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A B S T R A C T

We present an efficient and accurate modeling approach for wave propagation in anelastic media, based on a
fractional spatial differential operator. The problem is solved with the Fourier pseudo-spectral method in the
spatial domain and the REM (rapid expansion method) in the time domain, which, unlike the finite-difference
and pseudo-spectral methods, offers spectral accuracy. To show the accuracy of the scheme, an analytical so-
lution in a homogeneous anelastic medium is computed and compared with the numerical solution. We present
an example of wave propagation at a reservoir scale and show the efficiency of the algorithm against the
conventional finite-difference scheme. The new method, being spectral in the time and space simultaneously,
offers a highly accurate and efficient solution for wave propagation in attenuating media.

1. Introduction

Seismic modeling is essential for various seismic processing steps,
which spans from seismic imaging to reservoir characterization. In the
entire range of applications, seismic modeling must follow two im-
portant criteria, accurate physics and numerical accuracy. It has been
very common to solve the second-order scalar wave equation using a
finite-difference approximation in the time and spatial domains for
seismic imaging (Dablain, 1986; Etgen and Dellinger, 1989; Kelly et al.,
1976; Alford et al., 1974) and inversion problem (Pratt and
Worthington, 1990). In these studies, the authors did not consider to
incorporate the attenuative nature of the medium, which accounts for
the anelastic effect present in the subsurface.

Carcione et al., (Carcione et al., 1988a, 1988b) have modeled the
attenuation effect on wave propagation by using memory variables. The
wave propagation results in an augmented system of partial differential
equations defining the evolution of these variables. On the other hand,
Štekl and Pratt (Štekl and Pratt, 1998), have solved the acoustic wave
equation in the frequency domain incorporating the effects of at-
tenuation, but this approach results into a computationally intensive
process as it is required to solve a Helmholtz equation for each fre-
quency.

In another approach Carcione et al., (Carcione et al., 2002), used the

theory of Kjartansson (Kjartansson, 1979) to solve the scalar acoustic
wave equation with the constraint of constant-Q at all frequencies. The
effect of Q is incorporated in the form of a fractional power of the time
derivative of the stress variable ( ). Fractional time-derivative of stress
variable σ at time t depends on all previous value of σ. This is the
memory property of fractional derivative, describing the attenuation.
Carcione et al. (2002) have solved the integral form of the fractional
time-derivative (Caputo, 1969) by using the Grünwald-Letinkov and a
central-difference approximations with first and second order accuracy,
respectively. The consistency, stability and convergence of the scheme
is discussed by Mainardi (Mainardi, 2010). The approach adopted by
Carcione et al. (Carcione et al., 2002) is accurate in producing the de-
sired effect but it is computationally intensive and constrained by the
order of the accuracy.

To avoid the memory requirements of the fractional time operators,
Carcione (Carcione, 2010), introduced the fractional Fourier pseudo-
spectral method to compute Laplacian derivatives of non-integer order.
This approach implies anelastic attenuation and velocity dispersion
when implemented in wave equations. Following this methodology,
Carcione and co-workers simulated constant-Q wave propagation in a
series of papers (Zhu and Carcione, 2013; Carcione et al., 2016). In
these works, authors use second-order finite-difference scheme in time
to solve the time derivatives. Here, we solve the time evolution with the
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spectral rapid expansion method (REM) (Pestana and Stoffa, 2010), so
that the solution is fully spectral, in the time and space domains, thus
improving the accuracy and the computer efficiency.

2. Constant-Q medium

The constant-Q model (Kjartansson, 1979) is based on a creep
function of the form t2 , where t is time and 1. Kjartansson model is
completely described by two parameters, namely the phase velocity at a
reference frequency and Q. Thus, it is much simpler than any constant-
Q model, such as, for instance, the Kelvin-Voigt and Zener models
(Carcione et al., 1988a, 1988b, 1988c) and mainly used in its frequency
domain form. The relaxation function t( ) for constants-Q model is
given by (Kjartansson, 1979)

=t M t
t

H t( )
(1 2 )

( ) ,0

0 (1)

where M0 is a reference bulk modulus, is the Euler Gamma function, t0
is a reference time, γ is a non-dimensional parameter and H t( ) is the
Heaviside function.

To derive the wave equation and its analytical solution in lossy
media it is essential to have the complex modulus M ( ) for relaxation
function given in equation (1). M ( ) is expressed as (Carcione, 2014, p.
72)

=M ( ) [ ( )] ,t (2)

where represent the Fourier transform and t the time derivative.
The modulus, M ( ) is given by (Kjartansson, 1979)

= =M M
Q

( ) i , 2 arctan 1
0

0

2

(3)

where = t1/0 0 is reference frequency, =i 1 , and the reference
modulus M0 is expressed as

=M c
Q

cos 1
2

arctan 1 ,0
2 2

(4)

where ρ and c are the mass density and phase velocity, respectively
(Carcione, 2014, p. 100).

In lossy media, the stress variable ( ) is related to the time history of
the strain ( ) via a convolution operator,

=t t tx x( , ) ( ) ( , ) ,t (5)

where the symbol “ ” denotes time convolution. The frequency-domain
representation of equation (5) is

= Mx x[ ( , )] ( ) [ ( , )] . (6)

Combining equations (5) and (6) and Newton's second law of mo-
tion, Carcione (Carcione, 2014, p. 101) derived the wave equation in a
lossy medium as

=t M tx x( , ) ( , ) ,t
0

0
2

(7)

where = +( ) ( )x x z z
1 1 and = 2 2 .

Equation (7) has a fractional power in the time derivative term,
which imposes a problem while computing the numerical solution be-
cause it requires to store the solution at all the previous time steps to
compute the solution at the current time step (Podlubny, 1998;
Carcione et al., 2002; Caputo et al., 2011). To circumvent this com-
putational issue, Carcione (Carcione, 2010), proposed an anelastic
wave equation for constant-Q, equivalent to equation (7), but with
spatial fractional derivatives. The acoustic wave equation for uniform-
density medium is given by (Carcione, 2010),

= + +t c t f x z tx x( , ) ( ) ( , ) ( , , ),t x z
2

0
2 2 2 2 2 (8)

where f x z t( , , ) is the forcing function and β (1 2) defines the

extent of attenuation in the medium.
The equivalence between equation (7) and equation (8) can be ea-

sily proven by performing the dispersion analysis of a plane wave
(Carcione, 2010). The constant Q model shown by equation (8) pro-
vides the liberty of choosing the Q value in a direct way, unlike the
models presented by Carcione et al., (Carcione et al., 1988a, 1988b,
1988c), where Q values are computed by relaxation times of the ma-
terial.

3. Numerical scheme

3.1. Computation of fractional laplacian

To compute spatial derivatives with a fractional power in equation
(8), a generalized form of pseudo-spectral method is used (Carcione,
2007, 2010) and expressed as

+ = +t k k tx x( ) ( , ) FFT2D [( 1) ( ) FFT2D( ( , )],x z x z
2 2 1 2 2 (9)

where FFT2D(2D )1 are forward (inverse) Fourier operator and
k kk ( , )x z is wavenumber vector.
In the present study, we have used direct-grid pseudo-spectral

method to compute the spatial derivatives, which is a reasonable choice
as equation (8) is scalar in nature. Unlike any finite-difference scheme,
the pseudo-spectral method provides the optimal spatial accuracy for a
given grid size, which substantially reduces the numerical errors such
as grid dispersion. In addition to the pseudo-spectral method, spectral
finite element method (SPECFEM) can also be used. The SPECFEM will
provide better accuracy for complex geometries, but it comes with an
aided computational complexity. Finally, the finite volume method
(FVM) is also successfully used to compute the spatial-derivative with
integer power (LeVeque, 2002), but extension of this method to com-
pute the spatial operator with fractional power is not trivial. The FVM,
being a low order method, is also constrained by its accuracy.

The implementation of direct-grid method for the heterogeneous
form of equation (8) will produce the Nyquist error due to FFT opera-
tors being global in nature. To circumvent the Nyquist error in nu-
merical solution, staggered-grid pseudo-spectral method (Özdenvar and
McMechan, 1996) is used to compute the spatial derivatives. In stag-
gered-grid pseudo-spectral method, the spatial derivatives are com-
puted at half-grid points using the even-based Fourier transform.

3.2. Computation of time derivative

The spatial derivative in equation (8) is computed by using the
pseudospectral method, which provides very high accuracy and reduces
numerical artifacts, resulting due to grid dispersion (Kosloff and Baysal,
1982; Fornberg, 1987). The high order accuracy of the pseudo-spectral
method causes the total accuracy of the numerical scheme (in the time
and the space domain) to be dependent on the accuracy of the time
integration scheme. To achieve the high accuracy of the numerical
scheme in the space and time domain simultaneously, it is essential to
increase the accuracy of the time integration scheme.

It is not obvious to achieve the high order accuracy in computation
of the time derivative and thus, the accuracy is confined to 2nd order
(using the finite-difference scheme), while modeling the acoustic
(Alford et al., 1974; Dablain, 1986; Zhang et al., 2011) and the vis-
coacoustic (Carcione et al., 2010) wave propagation. In these studies,
second-order finite-difference approximations were used for time op-
erator, but a high-accuracy and high-order approximations, such as 4th

order finite-difference scheme and pseudo-spectral schemes, are used
for spatial operators. These approximation of time derivative operator
can introduce the numerical error, resulting into the distortion of the
shape of the wavelet and grid dispersion, especially, while using the 4th

order finite-difference spatial operator. To avoid these numerical errors,
a small time step t( ) must be taken, which in turn reduces the
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efficiency of the numerical scheme. Thus, combination of pseudo-
spectral method (for the spatial derivative) and low-order finite-dif-
ference method (for the time derivatives) becomes slow while per-
forming large-scale and high-frequency seismic modeling. Further,
various improvements through the finite-difference scheme were pro-
posed to alleviate the accuracy of time-derivative operator (Etgen and
Dellinger, 1989; Soubaras and Zhang, 2008; Zhang and Zhang, 2009)
but these schemes are based on the trade-off between efficiency and
accuracy.

Kosloff et al., (Kosloff et al., 1989) proposed the rapid expansion
method (REM) to compute the time integration more accurately and
efficiently. Based on the work of Tal-Ezer et al., (Tal-Ezer et al., 1987),
wherein a Chebyshev approximation for time marching is used (Kosloff
et al., 1989), incorporated Chebyshev approximation of cosine operator
(appears in the solution of wave equation) in REM. To achieve the
computational efficiency from one-step REM (Kosloff et al., 1989),
Pestana and Stoffa (Pestana and Stoffa, 2010) exploited the recursive
property of Chebyshev polynomials and proved the efficiency and ac-
curacy of seismic modeling.

Following the work of Pestana and Stoffa (Pestana and Stoffa,
2010), we will derive the REM for equation (8). Fourier transform of
equation (8) can be written as

= +k k t
t

c k k k k t
ˆ ( , , ) ( ( 1) ( ) ) ˆ ( , , ),x z

x z x z
2

2 0
2 2 2 1 2 2

(10)

where =k k t x z tˆ ( , , ) FFT2D( ( , , ))x z .
Using the correspondence principle (Carcione, 2014, p. 145-146),

the solution of equation (10) can be written as (Pestana and Stoffa,
2010; Zhan et al., 2012)

+ = +t t t t t t( ) ( ) 2 cos( ) ( ), (11)

where = +c k k( 1) ( )x z
2

0
2 2 2 1 2 2 .

In order to derive an efficient numerical scheme, it is required that
2 can be written as summations of multiplication of functions of

x f x[ ( )] and wave vector k h k[ ( )]. Thus 2 is expressed as

= f x h k( ) .
j

j j
2

(12)

Equation (12) ensures that = f x h k( )FFT FFT( )j j j
2 1 and

is satisfied by equation (10). Thus, our ultimate objective is to expedite
the computation of cosine term in equation (8).

The cosine function in equation (11) can be expressed as (Kosloff
et al., 1989)

=
=

t
M

C J R t L i
R

cos( ) ( ) ,
k

k k k
0

2 2 2
(13)

where C k2 are expansion coefficients with =C 10 , =C 2k2 for >k 0. J k2
represents the Bessel's function of order k2 and L z( )k2 are modified
Chebyshev polynomials. R is the parameters defining the criteria for
truncating the summation in equation (13). In addition to this, R also
conditions the L k2 in such a way that arguments of L k2 falls in [ 1,1],
which is a strict requirement for computation of Chebyshev poly-
nomials. R is equal to the maximum eigenvalue of operator ϕ and given
as

= +R c
x z

( 1) ,max0
1 ( 1)/2

2 2

(14)

where cmax is maximum velocity and x and z are spatial grid size. R
evaluated from equation (14) is complex thus, an absolute value of R is
to be considered during numerical implementation.

The sum in equation (13) converges exponentially for >M tR (Tal-
Ezer, 1986), also presented in Appendix B. Though, we are free to
choose any value of t but selection of t will decide the number of

terms required to converge the summation in equation (13). Since co-
sine is an even function so equation (13) contains only even poly-
nomials and thus, recursive property of Chebyshev polynomials can be
used to compute the L z( )k2 efficiently. The L z( )k2 can be written as

= ++L z z L z L z( ) 2(1 2 ) ( ) ( ).k k k2
2

2 (15)

Solution of equation (15) can be computed recursively with base
conditions of =L z( ) 10 and = +L z z( ) 1 22

2. The sequence of Cheby-
shev polynomials need to be computed at each time step of wave pro-
pagation.

4. Results

We consider =c 2 km/s and = 2000 Hz0 , representing the medium
at an unrelaxed frequency. The unrelaxed frequency is defined by the
frequency at which phase velocity achieves the maximum value.
Alternatively, this can be also described by the fact that unrelaxed
frequency corresponds to the maximum value of relaxation function
(Carcione, 2014, pp. 90-91). Fig. 1 shows the phase velocity and at-
tenuation versus frequency computed for equation (8). The dispersion is
significant, with a velocity of 1.92 km/s at 15 Hz. Expressions for the
phase velocity and the attenuation are given in Appendix C. In sub-
sequent simulations the reference frequency = 2000 Hz0 is

Fig. 1. (a) Phase velocity and (b) attenuation factor corresponding to =Q 30.
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considered, to produce the desired effect of attenuation on wave pro-
pagation.

Fig. 2 shows two snapshots at 500ms, computed for =Q 5 (Fig. 2a)
and =Q 200 (Fig. 2b). The simulation is based on a 200 × 200 mesh,
with square grid of size 10m. The velocity of the medium, =c 2 km/s is
assumed. Equation (8) is solved, using the pseudo-spectral method to
compute the spatial derivative, whereas the time stepping is performed
using REM. A 2D point source (with a cylindrical spreading), multi-
plication of the Dirac function in space and the Ricker wavelet with a
dominant frequency of 15 Hz in time, is used as the forcing function
[ f x z t( , , )]. As postulated, the wavefront of the lossy case (Fig. 2a)
travels slower than the waverfront of the quasi-elastic case (close to
2 km/s), shown in Fig. 2b.

Fig. 3 represents the numerical simulation of equation (8), demon-
strating the effect of spatially varying Q on wave propagation. Simu-
lation parameters (except Q) are same as those used in while generating
Fig. 2. Fig. 3 clearly reflects the effect of Q on velocity and amplitude of
the wave field. Wavefronts for =Q 10,20, and 30 travel slower than
those in the quasi-elastic (almost no attenuation) case =Q( 200).

To prove the accuracy of the presented numerical scheme, we
computed and compared the analytical and numerical solutions of
equation (8). An analytical solution of equation (8) is derived by
adopting the approach of Caputo et al., (Caputo et al., 2011) and shown
in Appendix A. To compute the analytical and numerical solution, we
use following forcing function,

= =f t a a a t t
t

( ) 1
2

exp( ), ( ) ,s

p (16)

where tp is period of wave and =t t1.4s p represents delay in source. To
compute the analytical solution, a frequency domain representation of
equation (16) is required, which is expressed as

= = =F
t

a a t a
t

( ) ¯ exp( ¯ i ), ¯ , 2 .p
s

p
p

p

2

(17)

Fig. 4 represents a comparison between the analytical and the nu-
merical solutions of equation (8) for =Q 5. The analytical and nu-
merical solutions are computed at an offset of 60m for a source with
dominant frequency of 15 Hz and velocity =c 1527m/s. Fig. 4 clearly
shows a good agreement between the numerical and analytical solution
with an L2 -norm error of 0.4%.

Fig. 5 represents the snapshot of wave field, computed by solving
equation (8) in an attenuative heterogeneous medium, comprising two
layers of different velocity. Fig. 5a and b represent the snapshot of
wavefield at 700ms for =Q 5 and =Q 40, respectively. The simulation
is based on 400 × 400 mesh with grid size of 10m. The time response of
forcing function is a Ricker wavelet with the dominant frequency of
18 Hz. The velocity c( ) of top and bottom layer is 1.5 km/s and 2.0 km/s
respectively. The phenomena of the velocity varying with Q is very
clear; in more attenuating medium ( =Q 5, Fig. 5a) the traversed dis-
tance of wavefield is less in comparison to the less attenuating medium

Fig. 2. Snapshots computed at 500ms using rapid expansion method for (a)
=Q 5 (b) =Q 200.

Fig. 3. A comprehensive view, showing the effect of the spatially varying
=Q ( 10,20,30, and 200) on the wave propagation, computed at 500ms. It is to be

noted that =Q 200 represents a quasi-elastic medium.
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( =Q 40, Fig. 5b). In order to show the efficiency of REM over second-
order finite-difference scheme, we compared the number of the Lapla-
cian calculation required in finite difference and REM. In finite differ-
ence schemes, the time step for stable explicit-integration is computed
using the Courant-Friedrichs-Lewy (CFL) condition. The CFL condition
is the necessary condition, ensuring both the convergence and stability
of numerical solution. Additionaly, with the CFL the numerical speed

( )t
x is always less than the physical speed of the wave. The CFL con-

dition is given as

= c t
x

2 ,max

(18)

where t is time step, x is grid size in space and cmax in maximum
velocity.

For the finite-difference scheme, the number of the Laplacian is
computed by dividing the maximum time of propagation t( )max with
time step t( ), whereas the number of the Laplacian calculation for
REM is >t R/2max . For the case shown in Fig. 5, the number of the La-
placian calculation for the second-order finite-difference =( 0.2) and
the REM is 349 and 311, respectively. As the propagation time and the
domain size are very small, the difference in the number of the Lapla-
cian computation is not substantial though for the long simulation, the
difference is very evident and shown in the subsequent section of the
paper.

Numerical solution of equation (8) is computed for a large synthetic
reservoir model, containing a gas chimney. The P-wave velocity
(Fig. 6a) and Q model (Fig. 6b) is adopted from Zhu et al., (Zhu et al.,
2014). In this model, the gas chimney is differentiated from the sur-
rounding by a low value of velocity (Fig. 6a) and Q ( 15) (Fig. 6b). The
velocity and Q models comprise 398 and 161 grid points in the x- and
the z-direction, respectively. The grid spacing in both the direction is

=dx dz25 m ( ). In the model, P-wave velocity varies from 1500m/s
c( )min to 4500m/s c( )max , which guarantees a max frequency of propa-
gation c x( /2 )min to be bounded below by the 30 Hz. A Ricker point
source of 18 Hz central frequency is used as a forcing function. Fig. 7a
represents the snapshot of stress-field ( ) at 1.5 s with the Q model
(Fig. 6b) incorporated in the computation. To show the effect of Q on
the wave propagation, the numerical solution of equation (8) is also
computed for a lossless medium. A lossless condition is achieved by
considering = 1 in equation (8). Fig. 7b represents the snapshot of the
wave field at 1.5 s for the lossless medium. A comparison between
Fig. 7a and b reflects the fact that the dispersion due to the rheology of

the model is incorporated accurately.
Fig. 8a and b represent the shot gathers in a lossy (corresponding to

simulation shown in Fig. 7a) and lossless (corresponding to simulation
shown in Fig. 7b) medium, respectively. To show the effect of Q on shot
gathers, a comparison between amplitude spectra of Fig. 8a and b is
shown Fig. 8c. Fig. 8c clearly shows the effect of attenuation on the
amplitudes. As expected, the effect of attenuation is more evident at

Fig. 4. A comparison between the analytical (solid line) and numerical (dots)
solutions computed at =Q 5. The stress field ( ) is computed at an offset of
60m.

Fig. 5. Snapshots computed at 700ms for variable velocity and constant den-
sity medium separated by an interface (equation using rapid expansion method
for (a) =Q 5 (b) =Q 40.
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high frequencies, which is reflected by the steeper rate of decay in
amplitude in lossy case than in lossless case. The dominant frequency is

14.5 Hz for both the cases. Fig. 8d contains a comparison between
traces extracted at 250m offset from the source. The effect of at-
tenuation is clearly reflected in the amplitude and phase shifts (a shift
in time) between the traces.

A comparison between the number of the Laplacian calculation re-
quired for REM and the finite-difference scheme, is shown in Table 1.
Table 1 proves the fact that for all cases of α and frequency, the REM is
more efficient than the second-order finite-difference scheme.

A representative spectrogram (time-frequency) analysis of shot
gathers, computed in the lossy (Fig. 9a) and the lossless media (Fig. 9b),
is shown in Fig. 9. The spectrogram essentially calculate the short-time
Fourier transform of the trace resulting into the amplitude at time-lo-
calized frequency. The basic reason behind these computation is to
represent the distribution of the amplitude and phase (represented in
term of time on y axis) at a fixed time and for an entire frequency
range (x axis).

Fig. 9a and b represent the time-frequency analysis for a trace for an

offset of 750 m in the lossy and the lossless media, respectively. It is
worth to note that in a lossy media (Fig. 9a) the onset of dominant
power of the signal is delayed >( 0.4 s) in comparison to that in lossless
medium (Fig. 9b), which starts at 0.4 s. Thus, this time difference also
confirms with the phase difference in attenuative media, as reported by
(Carcione, 2010). Fig. 9a also shows that in lossy media, the variation of
the amplitude with the frequency and time is more notable than in the
lossless media (Fig. 9b).

5. Discussion

The implementation of the REM to compute the time derivative
operator in equation (8), provides freedom in choosing the size of time
step t (as shown in Figs. 2–9) with an increased accuracy in the nu-
merical solution. The efficiency along with accuracy achieved from the
REM will be very useful in various seismic imaging algorithms. In
particular, the reverse time migration (RTM) algorithm which requires
two-way solutions of the wave equation.

In another in-line study Sun et al., (Sun et al., 2015), computed the
numerical solution for viscoacoustic equation, described by the frac-
tional space derivatives with constant Q, using a low rank approx-
imation method (Fomel et al., 2013). The method of the low rank ap-
proximation does not impose any constraint on the size of t . Sun et al.,
(Sun et al., 2015) use the constitutive equations of Zhu and Harris (Zhu
and Harris, 2014), which are based on the approximation of freezing-
unfreezing theory of heterogeneous medium (Stein, 1999). They ap-
proximated the wave equation in the constant Q medium using four
Laplacians and two of them with the fractional order. Numerical solu-
tion of such equations will require four 2D FFT operations at each time
step. However, in present study we just require two (one forward and
one inverse) 2D-FFT operation at each time step. Thus a comparison
between the efficiency of numerical scheme presented in this paper
with the study carried out by Sun et al., (Sun et al., 2015) will not be
appropriate.

To show the efficiency of the algorithm, we have analyzed the nu-
merical scheme using the approach of basic algorithmic-complexity
(Cormen et al., 2009). To compute the spatial operator in 3D, we re-
quire six runs of the FFT algorithm (three forward and three inverse).
The computational complexity of one run of the FFT algorithm is
O n n( log ), with n being the total number of nodes, used to discretized
the domain in x, y and z directions. Thus the time complexity (2D or
3D), for computation of spatial derivatives isO n n( log ). Any algorithm
with the complexity of O n n( log ) suggests that the run time grows
slowly as n increases in comparison to algorithms with exponential and
quadratic complexity. The time complexity for computing the time
derivative is dominated by evaluation of the modified Chebyshev
polynomials in equation (13). Since, we have used the recursive ap-
proach to compute the modified Chebyshev polynomials, the time
complexity for the computation of the time derivative would be O M( ).
Thus, at each time step, the total computational complexity would be
O O+M n n( ) ( log ). Fig. 10 shows a comparison between the theoretical
run time, described by O O+M n n( ) ( log ) and actual run time, com-
puted for a 2D case. The run times are plotted against number of grid
points in one direction. The run times are computed on a single node
machine, comprising MacBookPro 2018 laptop with 8 cores and
2.3 GHz clock frequency. The comparison clearly shows a very good
agreement between the theoretical and actual runtime, considering the
fact that the code is not optimized, substantially.

As confirmed by Fig. 10, it can be concluded that the efficiency of
the presented numerical scheme will be primarily dominated by the
scalability of the FFT algorithm on a multinode architecture with a
distributed memory hierarchy. The FFT has been already proven to be a
strong scale algorithm (Pippig, 2013), which guarantees strong scal-
ability of the presented numerical scheme on a multinode machine.

Fig. 6. Large scale synthetic reservoir model with (a) P-wave velocity and (b) Q
model.

Fig. 7. Wave field simulation for a reservoir model (a) Snapshot of the wave
field at 1.5 s withQ and (b) wave field snapshot computed at 1.5 s with outQ
(lossless medium).
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6. Conclusions

We have simulated the wave equation in attenuative media, effi-
ciently and accurately, by implementing the REM and pseudo-spectral
method to compute the time and fractional spatial derivatives respec-
tively. Various computational experiments reflect the fact that the
proposed efficient numerical scheme accurately incorporates the velo-
city dispersion, which is caused by Q. A comparison between the ana-
lytical and the numerical solutions shows a very good agreement.
Numerical simulation for large scale reservoir model, shows a sub-
stantial efficiency of REM over second-order finite-difference scheme.
We also presented the efficiency of our code by comparing the theo-
retical and actual run times, which shows a very good agreement.

Computer code availability

To accelerate the dissemination and adoption of presented method
in the wider community, we have made the entire project open source
under the permissive MIT License. The code is hosted at https://github.
com/rajexplo/REM_COMPUTER_GEOSCIENCE. The code is written
FORTRAN90 language and collaboratively developed by authors of the
current paper. This code requires a third party library FFTW, ex-
tensively used for Fast Fourier transformation. This code is tested on
MacBookPro 2018 laptop with 8 cores and 2.3 GHz clock frequency.
GNU compiler (gfortran) is used to compile and link the code. This code
originally produces Fig. 5a and b presented in the current manuscript
and just represent a prototype implementation of presented algorithm.
For any question please contact at email address of corresponding au-
thor of the current manuscript.
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Fig. 8. Shot gathers extracted from simulations shown in Fig. 7a and b. Shot gather in a (a) lossy medium (b) lossless medium and (c) a comparison between
normalized amplitude spectra of (a) and (b), and (d) pressure seismograms at 250m from the source location extracted for lossy and loss-less medium. The wave
equation involves a fractional power of the Laplacian for the lossy case.

Table 1
Number of Laplace calculations using second-order finite-difference (FDL) and
REM (REM )L , with maximum time of propagation, =t 1.5max s.

α Freq. (Hz) x (m) t (s) FDL REML

0.4 15.0 25.0 0.00217391 690 613
0.2 15.0 25.0 0.00434783 1380 613
0.4 45.0 15.0 0.00130435 1150 1022
0.2 45.0 15.0 0.00260870 2300 1022
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Appendix D. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.cageo.2019.01.022.

Appendix A Green's function and analytical solution

Equation of motion for wave propagation in anelastic media is expressed as (Carcione, 2014, p. 101)

= 1 .t
2

(A.1)

Stress-strain relation in anelastic medium is expressed as

= +b f ,t
2 (A.2)

where = ( )b M
0

20 . Substituting equation (A.2) in equation (A.1) we get

= +b f .t t
2 2

(A.3)

Taking Fourier transform of equation (A.3)

= +i b i f( ) ( ) .2 2 (A.4)

Using equation (8), =b i M( ) ( )2 , we rewrite equation (A.3) as

Fig. 9. Spectrogram or time-frequency plot of shot gather in (a) lossy medium
(Fig. 8a), (b) lossless medium (Fig. 8b). Spectrogram is computed for a trace at
an offset of 750 m.

Fig. 10. A comparison between the theoretical and actual run time of the code
written in the current work.
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+ =p f
M ( )

,2
(A.5)

where =p vc
is wave number and =vc

M ( ) is complex phase velocity.

If vc is real the medium is lossless. Solution to lossless acoustic equation + =p G r( ) 8 ( )2 is the Green function G (Carcione, 2007) and can be
expressed as

=G x y x y c iH r
c

( , , , , , ) 2 ,0 0 0 0
(2)

0 (A.6)

where c0 is real velocity in lossless media, H0
2 is zero order Henkel function of second kind. Coordinate pair x y( , )0 0 is location of source and

= +r x x y y( ) ( )0
2

0
2 . (Caputo et al., 2011) computed anelastic solution by invoking the correspondence principle (Bland, 1960). According to

the correspondence principle, solution in lossy media can be obtained by substituting c0 in equation (A.6) with vc. Thus Green function for strain is

=G G
M ( )

.
(A.7)

Since =G p G2 away from the source and = M ( ) , then Green's function for the stress can be expressed as

= =G M G p G( ) .2 (A.8)

To ensure the inverse Fourier Transform of Green's function to be real, we will set =G G( ) ( )* , where is complex conjugate. Thus the
frequency domain solution for stress is given by =x y x y G f( , , , , ) ( ) ( )0 0

1
8 , where f ( ) is frequency domain representation of f t( ). As Henkel

function has singularity at = 0, we will assume = =G ( 0) 0.

Appendix B Convergence and stability of scheme

We prove the convergence criteria of >M tR for series in (equation (13). We rewrite 13 as

=
=

H t
M

C J R t L i
R

( ) ( ) .M
k

k k k
0

2 2 2
(B.1)

The accuracy of H t( )M , a polynomial approximation, is defined by its asymptotic rate of convergence as M . Consider the interval m[ , )0 ,
where the asymptotic behavior of equation (B.1) is defined. Thus to a prescribed accuracy, the minimal M m[ , )0 , should be >m0 to resolve all
the Fourier modes. This is a necessary and sufficient condition as proven by Tal-Ezer (Tal-Ezer, 1986). Now we can derive the value of m0 for
equation (B.1). It is a well known fact that the Bessel's function of order k, defined for a variable x as J x( )k , converges to zero exponentially fast if

>k x (Abramowitz and Stegun, 1972). Thus to resolve all the Fourier modes the interval of asymptotic behavior would be z[ , ], with =m x0 . Thus,
it proves that H t( )M will converge exponentially if >k tR.

Appendix C Phase velocity and attenuation

The analysis of he propagation characteristic of the medium, defined by equation (8), is performed. The phase velocity v( )p and attenuation factor
( ), in a medium of constant properties, for a plane wave, defined by = t k x k zexp[i( )]x z , are

=v ccos
2p

1

0 (C.1)

=
c

sin
2

.0
(C.2)
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