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Abstract
Macroseismic intensity provides a qualitative description of seismic damage. It can be 
associated with Ground Motion Parameters (GMPs), which are extracted in near real-time 
from instrumental recordings during an earthquake. Several formulations of this empirical 
association exist in literature for Italy, mainly focusing on the relationship between inten-
sity expressed on the Mercalli-Cancani-Sieberg (MCS) scale and peak ground acceleration 
or velocity. They are usually in the form of Ground Motion to Intensity Conversion Equa-
tions (GMICEs), which treat intensity as a continuous quantity. We propose an alterna-
tive approach, the Gaussian Naïve Bayes (GNB) classifiers, which allows to correctly treat 
intensity according to its ordinal definition. As a comparison, we also implement a modi-
fied version of the standard GMICE approach. We expand the existing database of GMP/
MCS-intensity points with new, high-quality accelerometric data recorded in Italy in the 
period from 2002 to 2016 and resample the database by treating the intermediate intensi-
ties with half integer values (which are not meaningful in the MCS description) as both 
belong to the above and below full integer classes with an assigned weight. As a result, 
we estimate a new set of regression relations and GNB probability distributions between 
integer MCS intensity classes and eight GMPs (peak acceleration, velocity, displacement, 
Arias and Housner intensities, spectral acceleration at 0.3, 1.0 and 3.0 s). Results based on 
PGA and PGV are the most stable on the whole intensity scale. GNB models score better 
than GMICEs in terms of performance on unseen data and classification scores.
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1 Introduction

After the occurrence of a large earthquake, the aim of the civil protection unit is to 
rapidly assess spatial distribution of damage levels with special attention to highest 
degrees. Macroseismic intensity can be used to provide a qualitative description of such 
consequences of a seismic event. Reliable and updated tools to immediately associate 
the ground motion information with expected macroseismic intensity can thus play an 
essential role in the timely implementation of civil defence emergency plans.

By definition, macroseismic intensity is an ordinal quantity, which means that it 
has natural, ordered categories and the distances between the categories are not known 
(Agresti 2013; Kuehn and Scherbaum 2010). Intensity classes are expressed as roman 
integer values and are always defined as a “collective” measurement, coming from the 
observation of many factors which are not linearly dependent on any single, directly 
measurable value. The first main implication of this fact is that the classes are not pro-
portional to one another, meaning that there is no assurance that the effects observed 
for a degree II are two times those of a degree I (while for example we can exactly 
define the proportionality between the energy released by a MW = 4.0 and a MW = 5.0 
earthquake). This also implies that intensity measures have a high error content, push-
ing strongly towards the impossibility of interpreting decimal values as an improvement 
in the actual intensity estimate.

Even so, Ground Motion to Intensity Conversion Equations (GMICEs) are the most 
common choice in defining instrumental intensity as a function of Ground Motion Param-
eters (GMPs). Many GMICEs have been estimated for Italy in the past (e.g., Margottini 
et  al. 1992; Faccioli and Cauzzi 2006; Faenza and Michelini 2010; Caprio et  al. 2015; 
Gomez-Capera et al. 2020). They are usually obtained in a simple linear regression form:

where I is the intensity and X is the GMP. In GMICE-related literature, it is common prac-
tice to use this functional form as it is, which implies treating intensity as a continuous 
quantity and obtaining decimal intensity values as a forecast.

In the light of the very definition of macroseismic intensity classes, the current formula-
tion in (1) is not appropriate. With this reasoning in mind, we wanted to obtain GMICEs 
for Italy that are more compliant to the intensity scale by applying pre- and post-processing 
to the data, in order to use integer classes only. We also decided to propose a radically 
alternative description of intensity in terms of a direct probabilistic estimate through the 
Naïve Bayes classification. This approach has the benefit of treating intensity as a discrete 
variable throughout the whole definition procedure. It is also a machine learning oriented 
procedure that can be easily updated as more and new data become available.

In fact, the increase in the number of seismological stations and in the instrumenta-
tion quality and the occurrence of the latest destructive earthquakes have already pro-
vided new high quality data for a better definition of instrumental intensity for the Ital-
ian case. In particular, in this study, we re-elaborated the Faenza and Michelini (2010) 
dataset with the addition of 82 new data points related to 18 events which occurred 
in the time-span from 2002 to 2016 in Italy, using high quality accelerometric data. 
Such data points consist in GMP/MCS-intensity data couples obtained by coupling each 
expert-assessed intensity value with the nearest available waveform in a 3-km radius. 
The choice of using only high-quality macroseismic data mitigates the possible bias 
introduced with the use of the nearest value (cf. Lesueur et al. 2013).

(1)I = a + b logX,
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We tested a set of eight ground motion parameters. For each one we present both our 
improved version of the GMICE, as a comparison, and the Naïve Bayes classification, as a 
suggested best practice.

2  Input data

The accelerometric input database consists of two parts, according to the availability and 
ownership of the data.

The first part of the dataset is composed of 72 analysed events from 1972 to 2004 (Table 
SI1 in the Online Resource), with the lowest local magnitude of 3.4, corresponding to 193 
GMP-intensity pairs. These are part of the set of 87 events (266 GMP-intensity pairs) used 
by Faenza and Michelini (2010) to derive the GMICEs used to date for the Italian territory. 
Since part of these older recordings generally shows low quality, originally being analog 
traces with no information on the starting time, we conducted a thorough analysis in order 
to discard all the recordings with multiple events, or evident artificial signals arising from 
analog-to-digital conversion or with no clearly identifiable peaks in acceleration, velocity 
or displacement. Data for the remaining 72 events are taken from the ITACA 2.0 database 
(ITalian ACcelerometric Archive, version 2.0; Luzi et al. 2008; Pacor et al. 2011), and now 
all belong to the RAN network (Rete Accelerometrica Nazionale; Gorini et al. 2010; Costa 
et al. 2015), managed by the DPC (Italian National Civil Protection).

The second part of the database consists of a selection of 18 events (82 GMP-intensity 
couples) from 2002 to 2016, with 3.4 chosen as the lowest local magnitude, and which 
comes from the dataset used by Tiberi et al. (2018). These high-quality accelerometric data 
were collected by the CE3RN (Central Eastern European Earthquake and Research Net-
work; Costa et al. 2010; Bragato et al. 2014) and RAN stations.

The associated macroseismic intensity data-points are taken from the 2015 version of 
the Italian Macroseismic Database (DBMI15; Locati et al. 2016), except for data related 
to the two 2016 events (Table SI1) that comes from QUEST reports taken for the Ibleo 
(Azzaro et al. 2016) and Amatrice (Galli et al. 2016; Tertulliani and Azzaro 2016) earth-
quakes. All intensity values are expressed in MCS scale. In order to exclude cumulative 
damage, we only took into consideration the main shocks.

The scope of the work is to improve intensity forecasts also for medium–high damage 
levels ( I ≥ VI ), where they become of interest for civil defence purposes. For this reason, 
and to guarantee the homogeneity of the database, we only considered macroseismic inten-
sity measures issued from expert surveys. Furthermore, the inclusion of crowdsourced 
intensity data is not a trivial process and would go beyond the scope of this work.

The investigated set of ground motion parameters consists in peak ground acceleration 
(PGA), velocity (PGV), displacement (PGD), Arias intensity  (IA), Housner intensity  (IH), 
spectral acceleration at 0.3 s (PSA03), 1.0 s (PSA10) or 3.0 s (PSA30). The ground motion 
parameters for all events were calculated using a near-real-time procedure developed at 
the Department of Mathematics and Geosciences of the University of Trieste (Gallo et al. 
2014), in order to process the signals in an as homogeneous as possible way. Its main fea-
tures include a Butterworth filtering between 0.1 and 50  Hz, with range automatically 
selected based on the signal to noise ratio, and a trend removal used to compute PGV and 
PGD values. For older waveforms, when the pre-event noise trace was not available, we 
used fixed filter frequency values taken from the ITACA database.



2328 Bulletin of Earthquake Engineering (2021) 19:2325–2342

1 3

GMPs were taken from the maximum between the two horizontal component val-
ues. The parameters and the observed intensity values were associated using the mini-
mum distance criterion, with a maximum distance limit of 3 km. The complete database 
thus counts 90 events (Fig.  1) in the time-window from 1972 to 2016, corresponding 
to 275 associated GMP-intensity pairs (Table SI1 of the Online Resource). Intensity 
values range between II and X; the epicentral distances range between 1.6 and 150.7 km 
(Fig. 2) and are well distributed, especially for the central values of intensities (IV-VI).

It is common practice to treat intensity as a continuous value, for example by using 
half integer classes in assigning uncertain MCS intensity values, so this kind of data is 
widely present in dedicated macroseimic surveys and is also found in the Italian Mac-
roseismic Database. Following Kuehn and Scherbaum (2010), in order to be consistent 
with the class definitions given by the MCS scale, we included this uncertainty informa-
tion in the data by re-assigning the half integer values to the nearby integer classes, with 
the use of some weights, so that integer classes only will be used in the calculations. In 
particular, all data originally corresponding to half integer classes were assigned both to 

Fig. 1  Data set used for the definition of instrumental intensity: the red stars are the epicentral locations of 
the analysed events; the cyan triangles are the station sites for which the GMPs are estimated, and with an 
associated observed intensity value
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the above and below integer classes, with a weight w = 0.5 , whereas all data originally 
corresponding to integer classes were assigned a weight w = 1.

The resulting weighted data distribution in terms of intensity classes is shown in Fig. 3 
(cf. Fig. SI2 of the Online Resource; for practical reasons, from here on only PGV, PGA 

Fig. 2  Coverage of the intensity points in distance a and for parameters PGV b, PGA c and  IA d. The dis-
tance event-station is the epicentral distance between the epicentre and the station site in km. See Fig. SI1 
in the Online Resource for the remaining parameters

Fig. 3  Distribution of the GMP 
values binned into classes at 
integer intensity intervals
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and  IA are explicitly shown in the figures, while we provide results for all studied param-
eters in the Online Resource). For the peak parameters (PGA, PGV, PGD) there are 376 
points in the weighted database (of which, 174 with w = 1 ); for Arias intensity, PSA03 and 
PSA10, 220 points (100 with w = 1 ); for Housner intensity, 200 points (94 with w = 1 ), and 
for PSA30, 195 points (91 with w = 1 ). The difference in the number of available points for 
each parameter mainly comes from the fact that, in the case of partial or cut recordings, the 
extracted parameters were limited to peak amplitudes (PGA, PGV, PGD) and all integral 
quantities were discarded. The main reason behind this choice is the risk of underestimat-
ing the integral parameters due to missing part of the record. In the case of Housner inten-
sity and PSAs, moreover, we also discarded the cases for which the used high-pass filter 
was so high that it would filter out the frequency values used in the parameter calculation.

3  GMICEs

Linear regressions are the most common tool to define instrumental intensity. Even so, 
they treat intensity as a continuous numerical value; therefore, predicted outcomes are not 
directly meaningful and either have to be rounded to the nearest integer value, or to be 
interpreted as reflecting an uncertainty between two intensity classes. For this reason, we 
calculated an updated version of GMICEs for Italy in the most intensity-compliant way, 
to confront the results with those obtained via the more rigorous GNB methodology. We 
decided to keep the log-linear functional form itself (Eq. 1) in performing the regression, 
but we applied some pre- and post-processing in order to take into consideration the cave-
ats discussed so far. The first part of the pre-processing is described in detail in the Input 
Data section; as a form of post-processing, we rounded up the resulting forecast values to 
the nearest integer.

In order to consider both the dependent and the independent variables as affected by 
sampling variability, which is more correct given the nature of our data, we calculated the 
GMICEs by using the ODR methodology (Boggs et al. 1988; odr in scipy.org). ODR is 
a common technique for fitting data to models and we used it to extract the intercept and 
gradient parameters (a, b in Eq. 1). This algorithm minimizes the weighted orthogonal dis-
tances from the curve, taking into consideration both the vertical ( �y ) and horizontal ( �x ) 
uncertainties. We used ODR in its simplest form, assuming that the ratio of the standard 
deviation of the errors on dependent and independent data ( �y∕�x ) is known and fixed. This 
also makes it possible to directly invert the relation, so the regression coefficients could be 
likewise used to express the GMPs as a function of intensity.

3.1  Application

Both intensity and strong motion data are characterised by an intrinsically high spatial vari-
ability. As for intensity, this fact has been addressed by defining macroseismic classes as 
a collective measurement, subtracting to the meaningfulness of “punctual” measures. On 
the other side, instrumental data are intrinsically punctual and strongly connected to spe-
cific, local geological conditions. The polar character of intensities also adds to the dis-
equilibrium in the input dataset, mostly concentrated in the lower-central classes (IV-VI). 
A possible solution to address this variability is to perform a preliminary smoothing of 
data to filter out effects related to regional variability, random components, and geological 
conditions.
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We decided to follow the approach proposed by Faenza and Michelini (2010) and to 
bin the GMP-intensity couples into integer intensity classes as a form of smoothing of the 
instrumental data. The regressions are thus performed on the mean of the logarithmic GMP 
values in each bin. This choice also depends on the distribution of the GMP standardised 
values with zero mean and a unit standard deviation, represented in Fig. 4 (cf. Fig. SI3 of 
the Online Resource). It is clearly visible that after the application of the logarithm in base 
10 the data follow the normal Gaussian curves, allowing us to estimate the intrinsic vari-
ability of ground motion data for each class.

We calculated the mean values and the standard deviations of these distributions and 
used them in the GMICE inversions. In our case, in particular, we estimated the mean 
values �∗

k
 as the weighted arithmetic mean of the logarithm in base 10 of the parameter 

( logX ), for each intensity class k between II and X:

 where wjk is the weight assigned to the j-th point among the Nk data points with Ik = k . 
As for the associated errors, we must take into consideration that there is an evident lack 
of data for some classes with respect to others (e.g. classes IX and X versus class V; cf. 
Figure 3). For this reason, it was not possible to provide a robust estimate of the regular 
standard deviation for those classes, which would turn out very low or even null and would 
not reflect the actual distribution of the underlying data. The use of such standard deviation 
values would also excessively push the noise filtering resulting from the binning, leading to 
an artificial increase in the statistical parameters related to the goodness of the fit. Follow-
ing the approach proposed by Kuehn and Scherbaum (2010), we thus estimated a standard 
deviation �CSD common to all intensity classes for each GMP, as the square root of the 
pooled variance:

 where we divided by the total number of samples ( Ntot ) minus the number of differ-
ent classes in which data were binned, nine in our case. Values of �∗

k
 and �CSD for each 

parameter are reported in the Online Resource (cf. Table SI2 of the Online Resource). The 

(2)�∗
k
=
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j=1
wjk logXjk

∑Nk

j=1
wjk

,

(3)�CSD =
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k

∑Nk
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�
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�2
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Fig. 4  Probability distribution functions for PGV a, PGA b and  IA c. In each graph the standardised data 
with zero mean and unit standard deviation are represented, in grey for the original data and as black boxes 
for the logarithm in base 10 of those. As a reference, the Gaussian normal distribution is depicted (solid 
black line)
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corresponding intensity values I are also assigned an error �I to account for the disper-
sion of data. We tested different binning on the GMP data in order to check the corre-
sponding discrete distribution of intensity values and decided to adopt a conservative value 
of �I = 1.0 as a common standard deviation associated with all intensity classes and all 
parameters.

For each parameter, GMICEs were thus calculated on nine data couples ( �∗
k
, Ik = k ), 

with associated errors ( �CSD, �I ) and intensity classes ranging from II to X (cf. Fig. SI4 for a 
graphic representation). Regression parameters are reported in Table 1. To allow for a qualita-
tive comparison of our results, for each equation we calculated the R squared value ( R2 ), rep-
resenting the proportion of explained variance of I, and the standard deviation of the bins ( � ) 
and of the data ( �d ). The standard deviation of the bins is defined as:

where �k = Ik − Îk is the residual between predicted intensity value ( ̂Ik ) and true intensity 
value ( Ik ) corresponding to �∗

k
 . Due to the low sample population, we used a reduced form 

where the number of intensity points used in the regression (nine) is reduced by the num-
ber of fitted parameters (a and b in Eq. 1). Just like R2 , � depends on residuals calculated 
on the binned dataset 

(
�k
)
 . For this reason, it does not fully catch the actual underlying 

variability in I, and its values are way lower than the prior ones assigned to the input data 
( �I = 1.0 ). Following Gomez-Capera et al. (2020), we also calculated the standard devia-
tion of the data �d:

where In − În is the residual calculated for the n-th input point. Values of R2 , � and �d are 
reported in Table 1. Obtained �d values are close to 1 and provide a better measure of the 
variability in I for a given GMP value. Even so, since I is an ordinal variable, they cannot 
be used as-are and require some degree of interpretation. One possibility is to define a 
probability associated to each În , in the form of a Gaussian distribution centred on the fore-
casted intensity and with �d as standard deviation (cf. Sect. 5.1).

(4)� =

�∑10

k=2
�2
k

9 − 2
,

(5)
�d =

�����
∑Ntot

n=1

�
In − În

�2

Ntot − 1
,

Table 1  The resulting GMICEs 
using the ODR algorithm for 
each GMP studied with the 
associated  R2 and the standard 
deviation values of the bins (σ) 
and of the data (σd)

a b R2 σ σd #Records

GMP
PGD 7.01 ± 0.17 2.33 ± 0.15 0.97 0.49 1.24 376
PGV 4.96 ± 0.17 2.65 ± 0.16 0.97 0.47 1.19 376
PGA 1.32 ± 0.35 2.85 ± 0.19 0.97 0.51 1.36 376
IA 5.63 ± 0.23 1.46 ± 0.13 0.95 0.67 1.22 220
IH 3.58 ± 0.30 2.46 ± 0.21 0.95 0.66 1.20 200
PSA03 0.65 ± 0.56 2.69 ± 0.25 0.94 0.73 1.32 220
PSA10 2.73 ± 0.35 2.41 ± 0.20 0.95 0.64 1.28 220
PSA30 4.78 ± 0.27 2.31 ± 0.22 0.94 0.74 1.31 195
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4  Gaussian Naïve Bayes Classifiers

Linear regressions treat intensity as a continuous numerical value instead of an ordinal one; 
therefore, predicted outcomes are not directly meaningful and either have to be rounded to 
the nearest integer value, or be interpreted as reflecting an uncertainty between two inten-
sity classes. To correctly handle ordinal data throughout the whole inversion process it 
is possible to apply a different method, the Gaussian Naive Bayes classification (GNB), 
which estimates a discrete conditional probability distribution Pr (I|X) linking the (ordinal) 
intensity I to any GMP X (Pedregosa et al. 2011). The goal is to obtain an alternative way 
to express forecasts in the form of an ordinal instrumental intensity value, with a known 
associated probability.

GNB is part of a set of supervised learning algorithms based on applying Bayes’ theo-
rem in the Naïve form, that is, with the assumption of conditional independence between 
every pair of features given the value of the class variable (Zhang 2004). In our particular 
case, having considered only one feature at a time, it coincides with the full Bayes theorem. 
We hereby give a synthetic overview of the procedure; for more details on the procedure 
itself and on the underlying statistics, we refer the reader to Lancieri et al. (2015) and refer-
ences therein.

For any variable X taken among the eight selected GMPs, and the categorical variable 
I which is dependent on variable X, a Naïve Bayes classifier predicts the conditional prob-
ability distribution of I given logX by using Bayes’ rule:

According to Bayes’ rule, Pr(logX|I) is the conditional probability of observing logX 
on class I, and Pr (I) and Pr (logX) are the a priori probabilities for I and logX , respec-
tively. In this specific context, the probability of having intensity class k when the variable 
X takes the value xi can be expressed as:

where summation over j covers the whole event space, i.e. all possible intensity classes. We 
should stress how the name Bayesian classifiers comes from the use of the Bayes’ theorem, 
but does not automatically imply the use of Bayesian inference. In principle, it would be 
possible to define prior distributions and estimate the parameters using Bayesian inference; 
in fact, following Kuehn and Scherbaum (2010), all parameters were empirically estimated 
by maximum likelihood. Pr(I = k) was learnt from the data as the relative frequency of the 
classes observed on the dataset:

where Nk is the number of data in class I = k and Ntot is the total number of data. As for the 
conditional probability Pr(logX|I) , we used the normal distribution already estimated from 
the dataset for each intensity class k, with a mean value of �∗

k
 and common standard devia-

tion �CSD (cf. Sect. 2):

(6)Pr (I| logX) =
Pr (logX|I)Pr (I)

Pr (logX)
.

(7)Pr
�
I = k� logX = log xi

�
=

Pr
�
logX = log xi�I = k

�
Pr(I = k)

∑
j Pr

�
logX = log xi�I = j

�
Pr(I = j)

,

(8)Pr(I = k) =
Nk

Ntot

,
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By using GNB, we fit the probabilities on the whole dataset to obtain a discrete condi-
tional probability distribution on all intensity classes for each input GMP value. We then 
chose to select the class with the highest associated probability value as the best estimate 
of I.

4.1  Application

We applied the Python algorithm pomegranate (Schreiber 2018) to perform GNB classifi-
cation on the whole dataset. As opposed to the regression procedure, we performed the cal-
culations without binning the data and only used information from the binned database in 
the form of the parameters �∗

k
 and �CSD to be inputted in Eq. 9. Figure 5 shows an example 

of the corresponding conditional probability distribution Pr(logX = log xi|I = k) for each 
intensity class for the PGA parameter.

The resulting intensity predictions are plotted in Fig.  6 (cf. Fig. SI5 of the Online 
Resource), colour-coded from lower (white) to higher (black) associated probabilities. 
They are obtained by applying the model to a linear space covering all values of the input 
parameters; for each value on the x-axis, the corresponding colour-coded probability val-
ues along the vertical (intensity) axis sum up to one. For each parameter, the resulting 
ODR equation is reported for comparison.

5  Appraisal of the results and discussion

5.1  Performance on unseen data

The best way to assess the performance and reliability of the resulting intensity predictions, 
both from ODR and GNB, would be to test them on an ‘unseen’ dataset, different from the 
one used to extract them. In our case, the available database itself does not contain enough 
data to properly build both a training set and a testing set, so we resorted to Leave-One-Out 
cross-validation (LOOCV) as a proxy to assess the equations performance on unseen data.

LOOCV works by repeatedly dividing the whole dataset into two subset: the one used 
to train the equations, containing N-1 points, plus a single point which is left out to be used 

(9)Pr(logX = log xi|I = k) =
1

√
2��2

CSD

e
−
(log xi−�∗k )

2

2�2
CSD .

Fig. 5  Example of the conditional probability distribution Pr(logX = log x
i
|I = k) for the PGA parameter, 

for each intensity class, used in the GNB Classification fitting
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for validation. We constrained our LOO system so that only points associated to integer 
intensity values (i.e. weight equal to one) would be left out as a test case. We dropped each 
of these points in turn, performed the regressions on the remaining data, and used them to 
estimate intensity on the left-out data point ( ̂I ). The classification ability with respect to the 
actual values ( I ) was then scored using the Cross-Entropy loss function L (C.E.; also called 
log-loss):

where �o,c is 1 if the intensity value of observation o belongs to class c and 0 otherwise, and 
Po,c is the predicted probability that observation o has intensity class c.

We chose to use the Cross-Entropy loss as it takes into consideration the probability 
associated to each intensity class, which should reflect the intrinsic variability in intensity 
values for a given ground-motion input. This allows to compare models not only on their 
average classification ability, but also on how well they capture the uncertainty. C.E. loss 
score increases as the predicted probability deviates from the actual label; it would be 0 for 

(10)L[P] = −
1

N

∑

c

�o,c log
(
Po,c

)
,

Fig. 6  Probability distributions obtained from GNB Classifiers (grey scale) for PGA a, PGV b and  IA c. 
The ODR equation with associated ±2� error is reported for comparison (red lines), together with the mean 
GMP values used to derive the equations (white diamonds) and the underlying dataset (black circles). For 
each value on the x-axis, the corresponding probability values along the vertical axis sum up to one
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a perfect model. Notice that, in the case of ODR forecasts, the predicted probability was 
estimated by integrating the normal density centred on Î over the interval [I − 0.5 , I + 0.5].

The resulting C.E. loss scores are reported in Table 2. GNB classifier models score bet-
ter than ODR regressions for all ground motion parameters, indicating an overall better 
performance of the GNB models. Note that among other parameters the equations regard-
ing PGV (in agreement with Kuehn and Scherbaum 2010), PSA03,  IA and  IH provide the 
best performances.

5.2  Spectral parameters

We should stress that, even if both methodologies have a way to address the weakness aris-
ing from less populated classes, models obtained from spectral parameters are still resent-
ing the lack of data in high intensity classes (I > VII). As explained in Sect. 2, our database 
included many older, triggered waveforms, for which only the peak amplitude parameters 
could be extracted without risk of underestimation. This led us to using a less populated 
database for the case of spectral parameters. We can see from the distribution of such data 
(e.g. Fig. 6c) that it particularly lacks in high intensity classes, which could lead to incon-
sistencies in the related forecasts. This holds true for both methodologies, and is simply 
more evident in the case of GNB where it translates into not well resolved probability val-
ues. For this reason, we advise that only the resulting models for PGA and PGV should be 
used for forecasts.

5.3  Sensitivity study

We tested both GNB and ODR models on the training dataset (described in Sect.  2) by 
comparing the predicted classes with the observed ones, to check in which data ranges 
each performed better. Results are shown in form of weighted confusion matrices in Fig. 7: 
the elements distributed along the highlighted diagonal are the number of data correctly 
categorized, while the off-diagonal elements are the misclassified data. GNB models pro-
vide more realistic outcomes for all classes with respect to ODR models, which also tend 
to a class overestimation (more elements on the right side of the diagonal). In both cases, 
PGV-based classification is more robust than the PGA-based one.

5.4  Application of GNB forecasts

In order to be directly applicable into shaking intensity maps, GNB classification models 
have to be converted to GMICE-like objects. We assigned a single instrumental intensity 
value to each input ground motion parameter value in the database range. The forecast is 

Table 2  The resulting Cross-
Entropy (C.E.) loss scores 
for ODR regressions and for 
GNB Classifiers. Lower values 
correspond to better classification

GMP

PGD PGV PGA IA IH PSA03 PSA10 PSA30

C.E. for ODR
1.70 1.65 1.82 1.67 1.71 1.80 1.75 1.77
C.E. for GNB
1.49 1.42 1.53 1.39 1.38 1.42 1.44 1.50
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chosen as the class with the highest associated probability (corresponding to the darkest 
colour in Fig. 6). The result is a linear trend that is comparable to the regression output 
and that can be used as a guide in defining parameter ranges for each instrumental intensity 
class (cf. Table 3). Results for the PGA and PGV cases are reported in Fig. 8.

5.5  Comparison of GMICEs for Italy

We compared the empirical GMICEs obtained in this study (which use integer classes 
only and are somehow more compliant to the MCS intensity scale) with the relationships 
reported by Gomez-Capera et al. (2020), Caprio et al. (2015), Faenza and Michelini (2010), 
and Faccioli and Cauzzi (2006). A summary of the characterizing parameters is reported in 
Tables 4 and 5, for the PGV and PGA cases respectively.

The relations are consistent to each other inside the common standard deviation values 
estimated with our dataset (Fig. 9). The main difference is in the reliability and range of 

Fig. 7  Method classification on the training dataset in the form of weighted confusion matrices: on the 
y-axis the true (observed) class label and on the x-axis the predicted one are reported. The elements distrib-
uted along the highlighted diagonal are the number of data correctly categorized. Results refer to the ODR 
a and GNB b methods based on the PGA parameter (upper panels) and for the ODR c and GNB d methods 
based on the PGV parameter (lower panels)
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Table 3  Table of PGA and PGV value intervals for calculation of intensity I 

PGAmin (cm/s2) PGAmax (cm/s2) PGVmin (cm/s) PGVmax (cm/s)

IMCS

II 0.32 1.91 0.01 0.10
III 1.91 6.31 0.10 0.28
IV 6.31 17.78 0.28 0.74
V 17.78 52.48 0.74 2.57
VI 52.48 85.11 2.57 5.75
VII 85.11 141.25 5.75 9.77
VIII 141.25 269.15 9.77 21.38
IX 269.15 575.44 21.38 39.81
X 575.44 1148.15 39.81 70.79

Fig. 8  Intensity classes with highest associated GNB probability (grey scale) for each PGV a and PGA b 
value in the database range. The ODR equation with associated ±2� error is reported for comparison (red 
lines), together with the mean GMP values used to derive the equations (white diamonds)

Table 4  Comparison with PGV–Intensity relationships proposed by previous studies

Author Relationship R2 σ I range

This study (ODR) IMCS = (4.96 ± 0.17) + (2.65 ± 0.16)*log10 PGV 0.97 0.47 II to X
Faccioli and Cauzzi (2006) IMCS = (5.09 ± 0.22) + (1.80 ± 0.17)*log10 PGV 0.61 0.71 V to VIII–IX
Faenza and Michelini (2010) IMCS = (5.11 ± 0.07) + (2.35 ± 0.09)*log10 PGV – 0.26 II to VIII
Caprio et al. (2015) IMCS = (4.424 + 1.589*log10 PGV) if log10 PGV 

≤ 0.3
IMCS = (4.018 + 2.671*log10 PGV) if log10 

PGV > 0.3

– – II to VIII

Gomez-Capera et al. (2020) IMCS = 4.514*exp(0.502*  log10 PGV) – 0.36 II to X–XI
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validity of these laws, those estimated in this study having higher values of R2 and a wider 
range of validity.

In fact, the resulting equations present high R2 values for all the studied GMPs (over 
0.90), rendering it impossible to indicate which of the parameters provides a better esti-
mate of intensity. The lowest standard deviation of data is associated to the regression line 
for PGV ( �d = 1.19). However, it should be kept in mind that the GNB models should be 
preferred to the ODR ones in any case, as results from cross validation and sensitivity test 
confirm.

6  Conclusions

The aim of this study was to provide an updated and more rigorous definition of instru-
mental macroseismic intensity for Italy. We used integer MCS intensity classes in the range 
II-X, together with high quality accelerometric data. Data was pre-processed in order to 
use integer classes only. For each investigated ground motion parameter (PGD, PGV, PGA, 
 IA,  IH, PSA03, PSA10 and PSA30) we provided both the GMICE formulation, which is 

Table 5  Comparison with PGA–Intensity relationships proposed by previous studies

Author Relationship R2 σ I range

This study (ODR) IMCS = (1.32 ± 0.35) + (2.85 ± 0.19)*log10 PGA 0.97 0.51 II to X
Faccioli and Cauzzi (2006) IMCS = (2.62 ± 0.10) + (1.96 ± 0.29)*log10 PGA 0.38 0.89 V to VIII–IX
Faenza and Michelini (2010) IMCS = (1.68 ± 0.22) + (2.58 ± 0.14)*log10 PGA – 0.35 II to VIII
Caprio et al. (2015) IMCS = (2.270 + 1.647*log10 PGA) if 

log10 PGA< 1.6
IMCS = (−1.361 + 3.822*log10 PGA) if log10 

PGA > 1.6

– – II to VIII

Gomez-Capera et al. (2020) IMCS = 2.276*exp(0.546*  log10 PGA) – 0.31 II to X–XI

Fig. 9  a Comparison of the Intensity—PGV relationship obtained in this study with the ODR algorithm 
and four previous studies: Faenza and Michelini (2010), FM10; Faccioli and Cauzzi (2006), FC06; Caprio 
et al. (2015), C15; Gomez-Capera et al. (2020), GC20; b Same as (a), for the Intensity—PGA relationship. 
The dotted red lines are the ± 2σ error associated to the ODR GMICEs
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more used but less appropriate, and the GNB formulation, which correctly treats intensity 
as an ordinal quantity.

Out of the eight tested parameters, models based on spectral parameters proved to be too 
unstable at higher intensity levels; PGA- and PGV-based equations should be used instead.

Overall, the GNB approach should be preferred as more rigorous in treating inten-
sity as a discrete variable throughout its whole procedure. It goes beyond providing a 
single-valued intensity estimate, as it calculates a full discrete probability distribution 
for the MCS intensity classes. As a result, GNB-based models show better performance 
on unseen data and more capability in capturing the uncertainty than GMICEs. Overall, 
GNB models perform better than ODR ones on the whole considered intensity range, in 
terms of classification scores.

The possibility to increase the estimate accuracy with respect to the ‘standard’ 
GMICEs might be extremely useful in some applications, such as shaking intensity 
maps. In fact, GMICEs are the default choice in generating ShakeMaps with the USGS-
ShakeMap software (Wald et  al. 1999). We propose a conversion of GNB models to 
GMICE-like objects that can be substituted in the ShakeMap procedure.

The GNB-based methodology is a machine learning oriented procedure that can be 
easily updated as more data is collected. In the era of big data, it can be included in the 
effort to efficiently analyse incoming data in near-real time. Future work includes test-
ing and calibration of this procedure for both the south-eastern Alps region, following 
Moratto et al. (2009), and for the Italian territory, as soon as new, independent intensity 
data on new events becomes available. In particular, it is fundamental to point out that 
in order to explain the damage in the near fault areas, a more focussed study is needed 
to expand the research to a combination of ground motion parameters.
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