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A B S T R A C T

Marine ecosystems exist in a noisy and uncertain environment, not governed by deterministic laws. The 
development of ecological communities is significantly influenced by variability, and the interaction between 
nonlinearity and stochastic processes can lead to phenomena that deterministic models cannot explain. Plankton, 
forming the base of the marine food web, are highly affected by stochastic fluctuations due to their short 
reproductive timescales. Investigating the effects of noise on plankton growth is essential for accurately 
describing and predicting marine health. We present a realistic biogeochemical model where multiplicative 
white noise represents environmental stochasticity affecting plankton. The model suggests ergodic properties in 
the presence of stochastic fluctuations, with temporal and ensemble distributions being coherent. Analytical and 
numerical analyses reveal that, given sufficiently low noise intensity, dynamics near equilibrium resemble an 
Ornstein-Uhlenbeck additive process. With higher noise intensities, resonance occurs, particularly when 
endogenous dynamics are periodic. The results indicate that low noise intensity can positively influence plankton 
persistence with an higher number of species coexisting, while higher noise intensity can establish a new 
equilibrium in the system.

1. Introduction

Plankton are crucial to ocean biogeochemical cycles and ecosystems, 
significantly influencing the carbon cycle (Buesseler et al., 2007; Fal
kowski et al., 1998), nutrient dynamics (Falkowski et al., 2000), climate 
regulation (Falkowski, 2012), and food production (Cermeño et al., 
2016; Ryther, 1969). Accurate prediction of plankton dynamics is 
essential for assessing the health of aquatic ecosystems. Anthropogenic 
climate changes, such as rising global temperatures and ocean acidifi
cation, are shifting phytoplankton communities, altering food webs, and 
impacting marine ecosystem productivity (Behrenfeld et al., 2006; 
Doney et al., 2009). Therefore, the need to anticipate the future state of 
the ocean. Advanced tools for predicting plankton dynamics are 
biogeochemical models, which numerically integrate differential equa
tions to simulate interactions between plankton species, microbial loops, 
and nutrient cycles (Fennel et al., 2022). These models provide 
comprehensive insights into the state, variability, and changes in the 
global ocean, informing scientists, policymakers, and the public, as 
demonstrated by initiatives like the European Copernicus Marine 

Service (CMS) and the Coupled Model Intercomparison Project Phase 6 
(CMIP6) (Eyring et al., 2016).

Recent advancements in ocean biogeochemical models include 
increased biodiversity representation of plankton species (Henson et al., 
2021; Shimoda et al., 2016; Shimoda and Arhonditsis, 2016), simulation 
of plankton trait evolution through adaptive dynamics (Le Gland et al., 
2021), the integration of water quality modules to model the pollution 
loading inputs of rivers (Zhao et al., 2020), studies of zooplankton 
mortality as first step to coupling fish and biogeochemical models (Hill 
Cruz et al., 2021). While modern ocean biogeochemical models describe 
a complex range of processes, they often lack sufficient empirical 
knowledge of the systems they study. Additionally, these models 
sometimes simulate more processes than can be observed in field 
studies, leading to uncertainties in model parameterization and, conse
quently, in the interpretation of model results (Cai et al., 2023). To 
address these challenges, several advanced techniques have been 
employed. Sensitivity analysis of model parameters has been applied 
using advanced statistical and machine learning techniques (Cai et al., 
2023). Data assimilation tools have been integrated to optimally 

* Corresponding author at: National Institute of Oceanography and Applied Geophysics, OGS, via Beirut 2, Trieste I-34151, Italy.
E-mail address: gocchipinti@ogs.it (G. Occhipinti). 

Contents lists available at ScienceDirect

Ecological Informatics

journal homepage: www.elsevier.com/locate/ecolinf

https://doi.org/10.1016/j.ecoinf.2024.102778
Received 16 April 2024; Received in revised form 14 August 2024; Accepted 17 August 2024  

Ecological Informatics 83 (2024) 102778 

Available online 22 August 2024 
1574-9541/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by- 
nc-nd/4.0/ ). 

mailto:gocchipinti@ogs.it
www.sciencedirect.com/science/journal/15749541
https://www.elsevier.com/locate/ecolinf
https://doi.org/10.1016/j.ecoinf.2024.102778
https://doi.org/10.1016/j.ecoinf.2024.102778
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


combine observations with model predictions (Bruggeman et al., 2023; 
Spada et al., 2023). Automated calibration methods that combine 
parameter inference with sensitivity analysis through machine learning 
approaches have also been developed (Álvarez et al., 2023; Piccioni 
et al., 2022). Furthermore, deep learning models that integrate both 
observational and model data have been created to more accurately 
reproduce biogeochemical variables (Pietropolli et al., 2022).

While significant efforts have been made to address uncertainties in 
model parameters (Álvarez et al., 2023; Bruggeman et al., 2023; Cai 
et al., 2023; Piccioni et al., 2022; Spada et al., 2023), another critical 
source of uncertainty requires further investigation: environmental 
stochasticity. Ocean biogeochemical models operate within inherently 
random and uncertain marine environments, as most natural phenom
ena do not follow strictly deterministic laws, but rather oscillate 
randomly around an average behaviour (Beddington and May, 1977). 
Even the most precise meteorological data and fine-gridded circulation 
models cannot fully capture marine environmental variability, leading 
to inherent uncertainties. This phenomenon, known as environmental 
stochasticity, is defined as random changes in environmental variables 
among times or locations that affect the survival and reproduction of 
populations (Steiner et al., 2021; Valenti et al., 2016). Other stochastic 
phenomena in ecology include immigration stochasticity and de
mographic stochasticity (Arnoldi et al., 2019; Steiner et al., 2021). The 
latter describes the random fluctuations in population size that occur 
because the birth and death of each individual is a discrete and proba
bilistic event (Lindo et al., 2023; Melbourne, 2012) (this is particularly 
relevant for populations with a small number of individua (Gurney and 
Nisbet, 1998)). Demographic stochasticity proved to increase the real
ism of a population ecological model (Kaitala et al., 2006). Immigration 
stochasticity causes a change in the growth rate due to random immi
gration (or emigration) of individua of a population (Arnoldi et al., 
2019). It is crucial to distinguish between selective and non-selective 
causes of variation (Steiner et al., 2021); a study of selective stochastic 
processes can be found, for example, in (Dieckmann and Law, 1996), 
where a derivation of evolutionary dynamics is presented. We will 
restrict ourselves to the non-selective ones and in particular to envi
ronmental stochasticity. Plankton growth is determined by environ
mental conditions and in particular by solar irradiance (Álvarez et al., 
2022), temperature (Rhee and Gotham, 1981) and nutrients (Rhee and 
Gotham, 1981). Therefore, incorporating environmental variability into 
biogeochemical models can increase the accuracy of ocean state pre
dictions. When a species or a population is subjected to environmental 
stochasticity its individuals respond synchronously to the stochastic 
perturbation, which effect will be thus proportional to the abundance of 
the perturbed population. This phenomenon can be modeled with 
multiplicative white noise (Arnoldi et al., 2019; Liao, 2023; Liu and 
Wang, 2011).

Stochasticity in ecological models often arises from simplifying or 
summarizing numerous processes across different scales (Boettiger, 
2018). Models based on stochastic differential equations address un
certainties from unmodeled processes, while sensitivity analysis and 
model calibration tackle uncertainties from parameterization of 
modeled processes. These approaches can intersect, as parameterization 
depends on which processes are included or excluded in the model. 
While stochasticity has yet to be widely implemented in operational 
biogeochemical models, it has received considerable attention in ecol
ogy. This stems for the fact that stochasticity or noise, beside repre
senting the uncertainty of under-described processes, is often 
responsible for the emergence of ordered phenomena from disordered 
dynamics (Boettiger, 2018). Such subtle mechanisms are proving 
fundamental in determining the dynamical properties of systems at all 
length scales, from microscopic physical systems such as glasses (Biscari 
and Parisi, 1995; Charbonneau et al., 2014) to macroscopic ecological 
systems (Benzi et al., 1982). Noise can produce intriguing and coun
terintuitive dynamical effects in living systems, such as stochastic 
resonance (Benzi et al., 1982; Gammaitoni et al., 1998; Mantegna et al., 

2000; Mantegna and Spagnolo, 1994) and noise-enhanced stability 
(Mantegna and Spagnolo, 1996; Spagnolo et al., 2004a; Yu and Ma, 
2023; Zeng et al., 2015), which do not otherwise occur in deterministic 
dynamics. The key element of these unpredictable effects is the simul
taneous presence of nonlinear interactions and random fluctuations 
characteristic of natural complex systems. Indeed, marine ecosystems 
are characterized by nonlinear interactions (Valenti et al., 2012) and 
non-stationary dynamics (Occhipinti et al., 2023; Perhar and Arhon
ditsis, 2012) as well as deterministic forcings (daily and seasonal cycles) 
(Di Biagio et al., 2019; Lazzari et al., 2012; Terzić et al., 2019) and 
random fluctuations of physical variables (Chichigina et al., 2005; 
Spagnolo et al., 2004b; Valenti et al., 2004). Considering the above 
points of view, the effects of stochastic environmental fluctuations have 
a great impact on the parameters included in an ecosystem model, such 
as growth rate, mortality rate and more (May, 2001).

Randomness in the marine environment was initially introduced in 
plankton ecological models as noise over the temperature (Benincà 
et al., 2011; Freund et al., 2006). Then, recently, the effect of noise over 
temperature was studied in a ocean biogeochemical model of realistic 
complexity (Lazzari et al., 2021), the Biogechemical Flux Model (BFM) 
(Vichi et al., 2020), used in the Copernicus Marine Service. In the zero- 
dimensional box model configuration of the BFM the temperature is 
described as a stochastic process driven by an additive self-correlated 
Gaussian noise, (Lazzari et al., 2021) found a correlation between 
noise intensity and the coexistence of the modeled plankton species. A 
similar study was performed introducing stochasticity in solar irradiance 
as multiplicative Ornstein-Uhlenbeck process (Grimaudo et al., 2022). 
Plankton experienced a non-monotonic response to the intensity and the 
correlation time of the noise, further a transition to an out-of- 
equilibrium state occurred (Grimaudo et al., 2022).

In this context, we used the same deterministic configuration of the 
biogeochemical model of (Grimaudo et al., 2022; Lazzari et al., 2021) 
and studied the response of plankton to environmental stochasticity. Up 
to our knowledge, it is the first time that environmental stochasticity is 
introduced as multiplicative white noise in a biogeochemical model of 
realistic complexity, in particular we provide an analysis of small 
perturbation regime and consider the model behaviour when pertur
bation increases leading to non-linear fluctuations. Further, it is the first 
time that stochastic resonance is observed in a high complexity 
biogeochemical model, highlighting the key role of noise in shaping 
plankton dynamics. Similar studies were conducted in simpler trophic 
networks, such as in the phytoplankton-zooplankton model (Liao, 2023) 
and in the nutrient-phytoplankton model (Valenti et al., 2016), or with 
noise affecting a single environmental variable (Grimaudo et al., 2022; 
Lazzari et al., 2021) instead of generally affecting the population growth 
(Arnoldi et al., 2019). In this work, we investigate the effects of envi
ronmental stochasticity in a planktonic community with three main 
objectives. First, given that endogenous oscillations are found in 
plankton populations (Occhipinti et al., 2023; Perhar and Arhonditsis, 
2012), we want to evaluate the possibility of amplification of non- 
stationary dynamics by means of stochastic resonance. Second, we 
evaluate whether stochasticity is able to lead the system to new equi
libria or whether it only generates fluctuations around the deterministic 
solution. Third, we aim to investigate the influence of environmental 
stochasticity, on plankton persistence and coexistence, as suggested by 
(Mubayi et al., 2019; Sarker et al., 2020; Yu et al., 2019a; Yu et al., 
2019b). A further examination of the mathematical properties of the 
stochastic differential equations that define the model can be found in 
Sect.3.

2. Methods

2.1. The deterministic model

The deterministic model used is the Biogeochemical Flux Model 
(BFM), formulated in terms of deterministic partial differential 
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equations that account for the main biogeochemical processes in pelagic 
marine ecosystems (Sarmiento, 2006) (depicted in Fig. 1a). The BFM 
(Biogeochemical Flux Model) is a model of reasonable complexity, 
consisting of 54 state variables. It is employed for various purposes 
including operational studies (Salon et al., 2019), process research 
(Lazzari et al., 2012; Lazzari et al., 2016), and climate studies (Reale 
et al., 2022; Solidoro et al., 2022). The model is versatile, being used at 
both the basin scale (Lazzari et al., 2012) and the local scale (Lamon 
et al., 2014). Specifically, the BFM is utilized to simulate the biogeo
chemical aspects, referred to as “Med-BIO,” within the framework of 
“The Mediterranean Sea Monitoring and Forecasting Centre (Med- 
MFC)”. The BFM has undergone rigorous validation against various 
observational datasets, including satellite data, literature, climatology 
records, and BGC-Argo floats. This validation process has confirmed the 
model's consistency in simulating key features of Mediterranean 
biogeochemistry and its accuracy in routinely reproducing observations 
at specific times and locations (Salon et al., 2019). Therefore, the BFM is 
considered a state-of-the-art model for marine biogeochemistry.

Living species are divided into functional types, i.e. groups that have 
a common ecological function. The deterministic configuration of the 
BFM was developed to accurately reproduce the dynamics of the 
following plankton functional types (PFTs): primary producers (phyto
plankton), predators (zooplankton), and decomposers (bacteria). Within 
these PFTs, more specific subgroups are identified to better describe the 
planktonic food web, in total Nbio = 9 plankton subgroups are described. 
Each functional type is characterized by the cell size (ESD) as morpho
logical trait, and by several parameters describing photosynthesis and 
nutrient uptake as physiological traits. Heterotrophic anaerobic and 
aerobic bacteria are grouped into a single type called bacteria (B1), 
characterized by the function of converting organic material into inor
ganic macro-components such as nitrate (PO4) and phosphate (NO3). 
Phytoplankton, which includes cyanobacteria and photosynthetic pro
tists, is divided into 4 plankton functional types (PFTs): (i) diatoms (P1), 
unicellular eukaryotes enclosed by a silica frustule, ESD = 20 − 200μm; 
(ii) autotrophic nanoflagellates (P2), motile unicellular eukaryotes 
comprising smaller dinoflagellates and other autotrophic micro
planktonic flagellates, ESD = 2 − 20μm; iii) picophytoplankton (P3), 
prokaryotic organisms generally referred to as non-diazotrophic auto
trophic bacteria such as Prochlorococcus and Synechococcus, but also as 
mixed eukaryotic species, ESD = 0.2 − 2μm; iv) dinoflagellates (P4), 
large, slow-growing phytoplankton representing a broad group of 
phytoplankton species that includes larger species belonging to the 
previous groups (e.g. dinoflagellates), but also those that develop a form 
of (chemical) defence against predator attacks during a certain period of 

the year. This group generally has low growth rates and small food 
matrix values with respect to the micro- and mesozooplankton groups, 
ESD > 100μm. Zooplankton are subdived in 4 PFTs: i) carnivorous 
mesozooplankton (Z3), any carnivorous zooplankton between 200μm 
and 4cm long as an adult, also embracing many species that are tradi
tionally considered part of the microzooplankton when in juveniles 
stages; ii) omnivorous mesozooplankton (Z4), as the previous PFT but 
comprising omnivourous species, mainly calanoid copepods; iii) 
microzooplankton (Z5), representing the microzooplankton with ESD in 
the range 20 − 200μm, excluding flagellates and naupliar/larval stages 
of multicellular zooplankton or meroplanktonic larvae of benthi
corganisms; iv) heterotrophic nanoflagellates (Z6) protozoa with di
mensions between 2 and 20 μm, mainly grazing upon picophytoplankton 
and bacteria. The trophic web of grazing and predation relationships is 
shown in Fig. 1b. In the following text, we refer to the subgroups as 
biological species. Each functional group of plankton is defined by a 
vector of components, each of which refers to an element or constituent 
relevant to physiological functions. For phytoplankton, these elements 
include carbon, nitrogen, phosphorus, silicon, and chlorophyll mole
cules containing photosynthetic pigments. In this work, we consider a 
spatially homogeneous system, described by a zero-dimensional (0-D) 
configuration of the BFM. This model is formulated as a system of Ntot =

54 ordinary nonlinear differential equations and represented by a 54- 
dimensional state vector x. The time derivatives of a generic phyto
plankton carbon component (e.g., carbon in diatom, xi = P1c) and the 
corresponding nutrient intracellular concentration (e.g., nitrogen in 
diatom, xj = P1n) are given by: 

∂xi

∂t
= f gpp

c (x) − f rsp
c (x) − fexc

c (x) − fprd
c (x), (1) 

∂xj

∂t
= fupt

n (x) − f rel
n (x) − f prd

n (x). (2) 

The f terms are functions representing the biogeochemical fluxes 
associated with the main physiological processes. Gross primary pro
duction (gpp) is expressed in mgCm− 3 day− 1 and represents photosyn
thesis or the flux of inorganic CO2 to organic compounds. Respiration 
(rsp) is the release of carbon as CO2. Excretion (exc) is related to the 
metabolic activities of the cells and the need to balance the internal 
carbon against other elements. prd is predation or grazing by 
zooplankton. The f terms can be factorized in several regulating 
functions: 

fgpp(x) = rmaxfT(T)fI(I)fnut(x)xi, (3) 

Fig. 1. (a) Scheme of the biogeochemical interactions between organisms within the BFM model; (b) Scheme of trophic web of BFM model. An arrow directed from 
one box to another indicates a predation flux. Solid arrows denote a higher preference for a specific prey, while dashed ones indicate a lower preference. A looping 
arrow on the box denotes cannibalism.
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where rmax is the species-specific maximum growth rate, fI(I) is a solar 
irradiance I harvest factor, fT(T) represents the dependence of metabolic 
rates on temperature T, and fnut(x) defines the limitations to growth 
caused by nutrient-depleted conditions. The equations for zooplankton 
are analogous to those for phytoplankton, with the photosynthetic 
growth term replaced by the grazing term (fgra). For instance, in the case 
of carnivorous mesozooplankton carbon component xi = Z3c, we have: 

∂xi

∂t
= fgra(x) − frsp(x) − frel(x) − fprd(x). (4) 

The total amount of food available to zooplankton is determined by 
summing the possible prey items (see Fig. 1b) weighted by the predator's 
food preferences. The grazing term follows a type 2 functional response 
(Gentleman et al., 2003): 

fgra(x) = fT(T)rmax
Fc

Fc + hz
xi, (5) 

Fc =
∑

j∈preyC
δjejxj, (6) 

ej =
xj

xj + μZ
, (7) 

where hz is a parameter inversely related to the mobility and searching 
volume of the organism, xj is the carbon content in the prey, and δj is the 
preference for a specific prey.

In addition to describing the food web, the BFM also considers the 
major biogeochemical processes that characterize the dynamics of a 
pelagic marine ecosystem (e.g., cycles of nitrogen, phosphorus, silica, 
carbon, and oxygen in water due to plankton activity). In this work, solar 
irradiance I and temperature T are considered constant, in order to 
neglect externally induced fluctuations. Thus, if the solution of the 
model is non-stationary, it is due to inherent properties of the system 
under study. The endogenous dynamics in the deterministic BFM has 
been studied in a previous work, (Occhipinti et al., 2023), performing a 
sensitivity analysis in the domain of realistic parameter values. The 
analysis of the model behaviour indicated that the model is stationary in 
the majority of the parameter space configurations. Chaotic solutions 
correspond approximately to 1% of the considered parameter space 
hyper volume. Periodic solutions are characterized by small amplitude 
fluctuations (CV ≈ 10− 3) and correspond approximately to 30% of the 
parameter space. The effects of variability of I and T on the same system 
has been investigated in dedicated studies (Grimaudo et al., 2022; 
Lazzari et al., 2021). For more details and the complete list of equations 
and processes included in the BFM, (Lazzari et al., 2012) and the BFM 
code manual (Vichi et al., 2020) are recommended.

2.2. The stochastic model

In the stochastic BFM we added multiplicative white noise to the 
biomass (carbon concentration) growth rate of each planktonic species, 
a general differential equation for a model state variable can be written 
as follows 
{

dxi = BFMxi (xt)dt + DxidW if i = 1, ...,Nbio
dxi = BFMxi (xt)dt if i = Nbio + 1, ...,Ntot

, (8) 

where BFMxi denotes the deterministic dynamics (or deterministic 
skeleton) of the variable xi, which for example corresponds to Eq.(1) for 
the carbon component of diatoms. x is the vector of the Ntot model state 
variables, of which the first Nbio elements are the biomass of the 
plankton species, and W is a Wiener process. The factor Dxi is typically 
referred to as noise intensity (e.g. in (Sieber et al., 2007)). However, for 
the sake of simplicity in notation, we will henceforth use D to represent 
the noise intensity. We decided to use the same D for all plankton 

biomasses to maintain a consistent level of noise. While assigning 
different noise intensities to each plankton functional type would be 
more realistic, it would overly complicate the study. The noise is linearly 
proportional to the biomass xi of the affected species, since the envi
ronmental stochasticity affects all individuals of a species in the same 
way (Arnoldi et al., 2019). The stochastic model is numerically solved 
using the Ito scheme, so Eq.(8) is solved as 
{

xi
t+1 = xi

t + BFMxi (xtt)δt + Dxi
t

̅̅̅̅
δt

√
ξ if i = 1, ...,Nbio

xi
t+1 = xi

t + BFMxi (xtt)δt if i = Nbio + 1, ...,Ntot
, (9) 

where δt is the timestep and ξ is a random variable with mean 0 and 
variance 1. The solution of a simulation is obtained by averaging 1000 
simulation realizations. Due to the nonlinear character of the BFM, 
averaging over different realizations does not rule out the effects stem
ming from random environmental fluctuations (Grimaudo et al., 2022). 
In a linear model, indeed, the mean value of a generic variable is not 
affected by stochastic perturbations.

The effects of noise are evaluated in the presence of different 
endogenous dynamics: stationary, periodic, chaotic. Here we study the 
stochastic BFM in four configurations (parameter sets) taken from 
(Occhipinti et al., 2023), which yield deterministic solutions with the 
following characteristics.

The first configuration exhibits stationary endogenous dynamics and 
consists of the standard configuration of BFM parameters, representing a 
generic, well-mixed temperate coastal sea with mean depth 5m (Vichi 
et al., 2020).

The second configuration shows periodic dynamics with increasing 
amplitude (but always with a coefficient of variation on the order of 
10− 3) for diatoms (P1), while the other plankton species show stationary 
dynamics.

The third configuration shows chaotic dynamics for all plankton 
species, except for nanoflagellates (P2), which are extincted after a few 
years of simulation. The second and third configurations are generated 
by perturbing the default parameters in a realistic range of values 
(Occhipinti et al., 2023), so that the model solutions still represent a 
well-mixed temperate coastal sea.

A fourth configuration of the model is used, the parameters of the 
model are the same as for the stationary configuration, but in this case 
the noise is applied to a single plankton species, in particular we choose 
the microzooplankton Z5. The solutions of the deterministic and the 
stochastic BFM are shown in Fig. 2 for the four model configurations.

2.3. Sensitivity analysis

In this study, we conducted a sensitivity analysis to investigate the 
impact of initial conditions and parameter variations on the persistence 
of plankton species. We simultaneously perturbed all 200 model pa
rameters and 54 initial conditions, excluding the noise intensity D, 
which will be generically referred to as model parameters. The pertur
bation magnitude for these parameters was set within ±30% of their 
reference values [48], except for the initial conditions of nutrients. 
Nutrient values were randomly sampled within the intervals [0.01,2.0]
for PO4, [0.01,32.0] for NO3, NH4, and SiO3, and [5.0,390.0] for dis
solved oxygen (Occhipinti et al., 2023). Using the Parsac tool 
(Bruggeman and Bolding, 2020), we randomly sampled the parameters 
to generate 35,000 parameter sets. We then performed 35,000 Monte 
Carlo simulations, each with a unique parameter set, and recorded 
whether at least one plankton species went extinct or all species sur
vived. A species was considered extinct if its biomass dropped below 
10− 4 mgCm− 3. The primary objective of this sensitivity analysis was to 
compute the ratio of the parameter space that supports the coexistence 
of all plankton species.
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Fig. 2. Biomass time series for the BFM biological species obtained by the average of the stochastic ensemble. In red the deterministic solution (D = 0s− 1/2), in black 
(D = 5.0× 10− 5s− 1/2) and blue (D = 1.0× 10− 4s− 1/2) the solutions with the addition of stochastic noise for 4 model setups: (a) stationary configuration, (b) periodic 
configuration, (c) chaotic configuration. (d) here, the noise is applied only to the microzooplankton biomass and the stationary configuration is used. (For inter
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Probability density function (PDF) for the bacteria (B1), diatoms (P1), picophytoplankton (P3), microzooplankton (Z5) for different levels of noise intensity D: 
(a) computed over an ensemble of 1000 solutions, on the right of each box is annotated D; (b) computed over an ensemble of 9000 time steps of a single solution, on 
the right of each box is annotated the Pearson correlation coefficient r between the PDFs in (a) and in (b).
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3. Theory

3.1. Ergodicity

One property of an ergodic system is that it satisfies the equality of 
the infinite time averages and the phase averages, i.e. expectation values 
with respect to the microcanonical measure on the phase space (Van 
Lith, 2001). In the context of stochastic processes, the phase average 
stands for the average over the ensemble of stochastic simulations. 
Therefore, when studying an ergodic stochastic process, it is not 
necessary to run an ensemble of simulations, but the statistics can be 
derived from the temporal evolution of the process, which reduces the 
computational effort. We compared the probability density function 
(PDF) of the plankton biomasses constructed over an ensemble of 1000 
stochastic simulations with the PDF constructed from 9000 time steps of 
a single simulation (see Fig. 3) using the periodic configuration (see 
Fig. 2b). The two PDFs are compared using the Pearson correlation co
efficient r (see Fig. 2b) for each selected plankton species. The PDFs are 
found to be correlated and the p-values (not shown) confirm statistical 
significance, suggesting that the stochastic 0-D BFM has ergodic prop
erties. For a generic stochastic system, it is possible to prove ergodicity 
mathematically (e.g. (Rihan et al., 2022; Rihan and Rajivganthi, 2021)). 
However, the model used in this study is too complex for an analytical 
assessment of ergodicity, so we relied on the numerical analysis 
described above.

3.2. Near-equilibrium dynamics

The study of near-equilibrium dynamics often allows to understand 
the properties of complex systems, thanks to the assumptions that can be 
made in such a regime. In the BFM, we can assume that the deterministic 
growth rate of plankton near equilibrium is directly proportional to the 
respective biomass. We extend such approximation to the other chem
ical variables of the model. Therefore the following approximation holds 
for any of the model state variables xi ∈ x, 

BFMxi (x, t) : − γi( xi − xi
0
)
, (10) 

where the minus sign is due to the fact that the dynamical response is 
expected to balance fluctuations and bring the system to equilibrium, 
and γi is an effective growth rate with units 

[
s− 1], characteristic of each 

variable xi. If the deterministic equilibrium state is characterized by a 
stationary dynamic, the variable xi can be assumed to have negligible 
relative fluctuations near a mean value xi

0, ∣xi − xi
0∣ = xi

0. In fact, when 
the noise intensity D is small, we can consider the fluctuations around 
the mean to be negligible in the coefficient of the Wiener process of (8),: 
{

dxi = − γ
(
xi − xi

0
)
dt + Dxi

0dW if i = 1, ...,Nbio

dxi = − γ
(
xi − xi

0
)
dt if i = Nbio + 1, ...,Ntot

. (11) 

Therefore, the near-equilibrium dynamics of plankton resembles an 
additive Ornstein-Uhlenbeck process, described by the following sto
chastic differential equation (Gardiner, 1985). 

dxi = − γi( xi − xi
0
)
dt +

̅̅̅̅̅
Di

√
dWt i = 1, ...,Nbio, (12) 

which is equal to Eq.(11) with the substitution Di = D2xi
0

2. The 
Ornstein-Uhlenbeck process stabilizes (for t > 1/γi) to a distribution 
with standard deviation σi

OU satisfying the following relation 

σi
OU =

̅̅̅̅̅̅

Di

2γi

√

=
Dxi

0̅̅̅̅̅̅
2γi

√ . (13) 

where the plankton dynamics stabilise to a Gaussian distribution with 
mean xi

0 and standard deviation σi
OU for any biomass variable (i = 1, ..,

Nbio) in the presence of weak noise, while the other model variables (i =

Nbio + 1, ...,Ntot) stabilise to a distribution with mean xi
0 and standard 

deviation 0. We would like to evidence again that these results hold in 
the near equilibrium and small noise limit (∣xi − xi

0∣ = xi
0 and D = 1). 

Since we assume that the 0-D BFM has ergodic properties, the deviation 
in the distribution is reflected in the time series such that σi

OU is related 
to the magnitude of the fluctuation of the plankton biomass around the 
mean. We test these findings numerically in the Results section.

3.3. Fokker-Planck equations

The stochastic differential eq. (8) can be written in the general form 

dx = A(x, t)dt+B(x, t)dW(t), (14) 

where x is the vector of the Ntot state variables of the BFM, Ai = BFMxi is 
the time derivative of xi in the deterministic BFM, i = 1,...,Ntot , B(x, t) is 
a matrix which describes the interaction between the noise and the 
model, W is a Ntot dimensional Wiener process.

In particular in our study we set the matrix B to: 
{

Bij = Dxiδij if i, j = 1, ...,Nbio
Bij = 0 if i, j = Nbio + 1, ...,Ntot

(15) 

in this notation, the first Nbio variables are the biomass of the plankton 
functional types.

The eq. (14) is associated to the Fokker-Planck equation (Gardiner, 
1985): 

∂tp(x, t) = −
∑

i
∂i[Ai(x, t)p

]
+

1
2
∑

i,j
∂i∂j

{[
B(x, t)BT(x, t)

]ijp
}

(16) 

which describes the probability p(x, t) that the state variables of the BFM 
have value x at time t.

Since B is a diagonal matrix the following equality holds: 
{[

B(xt)BT(xt)
]ij

= D2xi2δij if i, j = 1, ...,Nbio
[
B(xt)BT(xt)

]ij
= 0 if i, j = Nbio + 1, ...,Ntot

(17) 

and so the eq. (16) simplifies to 

∂tp = −
∑Ntot

i
∂i[Ai(x, t)p

]
+

1
2
D2

∑Nbio

i
∂i2( xi2p

)
(18) 

This equation alone defines the evolution of the state of the system in 
the stochastic BFM. In Eq.18 the model shows its complexity, the nu
merical solution of the problem should be formulated in a Ntot-dimen
sional space, which is currently impossible to handle even with modern 
state-of-the-art computing facilities.

When the system reaches a steady-state the following equality holds: 

D− 2
∑Ntot

i
∂i[Ai(x)p(x)

]
=

1
2
∑Nbio

i
∂i2( xi2p(x)

)
. (19) 

In Eq.19, we can apply the same assumption of near-equilibrium 
dynamics, assume linearity and hypothesize that the interactions 
within the trophic web are of second order in terms of noise propagation, 
for the biomass of the Nbio plankton species holds the following equation: 

q̇
(
xi) = 2Ci − 2γixi − xi

0

(Dxi)
2 q

(
xi) i = 1, ...,Nbio, (20) 

where q
(
xi) = xi2p

(
xi) and Ai(x) ≈ − γi( xi − xi

0
)
, thanks to linearity, 

and Ci is a normalization constant. While for the other state variables Eq.
(19) simplifies to 

− γi( xi − xi
0
)
p
(
xi) = 0 i = Nbio + 1, ...,Ntot . (21) 

Eq.21 has a Dirac delta as solution p(xi) = δ
(
xi − xi

0
)
, the noise in this 

approximation affects only the variables on which it is applied. Eq.20
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can be solved analytically 

q
(
xi) = Cxi− 2γiD− 2 e− 2γiD− 2xi

0xi− 1 i = 1, ...,Nbio, (22) 

where C is a constant factor. q
(
xi) has a maximum in xi

0, it is zero in xi =

0 and goes to 0 for xi→∞. For very small values of D, the analytical 
solution is difficult to manipulate. We can perform additional trans
formations of Eq.20, setting r

(
x́ i)

= q
(
xi − xi

0
)

assuming xʹi =
(
xi −

xi
0
)
= xi

0, we get a simple ODE valid around xi
0, 

ṙ
(
xʹi) = − 2γi xʹi

(
Dxi

0
)2 r

(
xʹi) (23) 

The solution of this equation is a Gaussian with standard deviation 
Dxi

0/
̅̅̅̅̅̅
2γi

√
, consistently with what found in the previous section. The 

solution for p(xi) will be the Gaussian with mean xi
0 divided by a factor 

xi2.
The solution p

(
xi) shows a deviation for the mode of the distribution 

increasing with higher noise intensity (see Fig. 4), but in the linear re
gimes for any noise amplitude the average value of the p

(
xi) distribution 

is not affected. Fig. 5 shows the the probability density function (PDF) of 
the BFM state variables, the probability is computed as a time distri
bution thanks to the ergodic property suggested in Sect.3.1, separately 
for each state variable xi. Comparing state variables PDFs with different 
noise it is clear how lower noise produce in general Gaussian distribu
tions, Fig. 5a, that becomes more irregular with higher noise regimes, 
Fig. 5b. In the latter regime noise diffuse from the plankton biomass 
through the whole state variables.

3.4. Resonance

The analysis of Fokker-Planck equations indicates that noise can 
propagate within the trophic web, therefore it is interesting to investi
gate possible resonance effects. In particular we explore the occurrence 
and the implications of resonance between white noise and endogenous 
non-stationary dynamics. In literature there are several definitions and 
examples of resonance, from the classical resonance to the stochastic 
resonance. We describe, briefly, here a few of them.

Classical Resonance. Systems described by second-order ordinary 
differential equations may exhibit periodic solutions characterized by 

fluctuations with frequency ω0. When such a system is subjected to an 
external periodic forcing, with frequency ω, the observed fluctuations 
may increase (or decrease) in amplitude or lose their periodicity. Clas
sical resonance is defined as the phenomenon in which the amplitude of 
the fluctuations increases infinitely with time when the two frequencies 
(ω0 and ω) are integer multiples of each other.

Resonance with white noise. Resonance can also be observed when a 
system that exhibits periodic dynamics is subjected to white noise. This 
phenomenon is able to explain the glaciation cycle caused by the 
interaction between random fluctuations and the long-term periodicity 
of an astronomical forcing (Benzi et al., 1982; Benzi et al., 1983). Here, 
the resonance is no longer defined as an increase in the fluctuations 
amplitude, but as the presence of a correlation between the jumping 
time (between one equilibrium and another) and the periodic astro
nomical forcing. This means that the jumping time is of the same order 
of magnitude as the period of the forcing, although it has not to be 
exactly the same since the white noise covers a wide frequency spectrum 
(Benzi et al., 1982). Another possible definition of resonance in this case 
comes from observing the peak of the power spectrum (P) of the tem
perature time series. A peak in the plot of P above the intensity of the 
noise indicates the presence of a resonance (Benzi et al., 1983). This 
particular resonance between a periodic signal and white noise is often 
referred to as a stochastic resonance.

Resonance with red noise. The interaction of periodic fluctuation of a 
dynamical system and red noise can cause resonance phenomena. Red 
noise has a characteristic time scale τ and is used to model fluctuations 
that exhibit memory or persistence in time, e.g., temperature fluctua
tions in aquatic ecosystems (Benincà et al., 2011). In this case, resonance 
amplifies the periodic fluctuations and can be detected by examining the 
power spectral density: resonance occurs at the τ corresponding to the 
maximum of the power spectral density. In particular, resonance is 
observed when the characteristic time scale τ of the red noise is a frac
tion of the period of the deterministic fluctuations that characterize the 
system (Benincà et al., 2011).

In this work we study the resonance between white noise and non- 
stationary dynamics, extending the definition of stochastic resonance 
of (Benzi et al., 1982; Benzi et al., 1983) considering also the interplay 
between noise and chaotic dynamics. Moreover, the situation we study 
is different from the examples given above. White noise is applied 
directly to plankton biomass, which may therefore no longer exhibit the 
periodic or chaotic dynamics related to the deterministic skeleton of the 
model. Instead, in the example of (Benzi et al., 1982; Benzi et al., 1983), 
the periodic astronomical forcing cannot be eliminated by the noise. 
Therefore, to study such a complex scenario, we can use a more general 
definition: stochastic resonance (SR) is observed when an increase in the 
level of unpredictable fluctuations - e.g., random noise - leads to an 
increase in a metric of signal transmission quality or detection perfor
mance rather than a decrease (McDonnell and Abbott, 2009). Using the 
peak of the power spectrum, similar to (Benzi et al., 1983), as a metric 
proved too computationally expensive, so to assess the presence of SR 
we tested two different metrics. The peak in the power spectrum can 
correspond to a peak in the noise amplification (NA) (Benincà et al., 
2011), defined as 

NA =
CVnoise − CVdet

D
, (24) 

where CVnoise,CVdet are the coefficients of variation (variance over 
mean) of the noisy signal and of the deterministic signal before the noise 
addition and which is less computationally expensive than the evalua
tion of the power spectrum and therefore we use it as first metric. Sto
chastic resonance between aperiodic signals and noise can be 
individuated by using the power norm (PN) (Collins et al., 1995). Since 
in our model the noise is internal in the dynamics of the plankton, it can 
be expected that resonance exists between the dynamics of the different 
plankton species. Diatoms are used as a reference for two reasons: they 

Fig. 4. Analytic solutions q
(
xi) and p

(
xi) for the parameters 2γi

D2 = 2 and xi
0 =

7.6 indicated with a dashed vertical line. The plot and calculation has been 
performed using the SageMath python package (see Sect.7), with the floating 
point numeric precision increased to 512 bits. The average of the numerically 
calculated distribution p

(
xi) corresponds to xi

0 for any value of D.

G. Occhipinti et al.                                                                                                                                                                                                                              Ecological Informatics 83 (2024) 102778 

7 



Fig. 5. Probability density function p(xi) of the BFM state variables xi, the x-axis is limited to ±30% of the mean value of the respective state variable. (a) Noise 
intensity is set to D = 10− 5s− 1/2; (b) Noise intensity is set to D = 10− 4s− 1/2, the state variables where noise is applied are in red. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.)
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are at the base of the food web and are the only species that shows pe
riodic behaviour in the periodic configuration. Thus, we define the 
power norm as 

PNi =
〈(xi(t) − 〈xi(t) 〉 )(xP1(t) − 〈xP1(t) 〉 ) 〉

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅〈
(xi(t) − 〈xi(t) 〉 )2

〉〈
(xP1(t) − 〈xP1(t) 〉 )2

〉√ , (25) 

where xi is the biomass of plankton species i in the stochastic solution of 
the model, xP1 is the biomass of diatoms in the stochastic solution of the 
model. The biomass is determined from the ensemble average, and the 
brackets denote the mean value over time. PN is the cross-correlation 
between the deviations from the mean of the biomass of a plankton 
species and the diatoms, normalized by their standard deviation. 
Maximizing this metric corresponds to maximizing the shape matching 
of the fluctuations around the mean of a general species and the diatoms 
(Collins et al., 1995). PN is appropriate when the noise effect (Collins 
et al., 1995) has no time lag, and we use it as our second metric.

4. Results

Near-equilibrium dynamics. In the Theory section we found that in the 
stationary configuration, the standard deviation of plankton biomass 
should theoretically be equal to the standard deviation of an Ornstein- 
Uhlenbeck process (Eq.(13)) if the noise is weak enough to produce 
only small fluctuations around a mean value. We tested this theoretical 
result numerically confronting the standard deviation of the time series 
of each plankton species and the theoretical Ornstein-Uhlenbeck stan
dard deviation for different values of noise intensity D. The noise in
tensity range explored is selected from very low values (D = 10− 5s− 1/2) 
and increased till the model is no more numerically integrable (D =

10− 3s− 1/2). The theoretical and the time series standard deviations are 
coherent for low noise values but begin to diverge with higher noise 
intensity (D = 10− 4s− 1/2). As an example, the standard deviation values 
calculated from the biomass time series and the Ornstein-Uhlenbeck one 
are reported in Table 1 for D = 5.0 × 10− 5s− 1/2 and D = 1.0×

10− 4s− 1/2. The fact that the Ornstein-Uhlenbeck approximation breaks 
down near D = 10− 4s− 1/2 may be related to a break in the linearity of the 
system response to noise. This break in linearity can be seen in Fig. 6, 
where the distributions of biomass mean and CV in the stationary 
configuration are shown as a function of noise intensity. The deter
ministic equilibrium is (approximately) represented by the leftmost 
point in the distribution, which corresponds to the solution with the 
lowest noise intensity. The biomass is bounded near the deterministic 
equilibrium until the CV does not become too large, which happens near 
D = 10− 4s− 1/2. The effect of the noise is to perturb the equilibrium of the 

deterministic model by 10% to 30% for phytoplankton, while meso
zooplanton is less affected with noise dependent fluctuations below 
10%. All phytoplankton species and only the top predator Z3 show a 
non-monotonic behaviour in terms of biomass concentration, while the 
CV variation is always monotonic and bounded below 5%. The analysis 
of the Fokker-Planck equation in the linear regimes shows that the 
steady state solution preserves the average values obtained with the 
deterministic configuration, so that the observed deviations are due to 
nonlinear interactions between noise and the deterministic skeleton.

Stochastic Resonance. We studied the occurrence of SR for three 
parameter configurations of the BFM characterized by different endog
enous deterministic dynamics (Occhipinti et al., 2023): stationary, pe
riodic, chaotic (Fig. 2a,b,c). In order to assess the possibility of SR we 
perturbed randomly the noise intensity D in the interval 
[
10− 5,10− 3]s− 1/2, taking 100 samples for each configuration. The 

analysis of the mean biomass and the corresponding standard deviations 
indicates a clear non-monotonic behaviour also in the cyclic configu
ration for diatoms and mesozooplankton, while CV is monotonically 
increasing, Fig. 7b. The chaotic configuration, Fig. 7c, shows a non- 
monotonic behaviour for the nanoflagellates P2, the microzooplankton 
Z5 and carn. mesozooplankton Z5. In this configuration, CV shows a 
complex dependence on the noise intensity. Applying the noise to only 
one class of organisms, in this case Z5, leads to the simplest results with 
small deviations with respect to the deterministic case and monotonic 
behaviour for biomasses and coefficients of variation (see Fig. 7d).

The NA and PN indicators expressed as function of D (see Fig. 8) are 
coherent both in stationary and periodic configurations. In fact, both NA 
and PN show SR in the stationary and periodic configuration. In these 
configurations (see Fig. 8a,b), we found that the peaks of the metrics 
occur at noise intensities between 10− 4s− 1/2 and 10− 3s− 1/2 (where the 
metrics show a peaked distribution). The magnitude of NA in the peri
odic configuration, Fig. 8b, is more than an order of magnitude larger (e. 
g. in the case of P2 and Z5) with respect to the stationary case. The high 
NA values for Z5 could be related to the extinction regime, in which the 
biomass values of Z5 become very low and cause a divergence. Based on 
the PN distributions in the stationary and periodic configurations (see 
Fig. 8 a, b), it can be seen that the correlation between diatoms and the 
other species can be positive or negative. A positive (negative) corre
lation is associated with an increase (decrease) in the biomass of the 
species studied, which is accompanied by an increase in the biomass of 
the diatoms. The case of the chaotic configuration, Fig. 8c, differs from 
the other two, Fig. 8a and b. NA is negative due to the strong reduction 
of the fluctuations caused by noise, Fig. 2c. The nanoflagellates P2 are 
the only species that show positive NA, which is due to the fact that they 
are extinct in the deterministic skeleton. We were unable to identify SR 
for the chaotic configuration, the NA is monotonically dependent over 
D, while PN shows no clear signal. The configuration with the noise 
source applied to Z5, Fig. 8d, shows only smaller NA for all plankton 
species considered, and a scattered signal for both NA and PN with no 
clear SR.

System equilibria. The stochastic solutions (see Fig. 2) show different 
biomass concentrations than the deterministic model, at least for some 
plankton species. To assess whether these new concentrations are 
equilibria of the system or are merely kept alive by the continuous 
stochastic forcing, another set of simulations is run in which the noise is 
turned off after three years over the ten simulation years. We focused on 
the stationary configuration because it is easier to assess whether the 
system relaxes to the stationary equilibrium. We then examined the time 
series of the plankton biomass (see Fig. 9). At high noise intensities, new 
equilibria occur in which the biomasses relax to a different concentra
tion compared to the deterministic skeleton. The largest variation in 
biomass is observed for picophytoplankton P3, whose biomass decreases 
by about 10% of the deterministic value.

Persistence. The persistence response of plankton species to the 
variation of BFM parameters is studied. From the sensitivity analysis for 

Table 1 
Standard deviation of the biomass of the plankton species (std) and its theo
retical value as standard deviation of an Ornstein-Uhlenbeck process (σOU), two 
simulations are performed with the stationary configuration using different 
noise intensities D. In the bottom row are reported the Pearson correlation co
efficient and the p-value between std. and σOU for each simulation.

D = 5.0× 10− 5s− 1/2 D = 1.0× 10− 4s− 1/2

var std 
[
mgCm− 3] σOU 

[
mgCm− 3] std 

[
mgCm− 3] σOU 

[
mgCm− 3]

P1_c 0.18 0.13 1.21 0.05
P2_c 0.07 0.07 0.26 0.10
P3_c 0.27 0.24 1.03 0.51
P4_c 0.56 0.52 2.23 1.40
B1_c 0.32 0.35 1.22 1.94
Z5_c 0.46 0.62 1.80 4.41
Z6_c 0.20 0.18 0.74 0.23
Z3_c 0.10 0.10 0.38 0.70
Z4_c 0.11 0.12 0.42 0.38

r p r p
0.93 10− 4 0.61 0.08
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Fig. 6. Biomass (red) and coefficient of variation (CV, green) as a function of noise intensity D for the biological species of BFM with stationary deterministic skeleton 
configuration. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Biomass (red) and coefficient of variation (CV, green) as a function of noise intensity D for the biological species of BFM, for 4 model setups: (a) stationary 
configuration, (b) periodic configuration, (c) chaotic configuration. (d) here, the noise is applied only to the microzooplankton biomass and the stationary 
configuration is used. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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the deterministic BFM resulted that for about 60% of the possible 
parameter choices at least one species goes extinct during a 10-years 
simulation (Occhipinti et al., 2023). The effect of stochastic noise on 
plankton persistence is investigated for different values of the intensity 
of noise D; the fraction of samples presenting extinction is shown in 
Table 2. We found that in the stochastic model, plankton persistence 
generally increases. However, a high level of D (e.g. D = 10− 3s− 1/2) may 
have the opposite effect; the plankton are more likely to go extinct 
compared to the deterministic model.

5. Discussion

5.1. Methodology

In this study, we introduced environmental stochasticity into an 
ocean biogeochemical model of realistic complexity. We incorporated 
multiplicative white noise to represent the growth response of plankton 
biomass to environmental variability over time and space. Our findings 
revealed phenomena absent in the deterministic model, highlighting the 
importance of including stochastic processes in biogeochemical models 

to enhance prediction accuracy.
Stochastic models are defined in terms of probabilities, which evolve 

over time through stochastic differential equations (Mubayi et al., 
2019), such as the Fokker-Planck equation Eq.(16). These probabilities 
are generated from an ensemble of solutions with the same initial con
ditions, as the random components of the stochastic process produce 
different outputs from identical inputs (Mubayi et al., 2019). Conse
quently, the results of stochastic models are derived from the statistical 
properties of these probabilities, such as the ensemble mean and vari
ance. This probabilistic nature allows stochastic models to effectively 
represent the range of environmental variability and the corresponding 
plankton growth responses, incorporating uncertainty in environmental 
parameterization and thereby improving prediction accuracy. In the 
field of meteorology, a sophisticated stochastic technique, Stochastically 
Perturbed Parametrisations, is the standard for evaluating model un
certainty (Lang et al., 2021). It consists of introducing stochastic per
turbations into the physical parametrisation and is currently used by the 
European Centre for Medium-Range Weather Forecasts (ECMWF) 
(Leutbecher et al., 2017). In our model, the noise describes the uncer
tainty of the environment, a metric indicating the uncertainty of the 

Fig. 8. Noise amplification (NA, black) and power norm (PN, blue) as a function of noise intensity D for the biological species of BFM, for 4 model setups: (a) 
stationary configuration, (b) periodic configuration, (c) chaotic configuration. (d) noise applied only to the microzooplankton biomass. In case (d) the stationary 
configuration is used. A gap in the points can be observed especially in panel (c) in the interval D ∈

[
10− 5, 10− 4]s− 1/2, which is caused by the use of a random 

sampling method and the logarithmic scale of the x-axis. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.)
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model solutions is not used. The theoretical analysis performed indicates 
that for low noise intensity the ensemble distribution of solutions is 
strictly related to an Ornstein-Uhlenbeck process, while for higher noise 
intensity the statistic and therefore the uncertainty follow more complex 
distributions. Future studies in the context of ocean biogeochemical 
model could focus on defining an appropriate metric that quantifies the 
degree of uncertainty of model solutions with respect to the intensity of 
noise introduced into the model. This quantification can help to un
derstand the importance of the uncertainty of unmodelled processes, in 
our case environmental variability, for the model solutions. We suggest 
that the noise amplification, Eq.(24), is a possible metric as it relates the 
coefficient of variation of the solutions to the noise intensity.

In contrast, deterministic models typically involve creating ensem
bles by perturbing initial conditions or parameters. However, this 
method loses the temporal aspect of environmental variability, which is 
inherently captured in the noise of stochastic models. Ensemble 
modeling is a common technique to enhance accuracy (Ganaie et al., 
2022). For instance, it has improved the fit and stability of artificial 
neural networks in environmental modeling (Huang and Gao, 2017). 
Utilizing ensembles of different models is considered the best approach 
to address the uncertainty of a single model, offering conceptual and 
structural diversity that better replicates the complex dynamics of 

physical, chemical, and biological interactions in real-world scenarios. 
Ensemble modeling is widely practiced in ecology (Araujo and New, 
2007; Dormann et al., 2018; Recknagel et al., 2018) and climate science 
(Eyring et al., 2016). It is the standard method for predicting future 
climate in the Intergovernmental Panel on Climate Change (IPCC). We 
showed that multiplicative white noise could address uncertainty from 
environmental variability. Other stochastic processes, such as those 
combining stochastic variables with Monte Carlo simulations (Schmitz 
et al., 2016), may be suitable for addressing different types of uncer
tainty. Stochastic approaches are used to provide measures of uncer
tainty in the planning of marine protected areas (Beech et al., 2008). We 
propose considering stochastic models to address and confront model 
uncertainty due to their intrinsic ensemble structure. The ensemble 
mean can describe real scenarios better than individual deterministic 
simulations, as the modeling of the chlorophyll concentration in (Valenti 
et al., 2016) shows. Incorporating stochastic processes into biogeo
chemical models can enhance the mechanistic understanding of ocean 
dynamics and provide crucial insights into the most effective strategies 
for managing marine ecosystems, ensuring their health and sustained 
services to human populations.

We found that the Biogeochemical Flux Model (BFM) in a 0-D 
configuration, and in the absence of exogenous forcings, exhibits 
ergodic properties, such as the equivalence between ensemble statistics 
and temporal statistics. This is a significant finding, particularly in the 
context of the previous discussion on ensemble modeling. Generating 
temporal statistics is far less computationally expensive than generating 
ensemble statistics, as it requires running only a single simulation. This 
property was demonstrated in the presence of endogenous oscillations in 
plankton dynamics, suggesting that the equivalence may hold even with 
periodic exogenous forcing. Further research should explore this hy
pothesis under more complex dynamics, such as the turbulence induced 
by ocean currents.

Fig. 9. Biomass time series for the BFM biological species obtained by the average of the stochastic ensemble. The stationary configuration is used and the noise is set 
to 0 after 3 years of simulation. In red the deterministic solution (D = 0s− 1/2), in blue (D = 1.0× 10− 4s− 1/2) and green (D = 1.0× 10− 3s− 1/2) the solutions with the 
addition of stochastic noise. The solution with the strongest noise intensity (green) relaxes to a different equilibrium with respect to the deterministic skeleton. The 
line width of deterministic time series (red) is increased to make it visible. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.)

Table 2 
Probability that at least one species of plankton is 
extincted perturbing the parameters of the BFM in a 
realistic range, for different noise intensity D.

D 
[
s− 1/2] extinction [%]

0 60
1.0× 10− 6 25
5.0× 10− 5 30
1.0× 10− 4 25
1.0× 10− 3 65
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5.2. Ecological implications

We studied the effect of noise on plankton dynamics investigating the 
influence of the interaction between noise and endogenous dynamics, i. 
e. the dynamics resulting from the model in the deterministic configu
ration and in the absence of exogenous forcing, e.g. cycles in tempera
ture and light. Therefore, plankton dynamics is determined by 
competition and predation relations among plankton species and by the 
microbial loop. Non-stationary dynamics can have severe impact on 
population structure, examples are the relationship between the 
complexity of fluctuations and the genetic structure of a population 
(Kaitala et al., 2006), and the influence of the strength of fluctuations on 
the coexistence between species (Pisa et al., 2019; Roy et al., 2020). In 
the deterministic BFM different configurations of parameters lead to 
stationary, periodic or chaotic endogenous dynamics (Occhipinti et al., 
2023). The kind of endogenous dynamics resulted to lead to different 
responses to noise. In particular stochastic resonance is not observed 
when the endogenous dynamics is chaotic.

One of the major ecological questions regarding stochastic models is 
if environment fluctuations can sustain population fluctuations (Mubayi 
et al., 2019). This topic is connected to the observation of fluctuations in 
various animal populations with frequencies distinct from those of pe
riodic environmental oscillations (Berryman, 1988; Hudson et al., 1992; 
Krebs and Myers, 1974; Moss et al., 1996; Watson et al., 1984), 
comprising plankton (Benincà et al., 2008; Goulden and Hornig, 1980; 
McCauley and Murdoch, 1987; Pratt, 1943; Rogers et al., 2022). The 
causes of population fluctuations have long intrigued theoretical ecol
ogists, dating back to the work of Lotka and Volterra (Kendall et al., 
1999). Several studies have shown that noise can increase the variability 
of plankton populations (e.g. (Benincà et al., 2011; Guo et al., 2023)). 
Stochastic resonance cause noise-induced fluctuations in populations 
(Mubayi et al., 2019) and, possibly, explain the observations. Stochastic 
resonance proved to be an inherent feature of the stochastic BFM, 
leading to an increase in biomass fluctuations. We found that such 
phenomenon is possible in the presence of stationary and periodic 
endogenous dynamics. Since resonance between noise and a stationary 
signal is not possible, the observed resonance must be caused by the 
interaction between different species, i.e., there is resonance between 
the noise of different species and not between the noise and the deter
ministic time series. This internal resonance is evidenced by the corre
lation (PN) between diatoms and the other plankton species (see Fig. 8a, 
b). In the deterministic model the configuration expressing periodic 
endogenous dynamics presents oscillations with an amplitude which is 
not experimentally observable (Occhipinti et al., 2023). Environmental 
stochasticity, through stochastic resonance, can amplify the amplitude 
of fluctuations up to an observable level. We observe a stronger ampli
fication when noise interacts with periodic endogenous dynamics, 
comparing the noise amplification between panel a (stationary endog
enous dynamics) and b (periodic endogenous dynamics) of Fig. 8.

The interaction between noise and chaotic oscillations has a 
completely different effect on noise amplification compared to the pe
riodic configuration. In this context, noise amplification (NA) is nega
tive, meaning that the coefficient of variation (CV) of the stochastic 
solution is smaller than that of the deterministic solution (see Figs. 2c, 
8c). This suggests the possibility of noise-enhanced stability in biogeo
chemical models. Noise-enhanced stability is defined as the phenome
non where noise stabilizes a fluctuating or periodically driven 
metastable state, causing the system to remain in this state longer than it 
would in the absence of noise (Spagnolo et al., 2004a). This phenome
non was initially observed in electrical circuits (Mantegna and Spagnolo, 
1996) and has since been identified in ecological models as well (Yu and 
Ma, 2023; Zeng et al., 2015). While we cannot definitively classify the 
significant decrease in noise amplification as noise-enhanced stability, it 
provides a clue to its potential occurrence. Future research should 
investigate the potential occurrence of noise-enhanced stability and its 
implications for ecosystem stability. Another important aspect of 

plankton fluctuations is the interaction between noise and external pe
riodic forcing (e.g. temperature and light), which can have a significant 
impact on plankton dynamics (Rinaldi et al., 1993). Understanding 
these interactions can provide deeper insights into the complex behav
iour of plankton populations. However, investigating these effects in 
detail is beyond the scope of the present work.

We found that noise affects not only plankton biomasses but also 
permeates the entire model, as illustrated in Fig. 5. The propagation is 
particularly strong through species interactions and can lead to sto
chastic resonance in configurations with stationary endogenous dy
namics. To study noise propagation from a single source, we used the 
same parameters as the stationary configuration but applied noise to 
only one species, the microzooplankton (see Fig. 2d). Microzooplankton 
was chosen because it is a critical species for characterizing trophic in
teractions in the BFM, occupying a central node in the trophic web 
(Occhipinti et al., 2023) (see Fig. 1b). Noise can propagate also when it 
has a single source, but no stochastic resonance occurs (see Fig. 8d). The 
phenomenon of perturbation propagation in trophic webs has been 
extensively studied through both experimental (Duffy et al., 2015; Pace 
et al., 1999) and modeling approaches (Carpenter et al., 1987; Montoya 
et al., 2006; Quévreux et al., 2021; Quévreux and Loreau, 2022; Simon 
and Vasseur, 2021). The impact of perturbations on ecosystems is 
closely linked to their stability and resilience (Arnoldi et al., 2016; 
Arnoldi et al., 2019; Darling and Côté, 2018; Donohue et al., 2013; 
Quévreux and Loreau, 2022).

A recent review by (Kéfi et al., 2019) highlighted the complexity- 
stability relationship as one of the leading open questions in ecology. 
This line of research began with studies on the role of diversity in sta
bility (Elton, 2020; MacArthur, 1955; May, 2001) and continues to 
engage ecologists today (Allesina and Tang, 2012; Arnoldi et al., 2019; 
Hautier et al., 2014; Ives and Carpenter, 2007; Johnson et al., 2014; 
Pennekamp et al., 2018). (Kéfi et al., 2019) identified three main issues 
in the diversity-stability debate. The first is how to measure stability, as 
there is no consensus on which metrics to use or whether they convey 
the same information. The second issue is at what organizational level 
stability should be computed, whether for the whole community, groups 
of species, or individual species. The third issue concerns the types of 
perturbations used to assess stability; most studies have examined iso
lated perturbations over a few ecological scales, highlighting the need to 
study synergistic effects of multiple perturbations. In the context of 
plankton communities and ocean biogeochemical models, the deter
ministic BFM has demonstrated high stability to variations in its pa
rameters and initial conditions (Occhipinti et al., 2023). A sensitivity 
analysis showed that most solutions exhibit endogenous stationary dy
namics, with periodic or chaotic fluctuations being rare. It was sug
gested that the complex network of interactions described by the model 
has a damping effect on fluctuations (Occhipinti et al., 2023). The 
damping of perturbations originating from a single noise source (see 
Figs. 2d and 8d) further supports the stability role of complex networks. 
However, the occurrence of stochastic resonance highlights the risk of 
overestimating stability when the interactions between multiple per
turbations are not considered.

The understanding of the coexistence of multiple species within the 
same ecosystem has long intrigued ecologists and population biologists 
(Chesson, 2000; Tilman, 1982). The impact of environmental stochas
ticity on coexistence has received particular attention (Chesson, 1982; 
Chesson and Ellner, 1989; Ellner, 1989). The interplay between 
endogenous and stochastic exogenous dynamics impacts coexistence in 
such a complex manner that its comprehension is still evolving through 
mathematical and ecological models (Benaïm and Schreiber, 2019; 
Hening et al., 2021; Majumder et al., 2021).

This research has particularly fascinated ecologists studying 
plankton. Marine ecosystems contain more species of plankton than the 
resources can support according to coexistence theory, giving rise to the 
yet unresolved “Paradox of the Plankton” (Hutchinson, 1961). Several 
stochastic processes may alter the persistence of populations. For 
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instance, demographic stochasticity is considered a cause of extinction 
(Xue and Goldenfeld, 2017), with its effect being particularly strong 
when population density is low (Lindo et al., 2023). In contrast, envi
ronmental noise appears to increase plankton persistence (Guo et al., 
2023; Sarker et al., 2020; Yu et al., 2019a). Positive effects of noise on 
plankton persistence were observed in studies on the effects of global 
warming (Sarker et al., 2020). Although a gradual increase in temper
ature leads to a decrease in plankton diversity, the number of persisting 
species in the system with noise is higher than in the system without 
noise (Sarker et al., 2020). In a food chain model that accounts for 
seasonality, with white noise applied to the growth of plankton and 
nutrients, it was found that the persistence of phytoplankton depends on 
environmental noise (Yu et al., 2019a). In a nutrient-plankton model, 
environmental variability in mortality was described via stochastic 
regime switching, which was found to enhance the persistence of 
plankton populations (Guo et al., 2023). Furthermore, chaotic fluctua
tions in a spatially extended environment have been shown to increase 
the chance that populations in isolated areas will survive periods of 
unfavorable conditions, thereby increasing species survival chances 
(Petrovskii et al., 2004). This is consistent with our finding that noise in 
growth rates can reproduce both fluctuations, similar to the chaos 
studied by (Petrovskii et al., 2004), and variability in spatial conditions 
in a 0-dimensional model (environmental stochasticity), thus promoting 
species persistence.

We contribute to the understanding of plankton coexistence using a 
biogeochemical model of realistic complexity. Unlike simpler models, 
the BFM describes the major processes occurring in marine ecosystems 
and provides an accurate understanding of plankton dynamics. We 
found that plankton persistence (and the number of coexisting species) 
can increase or decrease as a function of noise intensity (see Table 2), 
suggesting that environmental stochasticity can enhance coexistence 
when low in intensity. When the noise approaches the scale of plankton 
growth (days), e.g., for D = 10− 3s− 1/2 ≈ 0.3d− 1/2, persistence decreases 
and fewer species coexist. The opposite effect is observed for smaller D, 
far from the growth temporal scale, where a larger number of species 
coexist. The use of sensitivity analysis allowed for an accurate assess
ment of plankton coexistence despite uncertainties in model parameters 
(Cai et al., 2023). The extensive number of simulations (175,000) pro
vided a thorough investigation of the parameter space (Occhipinti et al., 
2023).

Recent stochastic implementations of biogeochemical models have 
shown that stochastic processes do not cause a transition to a new 
equilibrium point but instead maintain the ecosystem in a steady state 
out-of-equilibrium (Grimaudo et al., 2022). However, our findings 
indicate that certain intensities of noise can lead the system to a different 
equilibrium than the deterministic one. This result may appear to 
contrast with (Grimaudo et al., 2022), but the noise in that study models 
the random fluctuations of solar irradiance. Environmental stochasticity 
encompasses both the random variability of the environment and the 
stochastic response of population growth rates to such variability. This 
response could explain the emergence of new equilibria at specific in
tensity levels (D) of the noise. Similar findings were observed in a 
phytoplankton-zooplankton model subjected to environmental sto
chasticity, where noise-induced transitions between two equilibria were 
noted (Zhao et al., 2022).

Our study confirms that non-selective stochastic processes can in
crease plankton persistence. We expect that including selective sto
chastic processes, for example adding a fitness function to the 
multiplicative noise (Dieckmann and Law, 1996), may increase further 
the persistence of plankton. Future research may focus on study different 
sources of stochasticity (e.g. demographic or immigration (Arnoldi et al., 
2019)) or the evolution of one or more specific traits of plankton (e.g. 
the maximum growth rate (Flynn and Skibinski, 2020)), possibly in a 
complex model of higher spatial dimensions, in order to evaluate the 
effects of plankton evolution in a climate change scenario.

6. Conclusions

This study presents an investigation into a stochastic 0-dimensional 
marine biogeochemical model of realistic complexity. Our results 
show that the inclusion of stochastic processes in biogeochemical 
models enables the observation of new phenomena (e.g. stochastic 
resonance) in plankton dynamics and biogeochemical cycles. Moreover, 
the proposed stochastic model can effectively account for environmental 
uncertainties thanks to the random variability of growth rate and 
ensemble solutions.

The deterministic skeleton on which the stochastic model is built can 
exhibit different endogenous behaviours, such as stationary, periodic 
and chaotic dynamics. The stochastic model proves to present ergodic 
properties, largely decreasing the computational cost of numerical 
simulations. We have shown that the introduction of multiplicative 
white noise on the growth rate of biological species can develop a sto
chastic resonance, surprisingly, even when the deterministic solution of 
the model is stationary. The resonance can amplify the small periodic 
endogenous fluctuations in the plankton biomass to an experimentally 
observable level. This mechanism could explain the observation of non- 
stationary dynamics in ecosystems. In contrast, the interaction between 
chaos and noise appears to reduce the amplitude of fluctuations. 
Furthermore, a low noise intensity can have a positive effect on persis
tence of plankton with a larger number of species coexisting, while a 
higher noise intensity can induce a new equilibrium in the system.

Therefore the plankton ecosystem has a strong response to envi
ronmental noise. The occurrence of stochastic resonance and the vari
ability in the persistence highlight the non-linearity of this response. 
Future studies may investigate the effect of noise in combination of 
deterministic external forcings (e.g. temperature and light), or even the 
effect of strong rare stochastic fluctuations (extreme events) on marine 
ecosystems.

7. Algorithms, program codes and listings

The code for the BFM and its manual can be freely downloaded at 
bfm-community.eu. The code of the parsac tool to perform sensitivity 
analysis can be freely downloaded at github.com/BoldingBruggeman 
/seamless-notebooks commit: 86210c6c281ce7dcb55e7c5e1ccc860da 
87d8424. The code developed in this work to add the stochastic noise to 
the BFM can be freely downloaded at (Occhipinti and Lazzari, 2023). 
The SageMath notebook used for the analysis of Fokker-Planck equi
librium solution can be accessed at the following url: cocalc/Analy
ticSolution.ipynb and as a python notebook file in the supplementary 
material.
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