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Abstract: Modeling of land use and land cover (LULC) is a very important tool, particularly in
the agricultural field: it allows us to know the potential changes in land area in the future and to
consider developments in order to prevent probable risks. The idea is to give a representation of
probable future situations based on certain assumptions. The objective of this study is to make future
predictions in land use and land cover in the watershed “9 April 1947”, and in the years 2028, 2038
and 2050. Then, the maps obtained with the climate predictions will be integrated into an agro-
hydrological model to know the water yield, the sediment yield and the water balance of the studied
area by 2050.The future land use and land cover (LULC) scenarios were created using a CA-Markov
forecasting model. The results of the simulation of the LULC changes were considered satisfactory, as
shown by the values obtained from the kappa indices for agreement (κstandard) = 0.73, kappa for
lack of information (κno) = 0.76, and kappa for location at grid cell level (κlocation) = 0.80. Future
scenarios modeled in LULC indicate a decrease in agricultural areas and wetlands, both of which can
be seen as a warning of crop loss. There is, on the other hand, an increase in forest areas that could be
an advantage for the biodiversity of the fauna and flora in the “9 April 1947” watershed.

Keywords: modeling; CA-Markov; LULC scenarios; kappa indices; Mediterranean watershed;
Northern Morocco

1. Introduction

Anthropogenic land use activities, both globally and locally, have significantly in-
fluenced the terrestrial ecosystem and global environmental change [1]. Over the past
century, the mechanism of land use and land cover change (LULC) has greatly expanded.
This is mainly due to the intensification of human-mediated processes, like agricultural
development, deforestation and urban expansion [2]. The shift from natural systems to
agricultural or urban environments can impede (can hamper) the sustainability of ecosys-
tems and deteriorate their ability to deliver ecosystem services [3]. This can exacerbate
land degradation and soil erosion, which are directly involved in food production and
can also endanger human health and ecological security [4]. To strengthen ecosystems
and limit the problems related to soil degradation, it is important to study the impacts
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of land use change on ecosystems using different scenarios. This will be able to help for
adaptive management strategies, which are of paramount importance for the sustainable
development of environmental resources [5].

In order to achieve maximum efficiency in land use policy and planning, it is necessary
to make a reasonable forecast of land use demand and to simulate it in possible future
scenarios [6]. Thus, many possible scenarios for the evolution of the earth system should be
simulated and discussed through models (LULC) in order to facilitate strategy formulation
and research on land use valuation [7]. The use of geospatial technology is an important
human discovery that has progressed from prehistoric times [8,9]. The three basic categories
of geospatial technology are Remote Sensing (RS), geographic information system (GIS) and
global positioning system (GPS) [10–12]. RS is a good instrument for frequent monitoring
and measuring LULC change in the natural environment, as well as the evolution of
landforms through geomorphological analysis [13,14]. Similarly, it has played an important
part in geography, geology, and the environment for academics and scientists [15]. The
availability of free satellite data such as Landsat-4–5, Landsat-7 and Landsat-8 images has
enhanced the usage of machine learning image classifiers in remote sensing [16]. Both
supervised and unsupervised machine learning methods for land cover mapping/modeling
are gaining popularity [17]. Several models (LULC) have been designed and applied
during the last two decades to estimate and simulate the effect of land use changes on
the Earth system and to study future land use scenarios at different scales and in several
regions [18–20]. There are two types of forecasting methods: non-spatial models based on
economic theories of development and econometric applications [21], and spatial models
based on computational approaches such as probability modeling, agent-based modeling
and cellular automata [22].

Spatial models are widely recognized and used, where the key functionality of the
spatial model, which distinguishes it from non-spatial models, is the ability to explicitly
demonstrate a change in land use on a map [23]. The suggested efficient alternative
computing technique, cellular automata (CA), may be characterized as models of physical
systems in which space and time are regarded as discrete and interactions are local [24].
CA models have been widely used in urban ecosystems, as they can successfully mimic
both spatial and temporal changes and capture the complexity and unpredictability of
urbanization processes as well as diverse urbanization scenarios [25]. This model’s bottom-
up methodology allows it to model the overall behavior of urban expansion by considering
the behavior of all urban cells that are affected by the current conditions of the center cell
and nearby cells [26]. The structure of the individual model only considers the spatial data,
which is why the traditional Cellular Automata (CA) is not adequate to make a realistic
simulation [27]. Indeed, the CA is also a limited model in implementing driving forces for
land use change, making it difficult to manage [28].

Combined modeling methodologies are thought to be better suited for simulating land
use change processes [29]. On the basis of this, it is advisable to evolve and integrate the
traditional CA model with a spatio-temporal model like the Markov Chain (MC) to have a
better result and exceed these constraints [30]. The temporal evolution of the land use type
based on the transition matrices is monitored by the MC method. This can control temporal
changes in land use if combined with the CA model (CA-MC) [31], whereas spatial changes
will be defined by spatial filtering of the CA model [32].

The decrease in the area of agricultural land and the drop in the quantity of water in the
dam are two of the most important problems and shortcomings of the last two decades [33].
In this work we will try to understand this loss and predict the future amount of change in
the study area. The combined CA-Markov model had never been used before for land-use
simulations in Morocco, which makes its application to land-use forecasts a new event
in the 9th April watershed. The main objective is to demonstrate effectiveness and the
importance of conjugating CA and MC models, as well as their compatibility for a good
control of temporal changes in land use. This is through a case study in the Mediterranean
watershed 9th April 1947 located in northern Morocco. From this general objective stems a
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set of specific objectives which are: (i) to make forecasts of land use in the watershed; (ii) to
understand the future changes in forest areas, wetlands and agricultural land in order to
make possible arrangements to inhibit the problems of soil loss, the decrease in water level
in the watershed, as well as deforestation; and (iii) to integrate the results obtained in an
agro-hydrological model to have an idea on the erosion and the water balance in the future.

2. Materials and Methods
2.1. Study Area

The watershed “9 April 1947” is located in northern Morocco with an area of 240 Km2

(Figure 1). It is a Mediterranean watershed characterized by a sub-humid climate [34]. The
average annual rainfall is 725 mm, measured at the Dar Chaoui weather station, while the
average annual temperature is 18 ◦C. The driest months are July and August, with the
highest values recorded in December and January [35]. The size and shape of the study
area, along with geographic characteristics, are the primary considerations for selecting the
study area.

Figure 1. Geographic location of 9th April Watershed, Northern Morocco.

The region is characterized by a dominance of dry, hot and violent winds (Chergui)
coming from the Eastern Zone, and which occupy a preponderant place, especially during
the summer season [36]. The topography is characterized by great diversity, with an
altitudinal variation ranging from 21 m at the base to 1004 m at the highest point, while the
average slope is 45 m/km.

In the downstream of the watershed is located the “9 April 1947” dam near the Dar
Chaoui locality, with a storage capacity equal to 300 mm3. This dam is intended to supply
drinking water to the Atlantic Region between Asilah and Tangier [35]. As far as the
irrigation system is concerned, it is mostly present downstream of the dam.

Geologically, the watershed presents lithological formations similar to the Moroccan
Western Rif. It is mainly a marls and clay facies of the Tangier unit, which easily amplified
the erosive process in the region [37]. Regarding the soils of the basin, it is mainly occupied
by poorly developed and complex soils [38].

2.2. Satellite Images

Satellite images for the years 1998, 2008 and 2018 are taken by Landsat 5, 7 and 8,
respectively, and then integrated into the Arc-Gis 10.6.1 to perform the classifications of
each LULC. Band 7 of Landsat 5, 7 or 8 images are assumed to be present as stand-alone
files, in a single directory structure for any given acquisition date (Composite Bands), by



Remote Sens. 2023, 15, 1162 4 of 17

using simple naming conventions [39,40]. Landsat data products are cross-calibrated in
orbit with Operational Land Imager (OLI) [41].

The determination of map classes for the years 1998 and 2008 is based on the “Band
Composition for Landsat 7”. On the other hand, the chart used to determine the classes for
the year 2018 is that of “Band composition for Landsat 8” [42].

In this study, four classes were determined for each satellite image (Water Bodies
(WATR), Bare Land (SWRN), Forest (FRST), and Agriculture (AGRL)) [43]. These classes
were processed from the Band Combination of Landsat 7 and 8 charters.

2.3. LULC Modeling
2.3.1. Assessment Accuracy

The assessment of the reliability of the LULC classification was obtained by four
equations [44,45]:

- User accuracy
Au = Pii/Pi+ (1)

- The precision of the producer
AP = Pii/P+i (2)

- Overall accuracy

GA = 100
∑m

i=1 Pii
n

(3)

- The kappa coefficient

K =
∑m

i=1 Pii − ∑c
i=1 Pi + P + i

n2 − ∑m
i=1 Pi + P + i

(4)

The Equation (1) is used in the context of the CA-Markov model, which is a type of
cognitive architecture. It represents the probability of an action (Au) given the current state
(Pii) and the previous state (Pi).

The second Equation (2) is used to calculate probability of a certain land use type at a
certain location in the model.

The overall accuracy Equation (3) in the CA-Markov model land use is used to measure
the accuracy of a land use map produced by the model. It is defined as the sum of the
conditional accuracy of each land use type divided by the total number of cells in the land
use map.

Finally, the kappa coefficient (4) is a measure of agreement between two sets of land
use classifications. It is a statistic that is used to assess the accuracy of land use classification
methods, where: Au is the user’s accuracy; AP is the producer’s accuracy; GA is the overall
accuracy; K is the kappa coefficient; pii is the proportion of the classified and reference class
areas; and pi+ = p+i = ∑m

i=1 Pii is the proportion of the classified and field truth class areas.

2.3.2. Predictions of Future Scenarios Using CA-Markov

CA-Markov is an open-structured spatial model that is typically used to enhance
land cover simulation capability [46]. In this study, the CA-Markov model was applied to
simulate and predict future land-use scenarios in the Dar Chaoui region.

The possible transitions between the LULC classes were analyzed using the change
analysis tool, which can be found in the Markov model in IDRISI Selva 17.00 [47]. The
Markov chain contains the ability to analyze changes that allow evaluation of gains/losses,
persistence, and specific transitions using quantitative data and maps [48]. Maps for the
years 1998, 2008 and 2018 were analyzed to identify past changes in LULC that have
occurred over these two decades. Simulation of future LULC scenarios was applied by
the CA-Markov model, which is widely used to model and simulate the dimensions and
trends of LULC evolution [49]. The future scenarios of the LULC were also realized in the
software IDRISI Selva 17.00 [50].

The Markov and CA-Markov models are applied in the following steps [18]:
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- Selection of LULC maps from 1998, 2008 and 2018;
- Application of the Markov transition estimator to the 1998 and 2008 maps to compute

the transition probability matrix for the change from one LULC class to the other
classes in 2018;

- Using the 2008 map and transition probability data as the basis for simulating LULC
in 2018;

- The 2018 land use map is used as a reference, to evaluate the accuracy of the simulated
LULC 2018 map (model validation);

- Simulation of future LULC scenarios using the calibrated and validated CA-Markov
model (Figure 2).

Figure 2. Methodological flowchart applied in the present study.

3. Results
3.1. Land Use Maps Reclassification

To determine water bodies and bare land, the band combination (4 5 3) was used for
Landsat 5–7, and (5 6 4) for Landsat 8. For agriculture and forestry, the combinations used
are (6 5 2) and (5 4 3) for Landsat 8, and (5 4 1) and (4 3 2) for Landsat 5–7 (Figure 3a–c).
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Figure 3. (a) Land use of 1998; (b) Land use of 2008; (c) Land use of 2018.

According to the land use maps of the last two decades, it can be observed that
agricultural land has decreased from 42% to 27% [33], and water bodies have dropped
from 7% to 4.3% since 1998 [51]. This can be explained by the data obtained from the
loukkos hydraulic basin agency, wherein a significant decrease in precipitation occurs with
increasing temperatures [35]. In addition, the forest land has been expanded from 26%
to 37.5%. This increase in area is due to the fact that forests can withstand and grow in
difficult climatic conditions and in different geographical locations [52].

3.2. Markov Transition Estimator to Simulate 2018 Land Use and Validate CA-Markov Model

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

Table 1 represents the expected possible changes from one class to other classes. From
the study’s results, it can be noted that the most important changes that will occur to have
the simulated land use of the year 2018 are [17]: the probability to switch from WATR to
SWRN is 0.19; from SWRN to AGRL is 0.17; from FRST to AGRL is 0.33; and from AGRL to
SWRN is 0.29 (Table 1).

Table 1. Transition probabilities matrix for the year 2018.

WATR SWRN FRST AGRL

WATR 0.8086 0.1914 0.0000 0.0000
SWRN 0.0005 0.7293 0.0975 0.1727
FRST 0.0000 0.0337 0.6322 0.3341
AGRL 0.0000 0.2943 0.1737 0.5320

The results of the probability matrix are integrated as input data in the CA-Markov
model to have the simulated map of 2018 (Figure 4b). This map was made to validate
the model by comparing the reference 2018 land use and the simulated 2018 land use
maps [21,53] (Figures 3c and 4).



Remote Sens. 2023, 15, 1162 7 of 17

Figure 4. Simulated 2018 land use.

The validation bar obtained by the two land use maps shows a predominance of
agreement content and a negligible part of the content of disagreement (Figure 4). In
addition, the Kappa indices are responsible for the performance and reliability of the model
to have the future scenarios closest to reality. In this case, the Kappa indices obtained by
the validation are satisfactory according to criteria adopted by [54], with a Klocation of 0.80
(80%), Kn0 of 0.76 (76%) and Kstandard of 0.73 (73%) (Figure 5).

On the basis of the reference map and the simulated map of the year 2018 there is
compatibility in three classes. Moreover, there is a small difference in the agriculture class
with an increase of 1.5% of the area in the simulated map. However, this difference has not
caused any problem in the validation of the model (Figures 3c, 4 and 5).
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Figure 5. Validation of CA-Markov model.

3.3. Markov Transition Estimator for the Projected 2028, 2038 and 2050 Years

The probability matrixes and transition area matrix obtained by Markov chain with
the Number of projection periods of 10 for 2028, 20 for 2038 and 32 for 2050 show the
following results: The AGRL class switched to FRST in the next fifty years in an increasing
way with a probability of 49% in 2028, 59% in 2038 and 62% in the year 2050 (Tables 2–4;
Figures A1–A3 in Appendix A). In contrast, the WATR class has decreased a little lower
than the previous class with probability of changing to SWRN of 36%, 45% and 49% in the
years 2028, 2038 and 2050, respectively (Tables 2–4; Figures A1–A3 in Appendix A).

Table 2. Transition probabilities matrix for the year 2028.

WATR SWRN FRST AGRL

WATR 0.6341 0.3659 0.0000 0.0000
SWRN 0.0000 0.6506 0.0703 0.2791
FRST 0.0000 0.0686 0.6747 0.2567
AGRL 0.0000 0.0951 0.4954 0.4095

Table 3. Transition probabilities matrix for the year 2038.

WATR SWRN FRST AGRL

WATR 0.4731 0.4561 0.0142 0.0566
SWRN 0.0000 0.5130 0.1905 0.2965
FRST 0.0000 0.1103 0.5974 0.2923
AGRL 0.0000 0.1316 0.5977 0.2707
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Table 4. Transition probabilities matrix for the year 2050.

WATR SWRN FRST AGRL

WATR 0.3290 0.4955 0.0584 0.1170
SWRN 0.0000 0.3960 0.3134 0.2906
FRST 0.0000 0.1488 0.5493 0.3019
AGRL 0.0000 0.1571 0.6237 0.2192

In terms of area, the (WATR) and (AGRL) classes will decrease from 6.04 km2 to
3.15 km2 and from 64.70 km2 to 59.15 km2, respectively, from 2028 to 2050. However, the
forest class will increase from 90.45 km2 in 2028 to 104.64 km2 in 2050 (Table 5).

Table 5. Land use class areas from 2028 to 2050.

Areas in Km2

Years WATR SWRN FRST AGRL

2028 6.04 59.55 90.45 64.70
2038 4.50 56.83 98.33 61.09
2050 3.15 53.83 104.64 59.15

The land use maps of the next three decades show an increase in the class of forests
that reaches to 47.2% of the watershed area, while the water body has seriously decreased
to a total area of 1.5%. Finally, bare land and agricultural land cover an area of 26.8% and
24.5%, respectively, which can be considered a slight decrease by 2050 [55] (Figure 6a–c).

Figure 6. (a) 2028 projected land use; (b) 2038 projected land use; (c) 2050 projected land use.

4. Discussion

Because of their capacity to map the risks during the crisis on a bigger scale, RS
and GIS drew a lot of attention from the government and the general public [10]. Over
the last three decades, several approaches for identifying change using remotely sensed
data have been developed [56–58]. For this reason, this study employed Landsat satellite
images to give a greater knowledge of LULC changes for improved decision making and
resource management. The application of a combined Cellular Automata and Markov (CA-
Markov) model to Landsat satellite images has been used successfully in numerous studies
to provide greater insights into Land Use and Land Cover (LULC) changes. However,
northern Morocco and the April 9th watershed have not undertaken such studies, which
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makes this study particularly important. The LULC maps generated by this study will
provide a valuable foundation for further research, allowing for thorough assessment of
future land use and improved policy-making and resource management. Utilizing these
future land use maps, researchers can begin to plan for the preservation of water resources,
better management of agricultural areas, and other key areas of focus for the region, which
includes the dam supplying the region with drinking water. According to land use maps
from the previous two decades, agricultural land and aquatic bodies have declined since
1998. This is explained by data received from the loukkos hydraulic basin agency, which
shows that increasing temperatures cause a considerable drop in precipitation [35] and also
supports the findings by [33,51]. Furthermore, the forest land has been expanded. The
combined CA-Markov model was then utilized, based on the remotely sensed maps, to
forecast LULC in the future.

From a methodological standpoint, the CA-Markov model offers both simplicity and
flexibility of use because several options can be chosen depending on the state of knowledge.
At the same time these advantages are also limitations, as the apparent simplicity of the
options often masks the complexity of the operations carried out, which are not always
clear to the user who would like to have a better understanding of the consequences of
the choices made in these options [15]. Socioeconomic characteristics were not included in
this study for a variety of reasons. The lack of information in this region is one of the data
constraints, which prevents the integration of certain features. Additionally, difficulties
related to simplification and technical realization have limited some modeling solutions.
These complexities prevent the representation of socio-economic factors.

The methodology used confirms the one applied by [18,45,50,59] in terms of its effi-
ciency and performance, through which satisfactory results have been obtained. Idrisi’s
CA-Markov allows for the incorporation of suitability maps that are calibrated using in-
dependent variables. Moreover, the model performed “substantially” according to [54]
criteria, with the following values: standard kappa (Kstandard) = 0.73; kappa for no infor-
mation (Kno) = 0.76; and kappa for grid-cell level location (Klocation) = 0.80. The current
findings support previous findings [45,60] and confirm the CA-Markov model’s ability to
simulate future LULC situations.

The integrated CA-MC model in this study performed very well compared to other
studies that used the CA model with different types of models. Ref. [61] only applied
the CA model for simulating urban land use dynamics, with model accuracy found to be
69%. In parallel, ref. [41] has employed CA-Markov for the prediction of future cropland
conditions, and this time the accuracy of the model was proven by 73%. Nevertheless,
some studies obtained much better accuracies, such as [33], wherein they combined the CA
model with ANN algorithm and obtained a simulation accuracy of 87%.

The wider dissemination of multi-temporal remote sensing data has facilitated envi-
ronmental studies. Land degradation, which includes soil erosion, desertification, defor-
estation, and poor agricultural practices, has been particularly beneficial [62].

In fact, the future land use maps made by the Markov and CA-Markov models showed
significant results until 2050, which agree with the results of the climate scenarios in the
Moroccan context [63–65].

Predictions indicate a significant downturn in aquatic areas and agricultural lands,
confirming the hypothesis put forward in previous research regarding climate change
predictions [35]. This decrease will have negative effects on each of the crop yields, and
with the decrease in the amount of water in the dams, on the other hand, there is a significant
increase in forests, which can be considered an important benefit for the reproduction of
fauna and flora as well as for the preservation of the environment in the study area. The
main reason for the decline in agricultural land and the proportion of aquatic land is due
to the decrease in the rainfall percentage, as well as the high temperature in the coming
years [35]. Concerning the forest lands, their expansion can be explained by the resistance
of some species of trees and shrubs to drought and high temperature [52].
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This research project confirms the results of other studies conducted on land use
predictions in the Moroccan context [51,53,55]. In the case of the Ourika watershed located
in the High Atlas, the study showed a 34% increase in carbon sequestration due to forest
expansion, and a 0.75% decrease in water yield [55]. Moving to the Drâa Valley, a sub-
Saharan region in southeastern Morocco at the foot of the Anti-Atlas Mountains and
north of the Sahara, there is a significant loss in agricultural areas and this is due to the
development of urban areas [51]. Concerning the Oum Er Rbia River that is part of the
Middle Atlas Mountains, the results also show an expansion of forests and a decrease in
aquatic areas [53], which is consistent with all previous studies.

In a nutshell, the future LULC scenarios allowed us to consider and to determine
the optimal Best Management Practices (BMPs) arrangements to the real situation in the
April 9th watershed, such as maintaining the dam with water preservation in the area and
expanding the amount of agricultural and forest lands.

Authors should discuss the results and how they can be interpreted from the perspec-
tive of previous studies and of the working hypotheses. The findings and their implications
should be discussed in the broadest context possible. Future research directions may also
be highlighted.

5. Conclusions

Satellite image analysis is an essential element in understanding the nature, pattern,
and degree of change in land use and wildlife, and subsequently in finding alternative
measures to reduce environmental problems. Similarly, by applying different land use
models it is easy to predict future land use by taking into account the natural and socio-
economic factors that influence land use change. In this study, the changes in LULC
over the last two decades (1998–2018) were analyzed with a focus on water, forest and
agriculture. Accordingly, predictions were made using a fusion of two models, Markov
Chain and Cellular Automaton (CA-Markov). The combined use of the Markov model
and CA for modeling LULC change is likely to make the closest predictions to reality
using the transition probability matrix. Furthermore, Land use forecasts by 2050 in the
Dar Chaoui region (Northern of Morocco) showed the results to be feared. The future
scenarios modeled in LULC indicate a decrease in agricultural areas and water resources,
both of which can be considered a warning of crop loss, so it is then necessary to improve
the productivity and profitability of the crops while preserving the resources. In order to
achieve a sustainable balance between human activities and natural resources it is essential
to implement strategies to protect and conserve water resources and agricultural areas,
such as promoting efficient agricultural practices, increasing investment in the conservation
and rehabilitation of degraded areas, maintaining water sources, and strengthening public
policies. On the contrary, an expansion of forest areas was marked in the study area, which
reflects positively on the improvement in the fauna and flora. Furthermore, these results
can be used to examine the impact of increasing forest areas on biodiversity, including the
effects on animal and plant species. Lastly, they could investigate how these LULC results
could be used to inform sustainable land use planning and management.
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Appendix A

Figure A1. (a) Waterbody “land suitability” for the year 2028; (b) Bareland “land suitability” for the
year 2028; (c) Forest “land suitability” for the year 2028; (d) Agricultural “land suitability” for the
year 2028.
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Figure A2. (a) Waterbody “land suitability” for the year 2038; (b) Bareland “land suitability” for the
year 2038; (c) Forest “land suitability” for the year 2038; (d) Agricultural “land suitability” for the
year 2038.
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Figure A3. (a) Waterbody “land suitability” for the year 2050; (b) Bareland “land suitability” for the
year 2050; (c) Forest “land suitability” for the year 2050; (d) Agricultural “land suitability” for the
year 2050.
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