
processes. Accordingly, even response variables related to hypoxia 
events were selected (Table 1) among the available WQ and meteoro-
logical data, including DO (mmol/m3), water temperature (◦C), salinity 
(PSU), chlorophyll-a (Chl-a, μg/L), precipitation (mm), solar radiation 
(W/m3) and relative humidity (%).
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Fig. 1. Map showing the 10 sampling probes sites investigated (red dots) within the Venice Lagoon case study and the 4 meteorological stations (orange triangles). 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Overall methodology behind hypoxia extreme events analysis and predictions.
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3.1.2. Historical time series and training dataset
The time series dataset is collected on a daily basis in the period 

between January 2008 and December 2019. The dataset comprises 
variables from two sources: 1) WQ data from the 10 SAMANET1 stations 
located at a depth of 1 m managed by Provveditorato for the Public 
Works of Veneto, Trentino Alto Adige, and Friuli Venezia Giulia 
(PROVVV.OO.PP). 2) Meteorological data from 4 stations located across 
the Venice Lagoon, provided by the Regional Agency for Environmental 
Prevention and Protection of Veneto (ARPAV). Since the spatial distri-
bution of meteorological stations does not match all ten WQ stations 
(refer to Fig. 1), they have been interpolated using the Inverse Distance 
Weighting (IDW) method. All the features are aligned as a daily mean, 
except precipitation, which is presented as daily cumulative 
precipitation.

3.1.3. Time lag approach
As the occurrence of hypoxic events is not an instantaneous process, 

the indicators representing cumulatively the previous three days are 
calculated from daily variables. Indeed, hypoxia events at a given time 
may be partially defined by environmental conditions in previous time 
periods (Lee et al., 2013); and the concept of time lag has been previ-
ously adopted in ML modeling for predicting DO (Politikos et al., 2021; 
Khani and Rajaee, 2017; Yu et al., 2020). Accordingly, within present 
methodology both the daily variables and their three-day cumulative 
indicator for each variable are taken into account, and the more influ-
encing ones are chosen, (in Section 3.4 the indicators selection pro-
cedure is explained).

3.2. Future WQ and climate projections

The development of climate change scenarios is based on projections 
from two models, respectively the SHYFEM-BFM for the WQ variables 
and the COSMO-CLM for the meteorological variables (Table 2). Both 
these two deterministic models are forced with the RCP 8.5 business-as- 
usual scenario and provide, as output, the projections until the far future 
(2100). The reason beyond the choice of the RCP8.5 scenario for the 5th 
IPCC report instead of the SSP5-8.5 scenario of the 6th IPCC report is 
related to 1) CMIP6 data to build the Lagoon forcing and boundary 
conditions at the proper spatial scale are not available since downscaled 
biogeochemical and meteorological dynamic are not yet available. 2) 
CMIP6 highlighted a remarkable inter-model disagreement, which can 
exceed scenario uncertainty, on the projected evolution of DO and other 
ocean biogeochemical variables (Kwiatkowski et al., 2020).

3.2.1. Atmospheric model
COSMO Climate Change (COSMO-CLM) model, i.e., Consortium for 

Small-scale Modeling - Climate Limited-area Modeling (Rockel and 
Geyer, 2008), provides projections of future precipitation, relative hu-
midity, and solar radiation at the regional level. It is the climate version 

of the COSMO LM model (Steppeler et al., 2003), which is the opera-
tional non-hydrostatic mesoscale weather forecast model developed 
initially by the German Weather Service (DWD) and then by the Euro-
pean Consortium COSMO. COSMO-CLM is currently used to perform 
dynamical downscaling of global climate simulations. For the case study 
scale, the COSMO-CLM model reports the predictions for the time period 
2006–2100 covering the Venice Lagoon with a spatial resolution of 8 km 
for the RCP 8.5 scenario (Bucchignani et al., 2016; Zollo et al., 2016).

3.2.2. Hydrodynamical-biogeochemical model
The hydrodynamic-biogeochemical model SHYFEM-BFM has been 

recently developed and applied to the Venice Lagoon (Melaku Canu 
et al., 2023), compared with field data, and used to perform simulations 
under climate scenarios. The coupled model is based on the open-source 
models, Shallow water HYdrodynamic Finite Element Model (SHYFEM) 
for the hydrodynamic (Umgiesser et al., 2004), and on Biogeochemical 
Flux Model (BFM) for the biogeochemistry (Vichi et al., 2020). The BFM 
is a biomass-based numerical model designed to simulate key biogeo-
chemical processes in marine ecosystem. It tracks the cycles of nutrients, 
carbon, oxygen, a pool of phytoplankton, zooplankton and bacteria 
across the modeled system.

The SHYFEM-BFM model is implemented using an unstructured 
mesh of over 10,000 elements and 6000 node that allows for a good 
representation of the lagoon properties and variability. It takes into 
account time variable inputs, boundary conditions and meteorological 
forcing such as river inputs of water and nutrients, exchange of water 
and biogeochemical variables with the sea, and meteorological forcing. 
The SHYFEM-BFM model is forced using the best available and coherent 
information to perform the Venice Lagoon biogeochemical climate 
scenario. The meteorological conditions are provided by the COSMO- 
CLM model covering the Venice Lagoon with a spatial resolution of 8 
km (Bucchignani et al., 2016; Zollo et al., 2016), and the marine 
biogeochemical boundary conditions are provided by the climate sim-
ulations for the years 2005–2100 performed for the whole Mediterra-
nean Sea with the OGSTM-BFM (Ocean General Circulation Model with 
Biogeochemical Flux Model) biogeochemical model (Reale et al., 2022) 
which dynamically simulates the Mediterranean Sea biogeochemistry at 
1/16◦ spatial resolution, ~6.5 km, with 72 unevenly spaced vertical 
levels (ranging from 3 m at the surface down to 600 m in the deeper 
layers; see Lovato et al., 2013) (the list of acronyms is reported in SM1). 
Marine water levels at the inlets were estimated from (Zanchettin et al., 
2021), applying a linear trend up to the projected value of 0.71 m at the 
end of the century (for the 8.5 RCP scenario, using the 50◦ percentile of 
the ensemble model projections). The model simulates heat transport, 
water temperature, and oxygen concentration, and all the biogeo-
chemical variables, including Chlorophyll, at each node of the high- 
resolution domain, at each day of simulation, in response of the 
changing meteorological forcing and boundary conditions.

3.2.3. DO bias correction
In this study, all future projections are incorporated into the ML 

model as proper values derived from the hydrodynamic-biogeochemical 
and climate models exception DO. The reason for this exception is the 

Table 1 
Variables used as input in the ML models and general statistics of the historical period (2008–2019).

Variables Type Temporal resolution Source 2008–2019

Range Mean

DO (mmol/m3) WQ Daily mean, 3 days cumulative SAMANET 0.00–671.95 263.30
water temperature (◦C) WQ Daily mean, 3 days cumulative SAMANET − 1.55–32.24 16.66
salinity (PSU) WQ Daily mean, 3 days cumulative SAMANET 1.85–37.62 29.25
Chl-a (μg/L) WQ Daily mean, 3 days cumulative SAMANET 0.02–60.93 2.43
precipitation (mm) Climate Daily mean, 3 days cumulative ARPAV 0.00–159.82 2.27
solar radiation (W/m3) Climate Daily mean, 3 days cumulative ARPAV 0.00–823.34 160.22
relative humidity (%) Climate Daily mean, 3 days cumulative ARPAV 12.79–100.00 77.58

1 SAMANET (Advanced Environmental Monitoring System of the Venice 
Lagoon) acquires 30 min of WQ data every day, providing valuable insights into 
the evolution of the lagoon ecosystem.
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bias between model and observation in the historical data. Specifically, 
the DO min-max range of the 2019 baseline extends from 190.86 to 
342.01 mmol/m3. In contrast, the DO min-max range of the historical 
data spans from 0.00 to 671.95 mmol/m3 (see Tables 1 and 2). This 
disparity has necessitated the recalculation of the DO variable to ensure 
its alignment with historical trends. In order to align the mid and far 
future time series with the historical ones, a three-step process is 
implemented: first, for each station (1–10) and for each calendar day the 
20◦ percentile in the historical timeframe (2008–2019) is extracted. The 
20◦ percentile of the historical observations has been selected as it is the 
indicator that best represents the historical percentage of oxygen 
depletion events (3.13 %) among a set of other indicators tried (e.g. 
mean, minimum, 10◦ and 30◦ percentiles). Thus, 10 vectors of 365 el-
ements are calculated, each corresponding to the daily 20◦ percentile for 
each station in the historical period, named here reference. Secondly, the 
model anomalies are computed from output of the SHYFEM-BFM simu-
lations as the difference of the DO values between the years 2050 and 
2019 (mid future anomalies) and between 2100 and 2019 (far future 
anomalies) for each station and calendar day. Finally, the mid future 
anomalies and the far future anomalies are summed up to the reference to 
obtain the corrected DO data for the mid and far future scenarios.

3.3. Hypoxia events threshold: the extreme event duration

Concerning the events duration, the hypoxia event is here specifically 
defined as the occurrence wherein the DO concentration remains below 
the established limit of 125 mmol/m3 (equivalent to 4 mgO2/l) (Paerl, 
2006; Politikos et al., 2021)) for a duration of at least 8 h within a single 
day even if not continuous (e.g. DO < 125 mmol/m3 from 00:00 to 
05:00 am and from 08:00 am to 11:00 am of a given day). Furthermore, 
in order to account for situations where data are missing for specific 
days, a proportion equivalent to 8/24, i.e. the 33.3 %, of the total hours 
in which the DO concentrations stay within the predefined threshold 
level is taken into consideration. This approach aims to compensate for 
data gaps, without having to remove days with missing data from the 
dataset, thus avoiding its reduction. This systematic approach ensures 
consistent identification and accurate characterization of hypoxia events, 
even in scenarios with incomplete data coverage. Consideration of 
events duration is extremely relevant in the case study because as 
defined by Tellier et al. (2022) diel hypoxia is a natural phenomenon that 
can develop in highly productive, shallow, aquatic habitats, such the 
Venice Lagoon is, during the warmer months. Its occurrence is common 
in wetlands and estuaries driven by the interaction between variable 
rates of primary production and consistently high respiration-induced 
oxygen demand (Cheek et al., 2009). During the day, high levels of 
photosynthesis effectively compensate for the oxygen consumed 
through respiration. However, as photosynthesis ceases at night, the 
high biological oxygen demand rapidly reduces DO concentrations to 
low levels, and atmospheric diffusion cannot adequately keep pace with 
demand. DO levels are subsequently restored the following day when 
photosynthesis resumes. The warm temperatures experienced in shallow 
waters limit oxygen solubility and favor seasonal stratification, 
enhancing deoxygenation. The rates of oxygen consumption and 

renewal in these shallow, isolated systems are in such a delicate balance 
that the nocturnal cessation of photosynthesis results in decreased DO 
within hours of sunset (Cornell and Klarer, 2008). Accordingly, a 
descriptive analysis of the historical hypoxia events within 2008 and 
2019 in the Venice Lagoon is reported in Section 4.1.

3.4. ML models and skill metrics

Understanding and predicting extreme events and their associated 
anomalous statistics is a major challenge in complex natural systems (Qi 
and Majda, 2022). ML provides a useful tool to learn the essential dy-
namics directly from data. Indeed, ML models are well suited to prob-
lems with various interactions between inputs and outputs being able to 
disentangle complex non-linear relationships between variables. The 
choice of the present methodology is related to the considerations on the 
available water quality and meteorological datasets. Datasets that are 
characterized by high complexity and non-linear distribution and by a 
short available timeframe, i.e. 2008–2019 (historical) and 2050, 2100 
(future). In this case, applying statistical methods for the modeling of 
extreme events, for example, a non-stationary methodology based on a 
generalized Pareto distribution, could be useful in highlighting season-
ality, trends, and cycles. However, the main goal, here, is to understand 
the relationships between the variables involved and hypoxic events in 
order to learn the conditions that trigger a hypoxic event. Once these 
conditions are understood from past data, they can be applied to future 
scenarios where trends and cycles may be different due to climate 
change. This approach allows for estimates related to climate change, 
considering that future trends and cycles might vary. The evolution 
theory approach, on the contrary, assumes that historical trends will 
continue into the future, which is not necessarily true and may produce 
unrealistic results (see, e.g., Luke et al., 2017; Serinaldi et al., 2018; 
Serinaldi and Kilsby, 2015). The reliability of the nonstationary 
approach requires relating the time-varying behavior to the underlying 
cause-and-effect processes that generate it (Serinaldi and Kilsby, 2015), 
which cannot be obtained from statistical approaches.

3.4.1. Unbalanced datasets
ML techniques have undergone a significant revolution in the last 

two decades owing to the availability of unprecedented volumes of 
training data in many domains and the considerable progress in com-
puter hardware (e.g., Sonnewald et al. (2021)). Due to their power, ML 
models can be an ideal tool for classify hypoxia events, but since extreme 
events are characterized by an unbalanced dataset, this method can face 
some issues. An unbalanced dataset represents a particular challenge in 
classification problems, where the uneven distribution between classes 
makes accurate data classification difficult. This implies that whether a 
dataset is biased towards one class, an algorithm trained on the same 
data will be biased towards the same class. The model learns more from 
the biased examples than from the examples in the minority class. The 
outcome could be a scenario where the model assumes that all the data 
belongs to the majority class. As a result, the model will appear naive in 
its predictions, regardless of the high accuracy it achieves.

Accordingly with the complexity of hypoxia events unbalanced 

Table 2 
Hydrodynamic-biogeochemical and climate projections obtained from the deterministic models. *Rescaled DO future projections aligned with historical values.

Variables Source 2019 2050 2100

Range Mean Range Mean Range Mean

DO (mmol/m3) SHYFEM-BFM 190.86–342.01 258.02 182.33–556.48 
*60.29–452.32

265.20 
*246.90

168.71–511.97 
*49.69–410.63

243.37 
*222.03

Water temperature (◦C) SHYFEM-BFM 2.38–32.88 16.83 4.06–34.01 19.65 8.83–38.98 22.69
Salinity (PSU) SHYFEM-BFM 21.38–36.71 31.38 24.86–37.27 32.85 25.49–38.47 33.64
Chl-a (μg/L) SHYFEM-BFM 0.30–6.93 1.41 0.09–13.27 1.20 0.05–7.43 1.00
Precipitation (mm) COSMO-CLM 0.00–40.30 0.97 0.00–35.42 0.91 0.00–27.84 1.11
Solar radiation (W/m3) COSMO-CLM 2.28–294.30 132.11 2.16–294.71 132.19 1.78–290.03 133.46
Relative humidity (%) COSMO-CLM 34.72–97.27 72.59 35.13–94.78 72.17 23.69–96.67 68.42

F. Zennaro et al.                                                                                                                                                                                                                                Marine Pollution Bulletin 208 (2024) 117028 

6 



dataset (~3:100 ratio), an ensemble-based strategy is used to ensure the 
robustness of the analyses. The latest advances in ML algorithms and 
tools are applied to effectively transform the large amount of data into 
useful information and knowledge. Therefore, multiple ML models are 
proposed to predict the hypoxia extreme events that occur in the complex 
Venice Lagoon system. Among all the response variables involved 
(comprehensive of daily mean and time-lagged indicators), the most 
influential indicators are selected through ML future importance, by 
applying permutation importance and the Gini index. Accordingly with 
the feature importance procedure, the final set of response variables 
comprehend: daily DO, water temperature, and precipitation, and 3 
cumulative days Chl-a, salinity, solar radiation and humidity (in SM2 
more details are reported).

3.4.2. ML models ensemble and staking ensemble technique
The MLs task involves the binary classification of the hypoxia event 

(class 0) versus the normal condition (class 1) of each day of the his-
torical period. The multiple approach combines the performance and 
results of many classifiers to improve the performance of a single clas-
sifier and try to achieve the highest possible prediction accuracy in the 
final model. The multiple ML modeling is intended here in the training 
of six separate well-known ML models: Random Forest (RF) (Liaw and 
Wiener, 2002), AdaBoost (Freund and Schapire, 1997), Linear Regres-
sion (LR) (Bisong, 2019), Weighted Support Vector Machine (SVM), XG 
Boost (Chen and Guestrin, 2016) and Multi-Layer Perceptron (MLP) 
(Ahmed et al., 2019). In addition the Staking ensemble technique is used 
to test whether multiple learning methods are more effective than a 
single one. In SM3 an insight with the characteristics of each algorithm is 
reported.

Each proposed algorithm is fine-tuned in the present methodology 
using the most suited settings to weight the classes (e.g. class_weight). In 
contrast to single algorithms, the design of the Staking ensemble is more 
complex. Stacking is an ensemble learning technique to combine mul-
tiple classification models via a meta-classifier. The individual classifi-
cation models, here RF, AdaBoost, LR and SVM, are trained based on the 
complete training set; then, the meta-classifier (i.e. LR) is fitted based on 
the outputs - meta-features - of the individual classification models in 
the ensemble (in SM4 the architecture of the Stacking ensemble is 
reported).

3.4.3. Training and validation
All the presented algorithms are validated with the cross-validation 

technique, necessary to assess models' performance and generaliz-
ability. This technique involves dividing a dataset into subsets, typically 
a training set and a validation set, with multiple iterations. In k-fold 
cross-validation, the data is divided into ‘k’ equal parts, and the model is 
trained and tested ‘k’ times, with each part serving as the validation set 
once. This process helps to detect overfitting, as the model's perfor-
mance is evaluated on multiple, non-overlapping data subsets. Cross- 
validation provides a more reliable estimate of a model's performance 
than a single train-test split, making it an essential tool for model se-
lection and hyperparameter tuning (Pedregosa et al., 2011).

Finally, to evaluate the predictive performance of the multiple ML 
algorithms on the testing set, the accuracy, ROC-AUC are reported. 
Accuracy is a common performance metric in ML, representing the ratio 
of correctly predicted instances to the total number of instances in a 
dataset. It provides a straightforward measure of the overall correctness 
of a model, making it easy to interpret. However, accuracy can be 
misleading when dealing with unbalanced datasets, where one class 
dominates the other, as the model may achieve high accuracy simply by 
predicting the majority class (Baldi et al., 2000). In such cases, Receiver 
Operating Characteristic-Area Under the Curve (ROC-AUC) is a valuable 
alternative metric. ROC-AUC quantifies a model's ability to discriminate 
between positive and negative classes at different probability thresh-
olds, providing a more comprehensive assessment of classification per-
formance, especially when class imbalances are present. It measures the 

area under the ROC curve, with a value of 0.5 indicating random per-
formance and 1.0 representing perfect discrimination. A higher ROC- 
AUC score generally indicates a better classifier, providing a more 
nuanced assessment of model performance compared to accuracy. Thus, 
for evaluate the performances of each class precision, recall and F1 score 
are calculated. Precision measures the proportion of correct predictions 
out of the total predictions of the class, while recall measures the pro-
portion of instances of a class that are correctly retrieved by the classi-
fier. The F1 score is the harmonic mean of precision and recall and can 
be computed for each class separately or as an average over all classes 
(Pedregosa et al., 2011). In addition, the confusion matrices, which 
indicate the number of hypoxic days correctly (true positives, TP) and 
incorrectly (false positives, FP) identified, as well as the number of 
normal days correctly (true negatives, TN) and incorrectly (false nega-
tives, FN) identified, are evaluated (Haghighi et al., 2018). Moreover, 
uncertainty analysis to ensure a full understanding of the results is 
performed through sensitivity analysis. This method permit to under-
stand how variations in the input data affect the predictions of the 
model. This type of analysis is useful for identifying the most influential 
features and providing a greater explainability of the results evaluating 
the robustness and precision of the models and analyzing the contribu-
tions of the considered variables to the outcomes. Accordingly, a 
sensitivity analysis using the Morris method was performed (Morris, 
1991).

3.5. Future climate change scenarios design

After selecting the suit of ML models that best perform on the test sets 
(Section 3.4), the ML-BGC&Climate model is implemented. This process 
implies integrating in the ML models the reference (20◦ percentile of the 
historical period 2008–2019) data and future (2050 and 2100) 
hydrodynamic-biogeochemical and climateprojections. As presented in 
the dataset section (3.2), the projections are estimated by SHYFEM-BFM 
model for water temperature, DO, Chl-a, salinity, and by COSMO-CLM 
for solar radiation, humidity, and precipitation variables.

The results consist of daily hypoxia event predictions and relative 
model uncertainty for the years 2050 and 2100, as well as for the 
reference period. In order to present as robust scenarios as possible, the 
calculation of the number of hypoxia events is based on the average 
values obtained from the results of the multiple ML model selection (i.e. 
the average of the Adaboost, RF and Staked ensemble predictions). 
Furthermore, estimated variability of the possible min-max prediction of 
the whole range of selected models is given to express the uncertainty.

An in-depth seasonal analysis (i.e. winter, spring, summer and 
autumn) is also carried out with a focus on summer (i.e. June, July and 
August) temporal variability. Furthermore, a station-based analysis is 
undertaken, accounting for the geographical locations of monitoring 
stations (Fig. 1), thereby incorporating the spatial dimension.

The model is designed to furnish daily estimates of normal and 
hypoxic days. As discussed in Section 4.3, the findings are presented 
through visual plots, facilitating a clear visualization of potential shifts 
in the current scenario (reference) and future scenarios (mid, and far 
future). These visualizations extend across the temporal dimensions of 
the seasons and the spatial dimensions defined by the monitoring station 
locations.

4. Results

4.1. Historical hypoxia events analysis

Here, an in-deep analysis of historical hypoxia events in the Venice 
Lagoon for the period 2008–2019 period is provided to understand 
whether past events were diel hypoxia, as defined by Tellier et al. (2022)
or more prolonged extreme events for the Venice Lagoon. Looking at the 
events classified as hypoxia (given the threshold defined in Section 3.3) 
from the onsite monitored data (see Section 3.1), it is evidenced that 
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only the 16 % of hypoxia events ended before the 10:00 am while the 
remaining 84 % continued during the daytime. These results indicate 
that the great majority of events are not natural temporary hypoxias but 
effectively dangerous events. Considering spatial variability, the stations 
in which more events occurred are 1, 5, 7 and 10, which are also the 
landward stations where the residence time of the water is higher (ca. 
20 days) (Cucco and Umgiesser, 2006) (in SM5 the pie chat and the bar 
plots indicating the percentage and number of occurred events by sta-
tion are reported).

A further explanatory analysis of hypoxia events characteristics shows 
that, when looking at the DO daily mean, a significant proportion, 40 %, 
of the recorded events remain within the established threshold of 125 
mmol/m3 (Fig. 3.a). This emphasizes that there is a high frequency of 
events that are either more intense, e.g. with very low hourly DO peaks, 
or that have a duration of >8 h. Then, looking at the duration of the 
events (Fig. 3.b) it is noteworthy that a substantial portion, 45 %, of the 
investigated events display durations that extend beyond 12 h in a day. 
This prolonged temporal extent of events highlights the persistence of 
hypoxic conditions below the 125 mmol/m3 threshold for a time span 
that can threaten the wellness and survival of sessile organisms, unable 
to move towards better-oxygenated water. Finally, the duration of the 
events compared with the daily DO mean values (Fig. 3.c) shows that the 
longer the events, the lower the DO mean is. When the event lasts longer 
than 16 h, the daily average is always below the 125 mmol/m3.

4.2. ML models performances

The binary classification of hypoxia events or normal conditions are 

performed by six separate ML models, i.e., RF, AdaBoost, LR, Weighted 
SVM, XG Boost, and MLP, and a Staking ensemble model. The models are 
trained, validated and tested with daily WQ and meteorological data 
monitored in the Venice Lagoon during the period 2008–2019. Their 
accuracy, ROC-AUC score, precision, recall, and F1 score metrics 
calculated on the two classes, are presented in Table 3.

The results indicate that RF, AdaBoost, MLP, and the Stacking 
ensemble models achieve the highest accuracy (0.99). Among them, RF, 
AdaBoost, and the Stacking ensemble also demonstrate the highest F1 

Fig. 3. General statistics of historical monitored (2008–2019) hypoxia events across the ten Venice Lagoon stations. a) Percentage of DO daily mean below or above 
the 125 mmol/m3. b) Percentage of hypoxia events with a duration of less than or >12 h. c) Relation between the DO daily mean and the duration of the hypoxia 
event expressed in hours.

Table 3 
Performances on the test set of the ML models implemented in the methodology. 
The best results are evidenced in bold.

Algorithm Accuracy ROC AUC 
score

Class Precision Recall F1 
score

RF 0.99 0.89 0 0.88 0.78 0.83
1 0.99 1.00 0.99

AdaBoost 0.99 0.89 0 0.87 0.79 0.83
1 0.99 1.00 0.99

LR 0.93 0.93 0 0.29 0.92 0.45
1 1.00 0.93 0.96

Weighted 
SVM

0.94 0.94 0 0.34 0.95 0.50
1 1.00 0.94 0.97

XG Boost 0.98 0.94 0 0.67 0.89 0.76
1 1.00 0.99 0.99

MLP 0.99 0.80 0 0.94 0.61 0.74
1 0.99 1.00 0.99

Staking 
ensemble

0.99 0.89 0 0.91 0.78 0.84
1 0.99 1.00 1.00
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score for class 0 (i.e. hypoxia event occurrence), while MLP exhibit a 
lower F1 score for this class, as indicated by its very high precision 
(0.94) but lower recall (0.61), suggesting that it may miss various pos-
itive cases.

When comparing the AUC-ROC scores, Weighted SVM and XG Boost 
score the highest. Nevertheless, their precision and accuracy scores in 
class 0 are weak (e.g., 0.34 and 0.67 for precision, respectively), indi-
cating that these algorithms are not suitable for describing this partic-
ular problem of an unbalanced dataset.

Based on these results, RF, AdaBoost and the Stacking ensemble are 
identified as the models with the strongest predictive power. Therefore, 
they have been selected as the most suitable for predicting climate 
change scenarios by composing the multiple selected ML models. Fig. 4
shows the confusion matrices for these three selected models. From 
these plots, it can be seen that the hypoxia class (i.e. true positive) is 
correctly predicted by the three models with a very similar number of 
times: 206 times with AdaBoost and 204 times with RF and Staking 
ensemble. The main difference between the three models is in the 
number of false positives, i.e. cases predicted in class 0 instead of class 1. 
The best model in this case is the Staking ensemble with 20 errors, fol-
lowed by FR with 27 and AdaBoost with 31.

Moreover, sensitivity analysis shows how variations in the input data 
affect the predictions of the model. This type of analysis is useful for 
identifying the most influential features and providing a greater 
explainability of the results evaluating the robustness and precision of 
the models and analyzing the contributions of the considered variables 
to the outcomes. Results concerning the sensitivity analysis are reported 
in Fig. 5 (a, b, c). It can be seen from the figures that the three models 
behave differently in terms of feature importance. All the models assign 
significant importance to the daily mean DO concentrations. However, 
the RF model distributes relative importance more evenly across all the 
other variables. Specifically, it assigns considerable importance to water 
temperature and solar radiation, as well as to monthly information, 
humidity, and salinity (in this order). The Adaboost model places the 
most weight on DO, with some importance given to water temperature, 
while all other variables have negligible relevance. Similarly, the 
Stacking ensemble also prioritizes DO, but ranks solar radiation second 
in importance.

4.3. Future hypoxia events analysis

The hypoxia events under the RCP 8.5 business-as-usual climate 
change scenario are determined by averaging the simulated events 
generated by each selected ML model (Section 4.2) using projections of 
WQ and climate variables from deterministic models as input data. 
Results show a notable upward trend in the annual frequency of hypoxia 
events over time (Fig. 6.a), with the days affected by oxygen depletion 
increasing from 3.5 % of the reference period (20◦ percentile of the 

2008–2019 timeframe) to 4.1 % in the mid-future and 8.8 % in the far 
future, which corresponds to a relative increase with respect to the 
reference period of +1.7 % and +4.3 % for the mid- and far-future and 
respectively. However, a notable increase in inter-model variability also 
occurs, causing a rise in uncertainty to 29 days in the mid-future and 67 
days in the far future.

The seasonal analysis (Fig. 6.b) confirms the prevalence of hypoxia 
events during summer, in line with the natural processes associated with 
such events. However, a smaller proportion of events also occur during 
the autumn season. For both seasons, an increasing trend of events is 
predicted for 2050 and 2100 compared to the reference period. In 
summer, the model predicts 136 hypoxia events in 2050 and 265 in 
2100, compared to 118 events observed in the reference period (indi-
cating an average increase of 15.3 % between the reference scenario and 
the mid-future, followed by a further increase of 94.9 % from mid to the 
far-future). In autumn, 15 events are projected in 2050 and 27 in 2100, 
an increase of more than two and four times compared to the 6 events in 
the reference period. Notably, no events are predicted for winter, even in 
the far future. However, the model predicts a small number of events (4) 
during spring in 2100, indicating a possible seasonal anticipation of 
hypoxic events in a season where they did not occur in the reference 
period nor in the mid-term future.

Focusing on summertime only, Fig. 6.c shows that in the reference 
period, the months with the highest estimated number of hypoxia events 
are July and August, with 50 events in each month. In future simula-
tions, there is a notable increase in occurrences, particularly in July (71 
events in the mid future and 110 in the far future), while August expe-
riences a more moderate increase, remaining nearly unchanged in the 
mid future (53 events) and rising to 94 events in the far future. 
Conversely, estimates for June show a different trend, with a decrease in 
events occurrence during the mid-future (from 15 in the reference period 
to 11) and a significant rise in the far future (61 events). Accordingly, the 
hypoxia event period in the far future is expected to extend, and to 
become more challenging for aquatic life, transitioning from the his-
torical two-month period of July and August to a three-month duration 
encompassing June, July, and August.

The maps in Fig. 7 depict a comparison of hypoxia event percentages 
across the ten Venice Lagoon stations during the three analyzed periods: 
the reference, 2050, and 2100. Notably, stations 1, 5, and 7, located 
landward, i.e. the area with the longest water residence time (Cucco and 
Umgiesser, 2006), consistently exhibit the highest number of hypoxia 
events in all the three scenarios (Fig. 7.a, b, c) and the largest increase in 
the number of hypoxia events over the far future. Specifically, as illus-
trated in Fig. 7.d, the number of events rises from 29 in the reference 
period to 55 in the far future at station 1, 50 to 78 at station 5, and from 
32 to 69 at station 7. Looking at stations 8, 9, and 10, where hypoxic 
events are rare or nonexistent during the reference period, there is a 
noticeable increasing in events, with a discernible upward trend 

Fig. 4. Confusion matrix of the selected ML models (Adaboost, RF and Staking ensemble).
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extending from the mid to the far future. The slow circulation of water at 
the landward stations coupled with the changes in biogeochemical and 
meteorological conditions (e.g. in the present study, maximum water 
temperatures increase from a historical value of 32 ◦C to 39 ◦C by 2100, 
see Tables 1 and 2), mean that these areas of the Venice Lagoon are 
expected to be at risk of frequent extreme hypoxias. Stations 2 and 4 
similarly display an increasing trend, although the overall number of 
events at these stations remains relatively low (maximum of 14 events) 
even by 2100. Lastly, stations 3 and 6, situated seaward, closest to the 
Malamocco inlet and channel (the largest channel of the Lagoon with a 
depth of 14 m (Ghezzo et al., 2010)), remain in a well-oxygenated state, 
with no hypoxic events expected for the mid and far future.

The uncertainty bars in Fig. 7.d, depicting variability in predictions 
among the selected ML models, emphasize stations 1, 9, and 10 as 
particularly susceptible to high variability. These bars illustrate a wide 
min-max range of potential hypoxia events. For instance, at station 1, 
events in 2100 could vary from as high as 90 to as low as 36. Despite 
these ML model-related fluctuations, all the results suggest that the 
Venice Lagoon will be more prone to hypoxic events in the mid and 
especially in the far future, under climatic conditions induced by the 
business-as-usual scenario.

5. Discussion

Hypoxic conditions can frequently occur in lagoon areas subject to 
reduced water exchange, in the warmer season, and mainly at night, 
especially in the layers close to the sediment (Diaz and Rosenberg, 
2008). Future trends of DO in marine waters are a key topic of climate 
research due to the essential role of DO in sustaining marine life. 
However, DO dynamics are difficult to assess with deterministic models 
due to the complex interactions among a number of physical and bio-
logical drivers (Cossarini et al., 2021; Di Biagio et al., 2022; Mussap 
et al., 2016). Indeed, oxygen dynamics involve a range of interconnected 

processes, including mixing, water residence time, and daily oxygen 
fluctuations, which collectively influence the spatial and temporal dis-
tribution of oxygen depletion. In stratified systems like the Venice 
Lagoon, mixing driven by tides, wind, and temperature gradients plays a 
key role in oxygen distribution, with insufficient mixing often leading to 
oxygen depletion in bottom waters (Geyer et al., 2018). Additionally, 
the residence time of water masses determines the duration over which 
biological and chemical processes, such as respiration and organic 
matter decay, can consume available oxygen (Kjerfve and Magill, 2019). 
Daily variations, driven by photosynthesis during the day and respira-
tion at night, introduce diurnal shifts in oxygen levels, often resulting in 
nighttime hypoxia in the shallow areas (Cloern, 2001). The SHYFEM- 
BFM model applied in this methodology addresses these dynamics in 
detail, and this is essential for a comprehensive analysis of oxygen 
depletion in the Venice Lagoon. Indeed, the simulation of the key 
biogeochemical processes in marine ecosystem, tracking the cycles of 
nutrients, carbon, oxygen, a pool of phytoplankton, zooplankton and 
bacteria across the modeled system, coupled with the hydro-
morphological dynamics accounting for time variable inputs, boundary 
conditions and meteorological forcing such as river inputs of water and 
nutrients, exchange of water and biogeochemical variables with the sea, 
and meteorological forcing.

The projected large increase in hypoxia events occurrence in the far 
future (Figs. 5 and 6) points to worrying impacts on shallow estuaries 
and coastal ecosystems such as the Venice Lagoon in the absence of 
mitigation of carbon emissions. Exacerbating environmental degrada-
tion, such as the transition of the duration of hypoxia events in the 
Venice Lagoon from two to three months, could indeed pose a major 
challenge to aquatic life. The results highlight highest vulnerability to 
hypoxic conditions of landward sites compared to open waters due to 
the combination of slow water renewal times and a strong climate 
sensitivity of shallow waters to the increase in air temperature. Among 
all the environmental changes considered in climate projections, the 

Fig. 5. Sensitivity analysis results using the Morris method for the RF (a), Staked ensemble (b), and AdaBoost (c) models.
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temperature is undoubtedly a key factor driving these changes. Indeed, 
increasing temperatures contribute to a reduction in the solubility of 
oxygen in seawater (Garcia Herncin and Gordon Louis, 1992) and 
stimulate the metabolic activity of aquatic organisms (Hsieh et al., 2021) 
leading to heightened oxygen biological demand (Sokolova and Lannig, 
2008).

5.1. Case study considerations

The hybrid model envisages more frequent and longer-lasting pe-
riods subjected to oxygen depletion in the RCP 8.5 scenario (Figs. 5 and 
6). These evaluations, appear to run counter to the goals outlined in the 
EU reference Mission, particularly the Starfish 2030 initiative titled 
‘Restore our Ocean and Waters Report of the Mission Board – Healthy 
Oceans, Seas, Coastal and Inland Waters’. In particular, these estima-
tions depict a scenario for the Venice Lagoon that departs from one of 
the main goals of Starfish 2030: to attain zero pollution of our oceans 
and waters by 2030, which entails, among others, cutting down hypoxia 
by at least 50 %. Furthermore, the estimation of an increased risk of 
hypoxia can also be aggravated by other factors not included in this 
methodology: firstly, is likely that some areas of the Venice Lagoon could 
experience hypoxia events in a more massive way in the deeper waters 
immediately above the sediments. Indeed, it should be considered that 
shallow coastal lagoons often exhibit a significant decrease in oxygen 
concentration with depth (Brigolin et al., 2021; Hsieh et al., 2021), 
coupled with intense dynamics of the daily cycle of oxygen concentra-
tion. Moreover, higher sea surface temperatures also lead to density 

stratification, which can greatly reduce vertical mixing and thus restricts 
the transport of oxygen to deeper layers (Howarth et al., 2011). Sec-
ondly, it's plausible that the MOSE system could potentially heighten the 
risk of hypoxia by impeding the exchange of seawater with the Lagoon. 
With the projected sea level rise in the mid and far future, the MOSE 
barriers might be activated for more extended periods (for example, 4 or 
5 consecutive days), leading to a disruption in seawater inflow. How-
ever, more targeted studies are necessary to examine these aspects in 
detail, particularly since the MOSE system has been operational since 
2020 and the available data are not enough for robust analysis. These 
studies would help assess the precise impact of the MOSE system on 
water exchange patterns and the potential implications for hypoxia risk 
in the Venice Lagoon. Thirdly, it is possible that future scenarios of land 
use change, urbanization and population growth could also negatively 
affect the occurrence of hypoxia events. Indeed, in a business-as-usual 
scenario, high levels of nutrients discharged into the lagoon during 
both dry and wet periods can trigger microbial growth. During dry pe-
riods, phytoplankton can produce large amounts of particulate organic 
carbon and consume nutrients and oxygen in the water column. Oxygen 
depletion is more pronounced during wet periods, when heavy rainfall, 
which brings turbid water with high concentrations of nitrogenous nu-
trients, can stimulate phytoplankton growth, and increase the discharge 
of particulate organic carbon and dissolved organic carbon into the 
lagoon. Indeed, negative correlations between DO and dissolved organic 
carbon and DO and particulate organic carbon can be observed in both 
seasons, suggesting that heterotrophic bacteria may largely use dis-
solved oxygen in the water column (Hsieh et al., 2021).

Fig. 6. Temporal dimension of hypoxia scenarios designed by the ML-BGC&Climate model, across the reference period and the mid and far future in the ten Venice 
Lagoon stations. a) Pie charts indicating the count and the relative percentage of hypoxia events over the entire period. B) Bar plots indicating the number of hypoxia 
events estimated in each season. c) Bar plots indicating the number of hypoxia events estimated in each summer month. The error bars represent the predictions 
variability given by the whole range of the selected models.
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5.2. Scientific context and the relevance for society

The new findings from this research, both in terms of methodology 
and results, should be considered valuable examples to be applied in 
other case studies. Although there are already some papers in the 
literature that address advanced modeling of DO and hypoxia using ML 
in a sophisticated manner, such as Yu et al. (2020), which proposed a 
model with three major components: empirical orthogonal functions 
analysis, automatic selection of forcing transformation, and neural 
network training. Using this method, they indicate in some maps the 
different magnitudes to which the DO concentration changes over time. 
For example, during the summer months, the DO of the entire bay de-
creases from the long-term mean value, with the maximum decrease 
occurring in the region with deep waters. Liang et al. (2023) pioneered 
the integration of four-dimensional spatiotemporal characteristics in DO 
forecasting, crucial for early warning systems. It highlighted that human 
activities, such as submarine groundwater discharge, impact DO levels, 
especially by influencing chemical reactions.

Regarding predicting the medium and long-term future, exception-
ally Pezner et al. (2023) consider such a long-term perspective. They 
focused on future DO levels under different climate scenarios on coral 
reefs. They found widespread hypoxia, with 94 % of reefs expected to 
experience weak to moderate hypoxia by 2100 under severe climate 
change. However, they only considered temperature effects, while the 
current study integrates multiple factors. Nevertheless, Pezner et al. 
estimate future changes only in water temperature and calculate the 
impact of warming on solubility but do not consider the effect of climate 
change on other relevant variables as shown in the presented study. 
Indeed, the scenario analysis proposed here incorporates future pro-
jections of some of the most relevant hypoxia response variables.

Among the different implications the methodology and results of the 
multi-component model can have within the international community it 
can be mentioned:

- It can provide robust scenarios that are useful for better management 
and adaptation to current and future climate change risks. Indeed, 
the scenarios, as developed by the combined approach of using ML 
and deterministic model projections, are based on processes that 
leverage both, the extrapolation generalization capabilities of 
advanced ML methods and the interpretability of numerical simu-
lations, thus exploiting the strengths of both modeling approaches 
and overcoming the limitations of each. On one side ML predictions 
are reliable in the short term, indeed the development of long-lasting 
scenarios using ML alone still does not seem to be scientifically 
robust; on the other side, deterministic models tend to flatten the 
distribution curve in the medium and long-term by eliminating 
extremes.

- It can help observational scientists extend their knowledge to new 
estimates, paving the way for the identification of hotspots for the 
design and implementation of powerful restoration actions, which 
can accelerate the recovery of local ecosystems threatened by 
climate change. Given the oxygen dynamics underlying hypoxia 
events, several measures can be considered In response to these in-
creases, such as nutrient loading reduction, eutrophication control, 
and oxygenation. Effective interventions include riparian buffer 
zones, seagrass transplantation, and saltmarsh restoration. These 
measures, in the Venice Lagoon, can influence water quality by 
nutrient retention, oxygen release, and restoring natural gradients, 
thereby reducing hypoxia risk. Comprehensive adaptation strategies 
must explore synergies between various restoration measures to 
maximise ecosystem service provisioning and cumulative risk 
reduction.

- It could act as a prototype for future digital tools that can benefit 
stakeholders, including the aquaculture and fisheries industries, 
seeking to manage the risk of this water-related extreme event to 
their products.

- The methodology offers significant novelty and potential applica-
bility to other coastal systems, making it valuable to the international 

Fig. 7. Spatial dimension of hypoxia scenarios designed by the ML-BGC&Climate model. Pie charts visualizing the a) reference, b) mid future and c) far future 
scenarios across the ten Venice Lagoon stations. d) Bar plots indicating the number of hypoxia events across the reference period and the mid and far future in the ten 
Venice Lagoon stations. The error bars represent the predictions variability given by the whole range of the selected models.
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community. It may encourage both scientists and coastal managers 
to replicate the approach in their case studies. The methodology is 
particularly useful for assessing whether hypoxia, even if not highly 
prevalent today and/or in the past, could become a serious threat in 
the future under certain climatic conditions. However, there is 
considerable potential to refine and improve the methodology to 
overcome its limitations. In particular, one key challenge lies in 
addressing model uncertainties, as it is difficult to quantify the cu-
mulative uncertainty across the multiple models used. From a data 
perspective, additional historical data (e.g., a longer timeframe) 
could help reduce uncertainties in ML models. Similarly, for future 
scenarios, having continuous data over extended periods, rather than 
just one-year timeframes, would likely enhance the accuracy of the 
projections. Lastly, a more comprehensive study should consider all 
climate scenarios, i.e. 1.9, 2.6, 3.4, 4.5, 6, 7, and 8.5 to provide 
stakeholders with a complete range of possibilities rather than 
focusing solely on the most severe emission scenario. Finally, the 
intercomparisons between CMIP5 and CMIP6 biogeochemical pro-
jections done with global models could be used to discuss the results 
in respect to the new CMIP6 projections.

6. Conclusions

To add insights into past (2008–2019) and future (2050, 2100) 
hypoxia events in shallow coastal environments such as the Venice 
Lagoon a multivariate analysis using a combination of seven ML models 
and two deterministic models (hydrodynamic-biogeochemical SHYFEM- 
BFM and climate COSMO-CLM) is applied, addressing the major chal-
lenge of dealing with an unbalanced dataset which characterise extreme 
events. Touching on several aspects, the main conclusions are summa-
rized as follows:

• ML for unbalanced dataset: Adaboost, RF and the Staking ensemble 
ML models achieve good classification performances, reaching 8.4 
and 1 of the F1 score for the hypoxia class and the normal class 
respectively. The estimates point out that testing multiple ML models 
is necessary to overcome the limitations of some algorithms in 
dealing with unbalanced data sets. Moreover, combining the results 
ensembling multiple models enables the assessment of algorithm- 
related uncertainty in the scenario analysis.

• Hypoxias in the future: The hypoxia events scenario analysis in the 
Venice Lagoon case study under RCP8.5 reveals interesting findings: 
according to the model estimates, the Lagoon (and especially the 
landward areas) is expected to become more prone to an increase in 
hypoxic events in the mid (with an increase of 0.6 % respect to the 
reference period) and especially in the far future (with an increase of 
5.3 % respect to the reference period) as a result of business-as-usual 
climate conditions. The summer season appears to be extended, 
shifting from the historical two-month period of July and August to a 
three-month duration of June, July, and August.

• Climate change adaptation and mitigation: These results should be 
seen as a wake-up call, highlighting the fact that business-as-usual 
emissions management could lead to harmful changes in the WQ of 
the Venice Lagoon, with cascading effects on the life and health of 
the entire ecosystem. The data- and numerical-based findings high-
light the urgency of becoming aware of and addressing the man-
agement of the Venice Lagoon, as well as other vulnerable water 
bodies, to prevent adverse hypoxia events. A proactive approach 
aims to ensure the maintenance of WQ and aligns with the objectives 
outlined in initiatives such as EU Mission 2030's goals, including 
‘digitalization in environmental assessment’ and ‘Healthy Oceans, 
Seas, Coastal and Inland Waters’.

• The governance aspect: Encouraging policymakers and stakeholders 
to take necessary scientific-based actions is crucial for the effective 
management and preservation of these aquatic environments. 
Implementing measures, such as establishment of riparian buffer 

zones, seagrass transplantation, saltmarsh restoration and/or crea-
tion, and the re-establishment of lagoon's hydrology to prevent and 
mitigate hypoxia events, will contribute significantly to safeguarding 
the health and sustainability of these vital water systems.
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Garçon, V., Gilbert, D., Gutiérrez, D., Isensee, K., Jacinto, G.S., Limburg, K.E., 
Montes, I., Naqvi, S.W.A., Pitcher, G.C., Rabalais, N.N., Roman, M.R., Rose, K.A., 
Seibel, B.A., Zhang, J., 2018. Declining oxygen in the global ocean and coastal 
waters. Science 359 (6371). https://doi.org/10.1126/science.aam7240.

Brigolin, D., Rabouille, C., Demasy, C., Bombled, B., Monvoisin, G., Pastres, R., 2021. 
Early diagenesis in sediments of the Venice Lagoon (Italy) and its relationship to 
hypoxia. Front. Mar. Sci. 7 (January), 1–15. https://doi.org/10.3389/ 
fmars.2020.575547.

Bucchignani, E., Montesarchio, M., Zollo, A.L., Mercogliano, P., 2016. High-resolution 
climate simulations with COSMO-CLM over Italy: performance evaluation and 
climate projections for the 21st century. Int. J. Climatol. 36 (2).

Canu, D.M., Aveytua-Alcazar, L., Laurent, C., Rosati, G., Solidoro, C., 2023. Is the Future 
Given? Cumulative Impact of Climate Change and MOSE Closures on Venice and Its 
Lagoon.

Çevirgen, S., Elwany, H., Pesce, M., A, Z., 2020. Managing nutrient pollution in Venice 
Lagoon ( Italy ): a practical tool for assessment of water quality. Sustainable Water 
Resources Management 6 (3), 1–13. https://doi.org/10.1007/s40899-020-00390-y.

Cheek, A.O., Landry, C.A., Steele, S.L., Manning, S., 2009. Diel hypoxia in marsh creeks 
impairs the reproductive capacity of estuarine fish populations. Mar. Ecol. Prog. Ser. 
392, 211–221.

Chen, T., Guestrin, C., 2016. Xgboost: A scalable tree boosting system. In: Proceedings of 
the 22nd acm sigkdd International Conference on Knowledge Discovery and Data 
Mining, pp. 785–794. August. 

Cladas, Y., Papantoniou, G., Bekiari, V., Fragkopoulu, N., 2016. Dystrophic crisis event in 
Papas lagoon, Araxos Cape, western Greece in the summer 2012. Mediterr. Mar. Sci. 
17 (1), 32–38.

Cloern, J.E., 2001. Our evolving conceptual model of the coastal eutrophication problem. 
Mar. Ecol. Prog. Ser. 210, 223–253.

Cornell, L.P., Klarer, D.M., 2008. Patterns of dissolved oxygen, productivity and 
respiration in Old Woman Creek Estuary, Erie County, Ohio during low and high 
water conditions. Ohio J. Sci. 108 (3), 31.

Cossarini, G., Feudale, L., Teruzzi, A., Bolzon, G., Coidessa, G., Solidoro, C., Salon, S., 
2021. High-resolution reanalysis of the Mediterranean Sea biogeochemistry 
(1999–2019). Front. Mar. Sci. 8, 741486.

Cucco, A., Umgiesser, G., 2006. Modeling the Venice Lagoon residence time. Ecol. Model. 
193 (1), 34–51. https://doi.org/10.1016/j.ecolmodel.2005.07.043.

CVN, 1997. Allegato allo studio di impatto ambientale del progetto di massima delle 
opere mobili per la difesa dei centri abitati lagunari dagli allagamenti, p. 2.

Di Biagio, V., Salon, S., Feudale, L., Cossarini, G., 2022. Subsurface oxygen maximum in 
oligotrophic marine ecosystems: mapping the interaction between physical and 
biogeochemical processes. Biogeosci. Discuss. 2022, 1–33.

Diamond, J.S., Moatar, F., Recoura-Massaquant, R., Chaumot, A., Zarnetske, J., 
Valette, L., Pinay, G., 2023. Hypoxia is common in temperate headwaters and driven 
by hydrological extremes. Ecol. Indic. 147, 109987.

Diaz, R.J., Rosenberg, R., 1995. Marine benthic hypoxia: a review of its ecological effects 
and the behavioural responses of benthic macrofauna. Oceanogr. Mar. Biol. Annu. 
Rev. 33 (245), 03.

Diaz, R.J., Rosenberg, R., 2008. Spreading dead zones and consequences for marine 
ecosystems. Science 321 (5891), 926–929.

Du, J., Shen, J., Park, K., Wang, Y.P., Yu, X., 2018. Worsened physical condition due to 
climate change contributes to the increasing hypoxia in Chesapeake Bay. Sci. Total 
Environ. 630, 707–717. https://doi.org/10.1016/j.scitotenv.2018.02.265.

Duvall, M.S., Jarvis, B.M., Wan, Y., 2022. Impacts of climate change on estuarine 
stratification and implications for hypoxia within a shallow subtropical system. 
Estuar. Coast. Shelf Sci. 279. https://doi.org/10.1016/j.ecss.2022.108146.

Facca, C., Ceoldo, S., Pellegrino, N., Sfriso, A., 2014. Natural recovery and planned 
intervention in coastal wetlands: Venice Lagoon (Northern Adriatic Sea, Italy) as a 
case study. Scientific World Journal 2014, 968618. https://doi.org/10.1155/2014/ 
968618.

Fisher, M.C., Moore, S.K., Jardine, S.L., Watson, J.R., Samhouri, J.F., 2021. Climate 
shock effects and mediation in fisheries. Proc. Natl. Acad. Sci. 118 (2), 
e2014379117.

Freund, Yoav, Schapire, Robert E., 1997. A decision-theoretic generalization of on-line 
learning and an application to boosting. J. Comput. Syst. Sci. 55 (1), 119–139. ISSN 
0022-0000. https://doi.org/10.1006/jcss.1997.1504.

Garcia Herncin, E., Gordon Louis, I., 1992. Oxygen solubility in seawater: better fitting 
equations. Limnol. Oceanogr. 37. https://doi.org/10.4319/lo.1992.37.6.1307.

Geyer, W.R., MacCready, P., Burchard, H., 2018. Turbulence in estuaries. Ann. Rev. Mar. 
Sci. 10, 235–258.

Ghezzo, M., Guerzoni, S., Cucco, A., Umgiesser, G., 2010. Changes in Venice Lagoon 
dynamics due to construction of mobile barriers. Coast. Eng. 57 (7), 694–708. 
https://doi.org/10.1016/j.coastaleng.2010.02.009.
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