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IMPROVED MINIMUM ENTROPY DECONVOLUTION

Abstract. Since its introduction, the Minimum Entropy Deconvolution method has received much at-
tention from Geophysicists because of its ability to compensate for the actual phase of the wavelet. In
practice, the method has not proven to be reliable in many cases because of the inherent ambiguity of
the solution, and has been replaced by more robust but rough parametric methods. :

In this work, a technique for resolving ambiguities is proposed and applied. The technique essentially
consists in using parametric methods as a coarse estimate for the proper initialization of the MED al-
gorithm. Furthermore, adaptive and superresolutive features are added to the method. Results on both
simulated and recorded traces are presented.

INTRODUCTION

Minimum entropy deconvolution (MED) and the related Zero-Memory Non-Linear (ZNL)
deconvolution have been.extensively studied in recent years because of their inherent ability
to factorize convolutive models of seismic traces making no a-priori assumptions about the
phase characteristic of the wavelet (blind deconvolution).

The theory of MED techniques is based on a stochastic model of the reflectivity, i.e. the
sequence of acoustic discontinuities in the earth’s subsurface. In essence, it is assumed that
the reflectivity is a realization of a non-Gaussian random process. In the original works by Wig-
gins (1978) and Godfrey and Rocca (1981), the reflectivity process is white, while in Walden
and Hosken (1985) it is considered as a (1, 1) Arma process. In Jacovitii et al. (1986) a rather
general theoretical formulation valid for complex signals is presented.

A very important contribution to understanding the applicability of MED based techniques
is given in Rocca and Kostov (1986) where the theoretical performance of the method is discussed.

In practice, many difficulties have been encountered which substantially limit the appli-
cability of MED techniques. In essence, the main problem is the inherent ambiguity of the

estimates. In fact, the MED algorithms produce multiple solutions due mainly to the following
factors: A

- unpredictable noise in the data,
- lack of the convolutional model,
- time windowing.

The multiple nature of MED solutions has been specifically addressed in Nickerson et al.
(1987) where it is suggested that the desired solutions should be chosen from a set of possible
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solutions obtained by shifting the window of the deconvolution filter in the MED algorithm.

The MED methods do not provide in se the means for resolving the ambiguities. This prob-
lem is common to many estimation procedures where local maxima of a given functional are
calculated but coarse (approximate) estimates must be provided to evaluate a proper inital guess.

The first aim of this work is to investigate possible coarse estimates for MED techniques
which play the role of fine estimators in a complete deconvolution procedure.

The second aim is to discuss the possibility of including some superresolution features in
the MED algorithm. In fact, the band-limited nature of the observed traces substantially limits
the resolution of the deconvolution methods, which perform only linear inversion, by definition.

Existing procedures do not in general provide the means for extrapolating the available
signal bandwidth. Linear programming and some other multipulse methods model a trace with
a series of isolated spikes but in an insufficiently controllable way.

Attempts to perform superresolution by explicitely taking into account statistical properties
of the earth layers using Markov models are currently being made (Jacovitti et al., 1989). In
the present work, the marginal distribution of the reflectivity (employed in the estimation of
the inverse filter) is also employed for spectral expansion. To illustrate these methods, let us
first critically review the MED algorithms by discussing their specific features both from a stat-
istical and a deterministic point of view.

'THE, MED TYPE ALGORITHM

The assumed model for the seismic trace is a convolution of the reflectivity signal r(t) and
the wavelet w(t), plus the observation noise »(t). The wavelet w(t) represents the unwanted fil-
tering effect of the wave propagation and of the limited bandwidth of the instruments.

y)=r(t) * wt)+»(1). 0y

More specifically, let us refer to a version sampled every T seconds of the observed signal
(1), as actually recorded,

y(n)=y(nT), nel (2)

and to the corresponding discrete-time signals (sequences) r(n), w(n), and »(n). Our problem
is to factorize this signal into an excitation sequence r(n) and a wavelet w(n) by exploiting stat-
istical knowledge about the nature of r(n), and by imposing a defined structure on w(n).

In terms of estimation theory, we can formulate the problem as follows:

Given y(n), find among all possible estimators #(n) and w(n) the pair minimizing the a
posteriori risk.

The risk is defined on the basis of a suitable error cost function.

Let us refer, for the sake of compacteness, to a vector notation by writing
[+(0) £(1)... {N-1)]", 3)

[y(0) ¥(1)... y(N-1)] ",

and let us assume for simplicity that the noise is negligible.

r

1l

y

In Godfrey and Rocca (1981) it has been shown that using a quadratic cost function, and
starting from a signal u(n) =y(n)*{(n) (where f(n) is an all zeroes (FIR) initial guess of the in-
verse filter), the minimization of the risk is accomplished by the following pair of estimation
equations for r and an all pole (AR) model whose coefficients are the entries of the vector f:

r=E gy [t/d), (4)
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f=R " R ;+s(b).
where E g,y indicates the expectation of r conditioned by u, and
u = [u(0) u(l)... uN+L)]", (5)
f = [fo) fa)... fL)]".

R, is the (L+ 1)x(L+1) covariance matrix of the input discrete time process (series) and
R ;is a (L+1)x1 cross-correlation vector between the input series and the estimated excitation.

Based on equations (4), the iterative procedure consists in alternating an estimate of the
excitation r and of f with the evaluation of a new signal u. This is accomplished by updating
the filter f with the estimate f, and by applying it again to the input trace.

The term s(f) takes into account the influence of the old FIR filter f, and is not reported
explicitely for the sake of simplicity.

Using superscripts to indicate vectors at the j-th step, and denoting with FU the matrix
filter built with 9, the MED algorithm is summarized as follows:

REPEAT
w0 = FOy
FOag, [ul]
f*V=R YY—I R,z (6)
j=i+1
UNTIL y
c\R yyfo =R

where g J[] is a function corresponding to the a posteriori conditional estimate in (7). Con-
vergence is attained when the filter shape does not change from one step to the next, as ex-
pressed by the last line in (6).

Notice that the term s(f) is ignored in the above iteration. This implies that the MED al-

gorithm corresponds to an optimum strategy only close to convergence where the influence
of f becomes negligible (Jacovittl et al., 1986).

The function g;[.] depends in principle on the whole vector u?. However, in proximity

to the convergence, it becomes a zero-memory function relating only the corresponding entries
of the vectors r¥ and u? (Godfrey and Rocca, 1981).

Before considering this function in detail, let us refer to the observation in Godfrey and
Rocca (1981) that the last line of (6) implies a proportionality between the autocorrelation of
u® and its cross-correlation with the distorted version g [u ). This shows that if convergence
occurs then the output signal has the invariance property which characterizes the so-called sep-
arable (Bussgang) processes. However, it must be stressed that this property actually refers
only to a non-linear function and to the length L of the inverse filter {.

The capability for MED to perform blind deconvolution depends on the statistics Re @
whose components are the moments

R,z O=E (i +]) y* @), (7)
=E [g [u? (+]) y* ()]}.

In the original version of MED (Wiggins, 1978) formulated for real signals, the following
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is employed:

g [a? @]=[u? 0, _ ®)
which corresponds to a fourth order moment, and was found through the maximization of the

varimax norm.

In our Bayesian approach, g[.] is derived from a statistical model of the 51%nal u? (n),
which can be thou% t of as the sum of the ideal excitation r(n) and a residual v . It has
been argued that vV (n) behaves like a Gaussian white noise function independent of r(n) near
the convergence point (Godfrey and Rocca, 1981). Thus, dropping the indices for simplicity,
we may write

TA"g[U]:/FPR/U (r/u) du, 9

where

P rw (/)= pur (wr) Py () ' (10)

Pur (u/t) pg (r) dr

The actual shape of glu] depends on the marginal p.d.f. of the excitation signal p (r).

It is important to underline that this function is the central element of the MED process.
It allows an extraction of the phase information from the observed process.

Notice that the procedure works only if the process has a non-Gaussian behavior. In fact,

in the Gaussian case, g[.| degenerates into a linear function and the MED iterations have no
significance.

Let us refer, in particular, to a reflectivity model consisting of a Gaussian mixture
pr (0=A\G (0, ¢%) + (1-M\G (0, o). (11)
We obtain the set of non-linear curves displayed in Fig. 1 for complex signals. Very similar

curves are obtained for the real case (Godfrey and Rocca, 1981). As expected, these curves

extract significant values of r()n ) without distortion and suppress the background noise v(n).
Furthermore, the p.d.f. of uV (n) is given by

pu(W=pg @*py ()
=M\G (0, a3+02y) + (1-M\G (0, o3+07).

Since the process u¥ (k) is non-Gaussian distributed, it is possible to write the following
(non-linear) set of equations:

ml=Eflul]= \/> A V01+0 + (I-A) Voi+a?Z],

mi=al=A (¢3+0?) + (1-)) (oi+09),
mi=Efu?)=3 |\ (62+02)? + (1-\) (63+0?)7,
m$=E{u®=5 [\ (¢5+0D)° + (1-N) (03+03)7],

where the superscript (j) has been omitted for simplicity.

Taking estimates of m}, 02, m? and m©, the above set of non-linear equations could be
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solved with respect to the unknowns 02, 05, 0%, and \ but experience has shown that the poor
statistical stability of the estimate of m, and m$ strongly affects the computed values.

In order to gain effectiveness, the problem is simplified as follows:

- the value of 0% is taken to be zero. This means that the reflectivity process r(n) is mo-
delled by isolated (sparse) spikes;

- the value of \ is assumed known a priori to be equal to a reasonable value (typically
A=0.9), and all the uncertainity in the p.d.f. of the process u 0 (n) is given by the signal-to-
noise ratio S = o3/02.

Making these assumptions and retaining only the first two (more statistically stable) esti-
mates and the corresponding equations, estimates of 02 and 02 are obtained at each j-th sta-
ge of the iteration, thus determining the (suboptimal) g; [.] function.

Using these estimates, the algorithm has been seen to be more stable with respect to the
final convergence point, thus drastically reducing (if not completely removing) the oscillatory
behavior observed when fixed values of N and S are taken (Godfrey and Rocca, 198 1).

AMBIGUITY OF THE MED ALGORITHM

In the usual version of the MED algorithm, the initial guess of the deconvolution filter is
a delta sequence of length L:

f, W=[00.1.000], (12)

with the non-zero element in a central position in Nickerson et al. (1987). It was outlined that
the choice of this position is a critical parameter leading to different convergence points, and
it was suggested that it may be optimized in an empirical way.

In fact, this is a very rough choice giving a coarse estimate of the reflectivity and more
flexible initial estimates could be devised. Before discussing this point, let us consider in detail
the causes of ambiguity.

Refering to the band-pass nature of the wavelet w(t), we may say that g(u) basically acts
as a side-lobe attenuator if one reflector is processed. This means that the objective of the al-
gorithm is to convert the wavelet into one spike as the iterations proceed. The convergence
is fast so long as the coarse estimate gives an initial small side-lobe level. If the wavelet has
many equal absolute maxima, convergence cannot occur.

When many reflectors are present, the interference between the overlapping wavelets may
produce spurious maxima, so that the algorithm is unable to locate the true time positions of
the reflectors. In addition, if g(u) has a monotonically increasing derivative then the equilib-
rium point will correspond to a single reflector located on the absolute maximum of the pro-
cessed signal. This is a trivial factorization of y(n).

To prevent these problems, the evaluation of the cross-correlation is averaged over several
traces, if one wavelet can be assumed as a common convolutive factor. Moreover, the constraint
on the deconvolution filter posed by the length L forces the resulting wavelet to have L poles
so limiting the possibility of trivial equilibrium points. This emphasises the importance of a
careful choice of L in the MED algorithm. Observe that the problem of trivial convergence
does not affect, in general, the ZNL algorithm.

Anyway, good behaviour of the MED algorithm. depends on the ambiguity characteristic
of the residual wavelet after the initial guess. Thus, the best working conditions are attained
if in the coarse estimate the side-lobe interferences are minimized. It is evident that both the
amplitude and the phase spectrum of the original wavelet must be approximately estimated
in order to compensate for large side-lobes. To improve the initial setting of the MED algo-
rithm, it has also been proposed to employ a prediction-error operator as a pre-processor, but
the minimum phase character of this operator leads to wrong equilibrium points if the true
underlying AR model is non-minimum phase.
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L2 ESTIMATOR
A=2 9 . S=1,5,10,50, 100, 1000
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Fig. 1 - Bayesian estimator of the magnitude of the reflectivity based on a quadratic cost function for A = 0.9 and

0% = 0. The curves are plotted from the bottom in increasing order with respect to the parameter
S = G%/g %_ .

THE COARSE ESTIMATE

In principle, we need a rough but stable phase estimate. Experience has shown that
polyspectral techniques are not sufficiently stable for applications involving relatively short data
sequences. For this reason, we resort to a parametric approach, and in the following, two
methods are presented.

The first method is the so-called constant phase correction (CPC) technique. This correc-
tion is usually applied after deconvolution in geophysical processing and it is well suited to
signals having an amplitude spectrum with a defined peak around the central frequency f .
In this case, the wavelet can be represented by its complex envelope w (1) referred to f:

1 " ,
W)= [w @ +jw (1)] e 7™, (13)

where w (t) is the Hilbert transform of w (t).

A constant-phase corrected wavelet is obtained in the form
w ()=2 Re [w () e/*70*7), (14)

where ¢ is the constant phase correction term. The aim of the phase correction ¢ is to convert
any phase character of the wavelet into a zero-phase (symmetric) behavior. A suitable method
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c d

Fig. 2 - The input trace (a) and its spectrum (b} before the estimation procedure. The processed trace after the
constant phase correction coarse estimate and the ZNL fine estimate (c), and its amplitude spectrum (d).

for compensating the phase depends on the criterion of maximizing the so-called varimax norm

defined as
f wh @ dt
.

[f w5 (1) di]?
T \

In Hosken et al. (1986), it is pointed out that if the excitation series r(n) is independent
and identically distributed (i.i.d.) then its kurtosis K | is related to the kurtosis of y(n)=r(n)*w(n)
by the equation

K (15)

(K,-3)=K,, (K;-3). (16)

If r(n) is non-Gaussian, then it is possible to recover K, from

, KR -3
K,= -/ (17)
k-3

The location of the maximum of KW can be obtained by searching for the maximum of Ky
versus ¢. The phase compensated signal is finally given by

y()=2 Re [y (1) e/ @™0*% 0], (18)

where ¢ , is the phase corresponding to the maximum of Ky. Notice that the maximization
of the kurtosis enhances the non-Gaussian behavior of the signal.

A second method is the so-called Domination Mode (DM). This technique starts from a stan-
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i

Fig. 3 - Results of application of the non-linear function to the coarse estimate of the same trace as in Fig. 2 (a),
and the relative ““full-band** amplitude spectrum (b). The processed trace after the band-limited ZNL fine
estimate (c), and its amplitude spectrum (d).

dard minimum phase AR estimate, . Applying A y(z) to the signal y(n) gives an am-

1

(2)
plitude compensated signal 5(n). A rooting is then performed to individuate the pole p y cor-
responding to the dominant mode. An all-pass filter is defined by

lpMz1

H (z)= .
p M_Z
and applying this filier to the signal % (n) gives a partially phase compensated signal 7 (n).
The kurtosis K, and K . are then computed to decide whether 7 (n) or 5’ (n) is less Gaus-
sian. The selected SIgnal is ﬁna]ly put into the MED algorithm. In the case of real signals, the
same processing applies to a a pair of conjugate poles. Moreover, if a set of dominant modes is
identified, then the procedure can include all the possible signals obtained by passing 7 (n)
through the associated all-pass filters. For M poles (or pairs of conjugate poles), 2" signals
must be compared. Both the coarse estimates here are relatively expensive from the compu-
tational point of view. On the other hand, they give a substantial reduction in the number of
iterations in the subsequent MED algorithm. A typical reduction factor is L,
3
The two methods can be cascaded to obtain further phase correction before MED. How-
ever, it has been found that the DM method is often sufficient to resolve some cases where
the original MED approach does not work.

SUPERRESOLUTION

The second major obstacle which prevents successful practical applications of the non-

c ¥ WVL d
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minimum phase blind deconvolution is the finite bandwidth of the measured signals. In other
words, the measurements produces a fall-off in the spectrum which is much sharper than that

allowed by the AR model assumed in the MED or ZNL algorithms.

Much effort has been given recently to extrapolating the spectrum of the signal beyond
its bandwidth in order to obtain a full-band deconvolved output. We recall that superresolution
is possible if some a priori information about the data is available. For instance, linear pro-
gramming techniques assume that a certain percentage of the reflectivity samples is zero.

Referring to the MED algorithm, it is known that the finite bandwidth of the input signal
causes an ill-conditioned behavior of the normal equations, which can be stabilized by adding
a constant value to the main diagonal of the covariance-matrix. This in turn implies a resolution
reduction, i.e., the opposite effect to our goal.

Alternatively, one could assume as estimate the output of the instantaneous non-linear function
instead of the deconvolution output. In the ZNL method, this causes a specrum expansion re-
lated to the suppression of small reflectors. However, an appreciable increase in resolution
is not produced in this way.

It has been found that a more effective method is to apply the non-linear function to the
coarse estimate and to employ the resulting signal as input to the MED (ZNL). The resulting
signal is full-band and is processed by the MED (ZNL) algorithm without inversion problems.
The only artifacts expected are formed by the suppression of small events, in a similar way
to the linear programming approach. However, this effect can be controlled easily and a sat-
isfactory trade-off between resolution and suppression can be obtained but regulating the ini-
tial non-linear function. '

The basic behavior of this algorithm is shown in Fig. 2. In Fig. 2a, a band-pass filtered
version of the input signal is displayed beside its ideal spectrum (2b). Applying the coarse esti-
mate (constant phase correction) cascaded with the ZNL algorithm gives the output in Fig. 2¢
and the corresponding spectrum (2d). Let us now apply the non-linear function to the coarse
estimate before entering it in the fine estimator (3a). The new input spectrum (3b) exhibits
spreading of the band-energy over the whole frequency range. In order to avoid artifacts due
to the reconstruction of very high frequencies, the final deconvolution process was done over
the first half band only, and the deconvolved signal is depicted in Fig. 3 ¢ beside the associated
spectrum (3d). The superresolution effect is clearly visible.

EXPERIMENTS ON MEASURED TRACES

The MED (ZNL) programs developed and the coarse estimation procedures were applied
to some seismic traces in order to assess their validity under different environments.

Provided that the lack of robustness in MED has been substantially overcome, it is possible
. to apply non-minimum phase wavelet estimation in a variety of situations. Depending on the
problem at hand, we can apply more or fewer parameters to describe the wavelet. Thus, we
establish a trade-off between the bias and the variance of the estimates. The most simple and
robust processing is constant phase correction, which is based on the estimation of one parameter.

In Fig. 4, a seismic section obtained from marine recording from the Adriatic sea using
.002 sec. as sampling rate and 48 meters as receiver interval is displayed.

A constant phase correction based on the Kurtosis maximization gives the result shown
in Fig. 5. This was obtained by estimating the total phase correction on all subsections of the
single trace under consideration and then subtracting it without changing the amplitude. The
stationarity hypothesis was strenghtened both in time, by taking 512 samples at a time, over-
lapped by 25 per cent to smooth side effects, and in offset, by averaging the 24 traces around
that processed. The reflection events are visually more evident, even if no resolution gain is
achieved.

Application of ZNL to the phase corrected section, with a 17 sample inversion operator,
gives the output displayed in Fig. 6. The windowing approach for this stage is identical to the
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former. The spectrum is still averaged, but because MED is sensitive to changes in amplitude,
we chose to consider only a small number of adjacent records - two for the data considered
here. The reflection events are now much sharper while very small events tend to disappear,
“as expected. However, no loss of information due to the superrésolution seems to occur.

REFERENCES

Godfrey R. and Rocca F.; 1981: Zero-memory non linear deconvolution. Geophysical Prospecting, 29, 189-228.

Hosken J.W., Longbottom J., Walden A.T. and White R.E.; 1986: Maximum Kurtosis phase and the phase of the
seismic wavelet. In: Research Workshop on Deconvolution and Inversion, Rome, pp. 38-51.

Jacovitti G., Neri A. and Scarano G.; 1986: Complex reflectivity based non-minimum phase deconvolution. In: Re-.
search Workshop on Deconvolution and Inversion, Rome, pp. 145-161.

Jacovitti G., Neri A. and Scarano G.; 1989: A deconvolution technique based on non-linear estimation of hidden
Markov chains.In IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Glasgow (UK), pp. 2357-2360.

Nickerson W.A., Matsuoka T. and Ulrich T.J.; 1987: Optimum lag minimum entropy deconvolution. Presented at
SEG, New Orleans (USA).

Rocea F. and Kostov C.; 1986: Estimation of residual wavelets. In: Research Workshop on Deconvolution and In-
version, Rome, pp. 126-144.

Walden A.T.; 1985: Non-Gaussian reflectivity, entropy and deconvolution. Geophysics, 50, 2862-2888.

Walden A.T. and Hosken J.W.J.; 1985: An investigation of the spectral properties of primary reflection coefficients.
Geophysical Prospecting, 33, 400-435.

Wiggins R.A.; 1978: Minimum entropy deconvolution. Geoexploration, 16, 21-35.







