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Abstract: Two paroxysmal explosions occurred at Stromboli on 3 July and 28 August 2019, the first of
which caused the death of a young tourist. After the first paroxysm an effusive activity began from the
summit vents and affected the NW flank of the island for the entire period between the two paroxysms.
We carried out an unsupervised analysis of seismic and infrasonic data of Strombolian explosions
over 10 months (15 November 2018–15 September 2019) using a Self-Organizing Map (SOM) neural
network to recognize changes in the eruptive patterns of Stromboli that preceded the paroxysms.
We used a dataset of 14,289 events. The SOM analysis identified three main clusters that showed
different occurrences with time indicating a clear change in Stromboli’s eruptive style before the
paroxysm of 3 July 2019. We compared the main clusters with the recordings of the fixed monitoring
cameras and with the Ground-Based Interferometric Synthetic Aperture Radar measurements, and
found that the clusters are associated with different types of Strombolian explosions and different
deformation patterns of the summit area. Our findings provide new insights into Strombolian
eruptive mechanisms and new perspectives to improve the monitoring of Stromboli and other open
conduit volcanoes.

Keywords: eruption precursors; neural networks; self-organizing map; seismo-acoustic signals;
Stromboli volcano; volcano monitoring; ground-based visible and thermal imagery; ground deforma-
tion; volcano deformation

1. Introduction

Artificial Neural Networks (ANNs) are applied in a wide range of fields to approach
classification, pattern recognition, clustering, regression analysis, and time series prediction
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problems. In recent years, ANNs have been successfully applied in the field of seismol-
ogy and volcanology to solve geophysical signal automatic classification and clustering
problems [1–4] and to perform predictive analyses [5,6]. In the field of seismology, many
studies demonstrated that ANNs are powerful tools to improve the performances and
the robustness of the automatic systems for seismological analyses that allow gaining
critical information for people’s safety in near real time [7–9]. Many applications have
also been developed to automatically classify the seismicity of Stromboli [10–13] and other
volcanoes [1,14], obtaining performances up to 100% correct classification [7]. Here, we
focus on studying the eruptive style of the Stromboli volcano (Italy) before and during the
2019 eruptive crisis [4,15–17] through the neural analysis of seismic and infrasonic signals
produced by the explosive activity.

Stromboli is a volcanic island in the Mediterranean Sea characterized by a persistent
explosive activity that produces hundreds of moderate explosions per day. Three main
vent regions are located in the upper part of the volcano: the North East (NE), the Central
(C), and the South West (SW) vent regions (Figure 1) [18–22].
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Figure 1. Map of Stromboli Island, including the location of monitoring stations. The black triangles 
indicate the seismic stations and the two black circles indicate strainmeters. The white triangle 
marks the STRA seismic–acoustic station that recorded the data used in this work. The white circles 
show the position of the video cameras, highlighting the SPT (P), SQT, and SQV (Q) cameras. The 
white stars indicate the Ground-Based Interferometric Synthetic Aperture Radar (GBInSAR) 
devices, and the GBInSAR NE190 is highlighted. The “Sciara del Fuoco” (SdF) depression is shown. 
The white asterisks indicate the main vent regions: North East (NE), Central (C) and South West 
(SW). The location of Stromboli in the Mediterranean Sea is reported in the inset. Maps were 
generated using ESRI ArcGIS CAMPUS (Università degli Studi di Firenze Licence; 
http://www.siaf.unifi.it/vp-1275-arcgis-licenza-campus.html, accessed on 5 March 2022). The 
background image is a PLÉIADES-1 image collected on 8 October 2019 (see Turchi et al. [23] for 
details). 

In recent decades, geophysical and volcanological studies have indicated that the 
ordinary explosive activity of Stromboli shows a variety of eruptive mechanisms and 
products, whose signature is distinguishable in the geophysical signals generated by the 
explosions (e.g., seismic and infrasonic signals). In early studies, an association between 
the eruptive vent (NE or SW) and waveform of the VLP events produced by the explosions 

Figure 1. Map of Stromboli Island, including the location of monitoring stations. The black triangles
indicate the seismic stations and the two black circles indicate strainmeters. The white triangle marks
the STRA seismic–acoustic station that recorded the data used in this work. The white circles show
the position of the video cameras, highlighting the SPT (P), SQT, and SQV (Q) cameras. The white
stars indicate the Ground-Based Interferometric Synthetic Aperture Radar (GBInSAR) devices, and
the GBInSAR NE190 is highlighted. The “Sciara del Fuoco” (SdF) depression is shown. The white
asterisks indicate the main vent regions: North East (NE), Central (C) and South West (SW). The
location of Stromboli in the Mediterranean Sea is reported in the inset. Maps were generated using
ESRI ArcGIS CAMPUS (Università degli Studi di Firenze Licence; http://www.siaf.unifi.it/vp-1275
-arcgis-licenza-campus.html, accessed on 5 March 2022). The background image is a PLÉIADES-1
image collected on 8 October 2019 (see Turchi et al. [23] for details).

In recent decades, geophysical and volcanological studies have indicated that the
ordinary explosive activity of Stromboli shows a variety of eruptive mechanisms and
products, whose signature is distinguishable in the geophysical signals generated by the
explosions (e.g., seismic and infrasonic signals). In early studies, an association between
the eruptive vent (NE or SW) and waveform of the VLP events produced by the explosions
was observed [24] and led for the first time to the definition of two categories of explosions:
Type 1, from the NE vent region, and Type 2, from the SW vent region. Subsequently,
significant exceptions to the vent–waveform association were highlighted through a pre-
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vious application of an unsupervised neural network clustering, compared with thermal
camera measurements [11]. Two main types of explosions were also recognized in the
ordinary activity of Stromboli through thermal camera measurements by Patrick et al. [25]:
Type 1, dominated by coarse ballistic particles, and Type 2, characterized by an ash-rich
plume, with (Type 2a) or without (Type 2b) ballistic particles. Leduc et al. [26] added a
gas-dominated type (Type 0) to those mentioned above. More recently, Simons et al. [27],
studying the explosions of the Yasur volcano (Vanuatu), defined a further type (Type 3) of
explosion characterized by tephra jetting through a breccia/ash-occluded vent, followed
by prolonged ash emission, belonging to the spectrum of Strombolian explosions. The rate,
size, and relative occurrence of the different types of explosions characterize the eruptive
style of the ordinary Strombolian activity.

Changes in the ordinary Strombolian activity are generally associated with imminent
dangerous phenomena such as lava flows, major explosions, or paroxysms (e.g., [4,28,29]).
Typically, an increase in Strombolian activity, in terms of the number of explosions per
hour and amplitude of seismic signals associated with volcanic tremor and explosions,
preceded the lava flow output [4]. They are generally caused by overflows [30] that
originate from the eruptive vent regions, or by the opening of new eruptive fissures along
the Sciara del Fuoco slope [31–33]. Fissure eruptions are also preceded by an intensification
of landslides [8,34,35]. Major explosions are sporadic explosive events traditionally defined
as explosions larger than the persistent activity, able to injure people visiting the top of the
volcano. Recently, Calvari et al. [17] proposed a method based on the “VLP size” parameter
of the seismic signal [4] and on the muzzle velocity by the duration of the explosive event
to estimate the variable magnitude and intensity of Strombolian explosions and therefore to
separate the field of the major explosions from those of paroxysms and ordinary explosions.
Although to date major explosions are unpredictable, these events are most likely to occur
when variations of the eruptive style happen [15,36,37]. Paroxysms are explosive eruptions
that form eruptive columns of some kilometers, eject metric-sized ballistic blocks, and can
generate modest pyroclastic flows [16,32,38–40].

The eruptive crisis of 2019 produced two paroxysms that occurred on July 3 and
August 28, which formed eruptive columns of about 5 km and were accompanied by pyro-
clastic flows that traveled more than one kilometer on the sea surface. The first of these two
paroxysms caused the death of a young tourist and the injury of some people, in addition
to triggering extensive fires that have involved the vegetated areas of the island [23]. The
effusive eruption, which began with the paroxysm on 3 July 2019, and lasted about two
months, also emplaced a lava flow field on the Sciara del Fuoco slope [41,42]. It is worth
pointing out that the seismic parameters that were routinely monitored, such as the seismic
amplitude and the hourly occurrence of VLP events (0.05–0.5 Hz), did not show significant
changes before the 2019 paroxysms (Figure 2a,b). On the contrary, the “VLP size” associ-
ated with the explosive activity and other parameters, such as the peak-to-peak amplitude
of VLP events and polarization of the raw seismic signal, showed significant variations
about one month before that paroxysm [4]. These medium-term seismic precursors of
the paroxysmal activity (Figure 2c–e) have been interpreted as variations in the eruptive
style linked to the magma–conduit interaction and to the degassing of the volcanic system,
which control the Strombolian explosive mechanism.
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of an analogue basaltic magma using an experimental setup [44] and produced seismo-
acoustic measurements. Giudicepietro et al. [45] designed an unsupervised neural 
network based on a Self-Organizing Map (SOM) that was able to consistently group the 
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Figure 2. Monthly histograms from November 2018 to September 2019 of the raw seismic signal
amplitude recorded by the STRA station (a); hourly occurrence of VLPs (b); polarization azimuth of
the raw signal of the STRA station (c); peak-to-peak amplitude of VLP events (0.05–0.5 Hz) recorded
by the STRA station, horizontal component (d); VLP size measured by the STRA station, horizontal
component (e). The dark gray bars are relevant for the period before the paroxysm of 3 July 2019, the
light gray bars are relevant for the period following the aforementioned paroxysm.

In addition to the geophysical studies conducted on volcanoes, analogue experiments
also provided useful information to discriminate the factors that affect the degassing and
eruptive style of an open conduit volcano such as Stromboli. Spina et al. [43] investigated
the role of conduit surface irregularity and physical properties (e.g., viscosity and gas flux)
of an analogue basaltic magma using an experimental setup [44] and produced seismo-
acoustic measurements. Giudicepietro et al. [45] designed an unsupervised neural network
based on a Self-Organizing Map (SOM) that was able to consistently group the artificial
seismo-acoustic events generated in similar experimental conditions (conduit roughness,
analogue magma viscosity, and gas flux) thanks to an appropriate strategy for extracting
the seismo-acoustic features.

The aim of this work is to study the types of explosions recognizable in the persis-
tent activity of Stromboli through unsupervised neural networks applied to seismic and
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infrasonic signals, which contain the fingerprints of the explosive mechanism. In partic-
ular, our target is the period that preceded and included the paroxysmal phases of 2019.
For this purpose, we applied a SOM clustering of the seismic and infrasonic features to
group events generated in similar conditions and we compared the result of clustering
with the images recorded by the Istituto Nazionale di Geofisica e Vulcanologia (INGV)
thermal and visible cameras and with the ground displacement measurements obtained by
means of Ground-Based Interferometric Synthetic Aperture Radar (GBInSAR) devices, in
order to gain insights into the explosive mechanisms and the pre-eruptive dynamics of the
paroxysmal activity.

2. Data and Methods
2.1. Seismic and Infrasonic Data

We used the data of the STRA seismic–acoustic station (Figure 1) belonging to the
Istituto Nazionale di Geofisica e Vulcanologia (INGV) monitoring network [46–48]. The
seismic station is equipped with a CMG40T Guralp broadband sensor. The infrasonic
sensor is a Chaparral Model 25. The signals of both sensors are acquired by a 24-bit GAIA2
digital recorder [49], optimized for low power consumption, a critical requirement for data
acquisition in inaccessible areas. The sampling rate for seismic and infrasonic signals is
50 samples per second. The data are continuously transmitted to the Osservatorio Vesu-
viano, Osservatorio Etneo and Osservatorio Nazionale Terremoti of INGV, Italy. Figure 3
shows examples of seismic–acoustic recordings of explosive events linked to the persistent
explosive activity of Stromboli. The filtered signals (red line) in frequency bands used in
this work for the seismic–acoustic feature extraction are superimposed on the raw signals
(gray line).
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Figure 3. Example of seismic (a) and infrasonic (b) signals of a single explosion that occurred on 17
February 2019 at 14:05 UTC. The raw signals are shown in gray. In red, the seismic signal filtered
in the VLP band (0.05–0.5 Hz) in panel (a) and the high-pass filtered infrasonic signal (>0.5 Hz) in
panel (b).

Figure 4 shows the frequency content of the seismic and infrasonic signals of the
explosive event considered in Figure 3.
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Figure 4. Example of the seismic (panel a) and infrasonic (panel b) signals of an explosion that
occurred on 17 February 2019 at 14:05 UTC. The raw signals and the spectrograms for both signals
are shown.

To describe the temporal evolution of the eruptive style of Stromboli before and during
the 3 July–30 August 2019 eruptive crisis, we considered a wider time interval that extends
from 15 November 2018 to 15 September 2019, and selected 14,289 seismic recordings (each
30 s long) and 14,179 infrasonic recordings (each 30 s long), most of which are pairs of
seismo-acoustic signals linked to the same explosive event. We chose the same events
related to the “VLP size” time series of Giudicepietro et al. [4], which refers to the VLPs
with maximum “size” for each half-hour in the target period. We adopted this criterion for
the selection of the seismic–acoustic events because the VLP size was already recognized
as a parameter that effectively highlighted variations in the period preceding the eruptive
crisis of July August 2019 [4]. We used the seismic data of the east–west component of
the STRA station, which is the component with the maximum amplitude of the signals,
with the Stromboli seismic wavefield being mainly horizontally polarized (e.g., [4,37]). In
addition to the seismic data, we also selected the corresponding infrasonic data recorded
by a sensor located in the same site as the STRA seismic station.

To analyze the temporal evolution of the eruptive style of Stromboli, we developed a
novel preprocessing strategy suitable to extract the seismic–acoustic features representative
of the fingerprints of the explosive mechanisms and to overcome the problem of the data
window cutting, which cannot be based on a precise picking of seismic phases that are
not recognizable in the signals of our interest (VLP events). Then, we applied the SOM
algorithm to cluster the seismic–acoustic feature datasets.

2.2. Seismic–Acoustic Feature Extraction Methods

An efficient feature extraction method for seismic data typically takes into account
the spectral content and the waveform of the events (e.g., [7,8,45]). Actually, these are the
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characteristics that the analysts visually examine to classify seismograms, for example, to
distinguish a local earthquake from a regional one or a teleseism. Often, spectrograms
expressed in compressed form and waveform functions calculated on sliding windows [1]
are used to analyze events with impulsive onset. However, in this case, the signals of our
interest are the VLPs (0.05–0.5 Hz) in which an impulsive onset cannot be recognized. Thus,
we designed novel methods for seismic and infrasonic feature extraction, that are indepen-
dent of the picking of a transient signal onset. The method for cutting data, which allows
us to extract event records from the continuous signal, relies on an algorithm designed
to detect the VLP event with the largest “size” in half-hour windows [4]. This algorithm
allows cutting a 30 s signal interval from each half-hour window, but it does not return
signal intervals starting precisely at the picking of a signal onset. For this reason, to encode
the VLP event waveforms, we sorted the amplitude features in ascending order and, to en-
code the seismic signal frequency content, we used the spectrum, and not the spectrogram
(Figure 5). In particular, by using the utilities of ObsPy Toolbox [50], we calculated the
spectrum of every selected 30 s signal, then we applied a filter for smoothing the obtained
spectrum, using the aforementioned ObsPy Toolbox, and, finally, we downsampled the
smoothed spectrum by a factor of 1:3 (Figure 5d). Moreover, we encoded the VLP event
waveforms by filtering the signal in the 0.05–0.5 Hz band, resampling it by a factor 1:16, and
sorting the values of the filtered and resampled seismogram in ascending order (Figure 5c).
We added the information of the raw seismic signal waveform using an encoding based
on the peak-to-peak amplitude of a 25-sample (0.5 s) sliding window. This waveform
parameterization is performed by applying the following equation:

WFi =
((Ai,M)− (Ai,m)) ∗ N

∑N
k=1((Ak,M)− (Ak,m))

(1)

where Ai,M and Ai,m are the maximum and the minimum amplitudes in a 25-sample window
and N is the total number of windows. Finally, we sorted the values of the raw seismic
waveform parameterization vector in descending order (Figure 5b). Figure 5 shows an
example of feature extraction for one of the 14,289 seismic events in the dataset.

We also extracted the features of the infrasonic signal. To avoid the high-noise com-
ponent present in the low frequencies of the infrasonic signal (Figure 3b), we high-pass
filtered the data (>0.5 Hz) and applied an encoding procedure similar to that used for the
raw seismic signal waveform (Equation (1)). Then, we sorted the infrasonic feature vector
in ascending order to make the encoding independent from the picking of the events.

2.3. SOM Method

Once the dataset of the extracted seismic–acoustic features was prepared, we ana-
lyzed it with a SOM-based method to highlight clusters of explosive events with common
characteristics.

There are different clustering techniques for the analysis of complex datasets, which
can be divided mainly into two types: linear ones, such as the Principal Component
Analysis (PCA) or the Multidimensional Scaling (MDS); and non-linear ones, such as the
Self-Organizing Map (SOM), the Curvilinear Component Analysis (CCA), or the Curvilin-
ear Distance Analysis (CDA). First, it has been proved that the SOM algorithm discriminates
better than CCA and PCA, providing a simplified two-dimensional representation of the
data and preserving the distinctive information that allows them to be separated [51,52].
Furthermore, we chose to use the SOM algorithm based on the good results obtained
with SOM to analyze experimental data, proving its ability to group experimental seismo-
acoustic events [45].
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Figure 5. Feature extraction for seismic data. (a) Raw seismic signal of the event recorded on 27 June
2019 at 19:13:33 UTC (STRA station, east–west component; see Figure 1), time in seconds on the x axis;
(b) normalized raw waveform parameterization (WF), time in seconds on the x axis; (c) normalized
VLP waveform parameterization, time in seconds on the x axis; (d) spectrum parameterization,
frequency in Hz on the x axis; (e) normalized seismic features (feature numbering on the x axis).

The SOM neural networks were designed by Tuevo Kohonen in 1982 [53] and inspired
by brain cortex topology. In particular, he took into account the connections between
neurons and how a neuron can affect its neighbors; neurons that are close to the active
ones strengthen the connections, while those that are further away weaken them. The
SOM network uses an unsupervised and competitive learning algorithm; this means that
the process is entirely data-driven and the neurons (or nodes) compete with each other to
respond to a subset of the input data. Competitive learning increases the specialization of
each node in the network. The goal is to discover some hidden structures of the data so
that they can be clustered.

The SOM method is used in several applications, in particular in data examination
and visualization. As a clustering method, it allows the reduction of a large amount of
data by grouping them. However, contrary to the classical clustering methods, being a
non-parametric technique, it does not require information on the data distribution. As a
projection method, it can display high-dimensional data onto an easily understandable
lower-dimensional space (commonly two-dimensional), useful for improving the input
pattern interpretation and classification and for finding unexpected structures in the data.
Its effectiveness as a visualization technique is given by the fact that the mapping is non-
linear and the resulting map preserves the topological and metric relationships of the data.

The SOM unsupervised algorithm works as follows: before the training, the proto-
types are initialized with small random values to demonstrate the strong self-organizing
capability of the SOM. First, a randomly extracted input vector of the dataset is presented
to the network; then, the winning node (called the best-matching unit) is identified, i.e., the
node whose prototype is closest to the input, in terms of Euclidean distance. The weights
of the winning node and its topological neighbors are then updated or moved towards the
input vector. The updating rule of the prototype vectors uses a decreasing neighborhood
function of the distance between two nodes on the map grid. The most commonly used
is the Gaussian. This function uses two parameters: the learning rate, which controls the
intensity of the attraction of the input vector, and the neighborhood radius, which regulates
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the number of vectors attracted other than the winning node. Both of these parameters
are time-decreasing functions and change their values during training. Then, they remain
constant during the convergence phase. Thus, in the beginning, the map provides a first
rough representation of the input data distribution while at the end the prototypes are
settled to their final values and the final map is shown. A more exhaustive description
of the SOM algorithm can be found in [11]. At the end of the iterative process, the final
map consists of “ordered” prototype vectors on the grid so that similar inputs fall into
topologically neighboring nodes. In this sense, the SOM is a similarity graph.

The architecture of a SOM network has two levels, one of the input nodes and one
of the output nodes located on a generally two-dimensional grid. Each input node is
connected to all the nodes of the grid; each output node has a vector of weights with the
same dimensions as the input vectors (Figure 6a). Once the feature vectors have been
processed, the final configuration of the weights will divide the input elements into the
SOM nodes, which represent their clustering.
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Figure 6. (a) Example of a SOM architecture with input layer, weights, and output layer. (b) Example
of a two-dimensional map with a global toroid shape (visualized as a sheet) and a local hexagonal
lattice structure. The size of the map is 3 × 4 = 12 (the one we adopted in our experiments) and the
numbers represent the ID numbers of the nodes.

In our work, we used a SOM with a 3 × 4 = 12 local hexagonal grid (Figure 6b),
and a global toroid shape displayed as a sheet to have an immediate visual cluster con-
figuration. This means that nodes on top and bottom are neighbors as well, as are the
side nodes. Figure 6b also shows the numbering of the map nodes which proceeds from
top to bottom and from left to right. Finally, we fixed the SOM parameters according to
Kohonen et al. [54] and the SOM toolbox for Matlab (http://www.cis.hut.fi/somtoolbox/,
last accessed 4 March 2022).

2.4. Thermal and Visible Camera Data

To visually analyze the explosive activity of Stromboli and compare it with the cluster-
ing of the seismo-acoustic features, we used the recordings of the INGV monitoring fixed
camera network. In particular, we used the visual and thermal images recorded by the
SQV/SQT and SPV/SPT cameras (Q and P in Figure 1). These cameras acquire one image
every two seconds (SQV and SQT) and two images every second (SPT), both in the visible
(V) band and in the thermal (T) band. Sensors in the thermal band are particularly useful
because they are not very sensitive to day/night light variations. The two cameras have
different distances from the crater area and different viewing angles. This causes a different
sensitivity to the detection of the explosions that occur in the three vent regions. Moreover,
particular weather conditions characterized by low-lying clouds can affect the visibility of

http://www.cis.hut.fi/somtoolbox/
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the explosions. Therefore, depending on the case, the analysis was performed by using a
specific camera allowing the best view.

Based on the results of the seismo-acoustic data clustering obtained with the SOM
method, we identified five days that are representative of the five main nodes, which are
grouped into three clusters. Each of these days was characterized by a prevalent explosive
type, according to the neural analysis of the seismo-acoustic features (see Section 3.3).
Thus, we selected about 180 video recordings of explosions and characterized them on the
basis of the eruptive vent, the height and shape of the ejection, and the duration of the
explosive process.

2.5. GBInSAR Data

GBInSAR measurements allow retrieving ground deformation by exploiting the phase
difference between pairs of Synthetic-Aperture Radar (SAR) images acquired by in situ
instrumentation. They are based on the same principle as satellite-based SAR observation,
with the advantage that GBInSAR has a higher rate of data acquisition and takes images
short distances from the target area. At Stromboli, there are two GBInSAR devices installed
in the stable area north of the Sciara del Fuoco, in order to monitor ground displacement
of the unstable flank and the top of the volcano. The technical characteristics of the
instruments, their settings, and the data processing methods have made this technique very
important for identifying the periods of inflation/deflation of the shallow magmatic system
in Stromboli (e.g., [17,30,35,41,55–57]), regardless of the weather conditions and ash content
in the atmosphere. The two instruments, working in the Ku-band (17.0–17.1 mm radar),
acquire with a revisiting time of 6–7 min, and then the images are averaged over 30 min in
order to increase the signal-to-noise ratio. A resample operation returns images with a pixel
size of about 2 m × 2 m along both range and cross-range [58] and, setting a coherence
(>0.7; see Antonello et al. [59]) and a power filter (>55 dB; [30,57]), the pixel by pixel staking
algorithm allows the reconstruction of the cumulative displacement maps, allowing for
the tracing displacement time series of selected points (averaged over 5 × 5 pixels) with
a precision in the displacement measurement of 0.5 mm [41,56]. We used GBInSAR data
recorded from 15 November 2018 and 15 September 2019. The features of the two GBInSAR
devices are reported in Table 1.

Table 1. Characteristics of the two GBInSAR devices.

System Model Band Revisiting
Time

Averaging
Interval Look Angle Heading Angle

GBInSAR
NE400

GBInSAR
LiSAmobile k09 Ku 6 min 33 min from 63.8◦ to 90.0◦ from 143◦ to 217◦

GBInSAR
NE190

GBInSAR
LiSAmobile k09 Ku 7 min 33 min from 65.0◦ to 113.5◦ from 115◦ to 245◦

3. Results

Our goal is to analyze the temporal evolution of the Strombolian explosive activity in
order to highlight changes in the eruptive style that preceded the paroxysmal phases of 3
July and 28 August 2019.

3.1. Seismic–Acoustic Features

We applied the novel procedures for the feature extraction from seismic and infrasonic
data, which are described in the “Data and Methods” section. Starting from 30 s seismic
signal recordings corresponding to 1500 samples (50 samples per second), we obtained
351-dimensional feature vectors. In particular, we encoded the seismic signal frequency
content by downsampling the smoothed spectrum by a factor of 1:3 and considering the
spectral features up to 10 Hz. This frequency threshold is suitable to adequately represent
the signals of interest for our study [24,34,37]. Then, we encoded the VLP event waveforms
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by resampling the filtered signal (0.05–0.5 Hz) by a factor of 1:16 and, finally, sorting the
VLP waveform features in ascending order. Finally, we extracted the raw seismic signal
waveform features using an encoding based on the peak-to-peak amplitude of a 25-sample
(0.5 s) sliding window (Equation (1)), sorted in descending order. Therefore, we obtained a
vector of the seismic features composed of 200 coefficients for the spectral content encoding,
92 coefficients that encode the VLP waveform, and 59 coefficients for the parameterization
of the raw waveform (Figures 5 and 7).
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Figure 7. Parameterization of seismic and infrasound signals of three explosive events that occurred
on 1 February 2019 (1), 12 June 2019 (2) and 16 July 2019 (3). In the three panels (1, 2 and 3): (a) The
raw seismic data. (b) The waveform parameterization of the raw seismic data (blue line) and the same
curve sorted in descending order (red line). (c) The seismic signal filtered in the VLP frequency band
(0.05–05 Hz), resampled (blue line) and rearranged in ascending order (red line). (d) The spectrum up
to the frequency of 10 Hz (blue line) and the smoothed and resampled spectrum (red line). (e) The
vector of the features that encode the seismic signals given by the union of the red vectors of (d,c,b).
At the bottom of the figure the signals (f panels) and the waveform parameterization (g panels) of the
infrasonic data are shown. On the horizontal axes of panels (a,c,f) there is the sequential index of the
sample; on the horizontal axes of panels (b,g) the sequential index of the peak-to-peak amplitude
values is reported; on the horizontal axis of the panel (d) the frequency in Hz is reported; on the
horizontal axis of the panel (e) there is the feature numbering.

We also extracted the infrasonic feature vectors by high-pass filtering the signal
(>0.5 Hz) and applying an encoding procedure similar to that for the raw seismic sig-
nal waveform (Equation (1)). We obtained a 59-dimensional infrasonic feature vector for
each infrasound record. Additionally, in this case we sorted the vector of the features
in ascending order to make the encoding independent from the picking of the events
(Figure 7).

3.2. SOM Analysis

We carried out three clustering experiments through the SOM analysis: (i) using only
the seismic features; (ii) using only the infrasonic features; (iii) using both features of seismic
and infrasonic data. Figure 8 shows the results of the three experiments. In the SOM maps,
each node is shown as a yellow hexagon, whose size indicates the node density, in terms of
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the number of input samples associated with that node. The Euclidean distance between
the prototypes of two neighboring nodes is represented according to grayscale in the spaces
between the nodes. Dark gray hexagons interposed between the nodes correspond to a
great distance, light gray indicates high similarity between the prototypes of neighboring
nodes. We indicated the nodes of the SOM map with progressive numbers from 1 to 12 (the
dimensions of the map are 3 × 4). The node numbering criterion is shown in Figure 6b.
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Figure 8. Summary of the experiment results. (a) Monthly histogram of the three main clusters
obtained in the experiment based only on the seismic features. The top right inset shows the SOM
map. Nodes outlined with the same color belong to the same cluster (red, blue, and green). On the
right are the final prototypes of the nodes, marked with the same colors that identify the three main
clusters. (b) Monthly histogram of the two main clusters obtained in the experiment based only on
the infrasonic features. The top right inset shows the SOM map. Nodes outlined with the same color
belong to the same cluster (red and blue). On the right, the final prototypes of the nodes, marked with
the same colors that identify the two main clusters. (c) Monthly histogram of the three main clusters
obtained in the experiment based both on the seismic and infrasonic features. The top right inset
shows the SOM map. Nodes outlined with the same color belong to the same cluster (red, blue, and
green). On the right the final prototypes of the nodes are shown, marked with the same colors that
identify the three main clusters. In November 2018 and September 2019, fewer events are reported in
the graph because only 15 days are considered.
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The results of the experiment that was based only on the seismic features (Figure 8a)
highlight three main clusters: a red cluster, formed by node 10; a blue cluster, formed by
nodes 4 and 12, and a green cluster composed of nodes 1, 2, and 5.

The experiment that was based only on the infrasonic features (Figure 8b) provided
only two main distinct nodes of the SOM network, in which most of the examples of the
dataset are grouped. Thus, only two clusters were identified in this experiment: a red
cluster, coinciding with node 2, and a blue cluster, coinciding with node 12.

The results of the experiment that was based both on seismic and infrasonic features
(Figure 8c) highlight three main clusters: a red cluster, composed of nodes 4 and 7; a blue
cluster, which includes nodes 5, 9, and 10; and a green cluster composed of node 11.

In all the three experiments that we carried out, the results indicate a variation in the
relative occurrence of the clusters in the three months preceding the eruptive crisis, which
began on 3 July 2019 (Figure 8). In particular, the experiment with only infrasonic data
separates two large families of events: one characterized by large-amplitude impulsive
infrasonic signals, that is marked as a red cluster in the results of our experiment, and
another with infrasonic signals almost indistinguishable from background noise, marked
as a blue cluster in the results of our experiment (Figure 8b). The experiment with only the
features of the seismic signals identifies a greater variety of types that can be grouped into
three main clusters. Finally, the experiment with the seismo-acoustic features used jointly
also identifies three main clusters and more clearly emphasizes the variation in the relative
occurrence of the clusters before the paroxysm of 3 July 2019 (Figure 8c).

By associating the seismic features with the infrasonic ones, the event parameterization
is more complete and the SOM clustering experiment provides more significant information
on the temporal evolution of the eruptive style of Stromboli in the target period. For this
reason, in the following, we will focus on the results of this experiment by comparing the
retrieved clusters with the camera images and GBInSAR deformation data. We will call the
three clusters obtained in the seismo-acoustic SOM experiment cluster Red (in total 4539
explosions: 2950 in node 4 and 1589 in node 7), cluster Blue (in total 6332 explosions: 1183
in node 5; 2638 in node 9; and 2511 in node 10) and cluster Green (1682 explosions in node
11) (Figure 8c).

3.3. Classification of the Explosions Belonging to Clusters through the Analysis of Camera Images

To link the three seismo-acoustic clusters obtained from the SOM analysis to types of
explosions, we selected a subset of seismo-acoustic events representative of Blue, Green,
and Red clusters (Table 2), and compared them with the INGV camera recordings (Figure 1).
We analyzed the main nodes of cluster Blue, which are 9 and 10, with node 5 being very
similar to node 9. First, we selected the camera images relevant to the days when there was
the highest concentration of explosions falling in the main nodes belonging to a specific
cluster. These days are 17 February, 16 May, 8 June, 9 July, and 6 August 2019. Table 2
shows the distribution of the seismo-acoustic clusters on the selected days. February 17
was chosen to represent cluster Red, with a prevalence of seismo-acoustic events that
fall into node 4 (43 out of 47); 16 May and 8 June were selected to represent cluster Blue,
with a prevalence of seismo-acoustic events belonging to nodes 9 and 10, respectively; 9
July was again representative of cluster Red, with a prevalence of events in node 7; and
August 6 represented the events of cluster Green, all of which fall into node 11. Thus,
there are 182 explosions of interest, equal to the sum of the values in bold underlined
in Table 2. Unfortunately, some of these explosions were not properly recorded by the
INGV cameras due to poor weather conditions or technical problems. Furthermore, several
explosions belonging to cluster Blue are inherently undetectable by cameras due to the
types of events that this cluster groups together, namely gas explosions. In particular, thirty
of the forty 16 May explosions, belonging to node 9 in our dataset, are not visible in the
camera recordings. The same happens for nine of the forty explosions relevant to 8 June,
belonging to node 10. In summary, the cameras recorded: 42 explosions falling into node 4
on 17 February; 32 explosions belonging to node 7 on 9 July; 10 explosions belonging to
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node 9 on 16 May; 31 explosions belonging to node 10 on 8 June; and 20 explosions falling
into node 11 on 6 August 2019. The analyzed dataset allowed us to characterize the types
of explosions corresponding to the seismo-acoustic clusters. Figure 9 shows some examples
of the seismograms associated with the seismo-acoustic events that characterize the main
SOM nodes.

Table 2. Days representative of the seismo-acoustic events of the three clusters. The values in bold
and underlined indicate the number of events in our dataset, which, on the day indicated in the first
column, falls into the prevailing node (reported in the last column). The column “Detected” gives the
number of explosions that have been identified by the monitoring cameras.

Date Red n.4 Red n.7 Blue n.9 Blue n.10 Green n.11 Tot. Detected Prevailing Node

17 February 2019 43 0 2 2 0 47 42 node 4
16 May 2019 0 0 40 3 3 46 10 node 9
8 June 2019 0 0 2 40 1 43 31 node 10
9 July 2019 8 33 0 0 4 45 32 node 7

6 August 2019 4 9 0 6 26 45 20 node 11
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the number of explosions that have been identified by the monitoring cameras. 

Date Red 
n.4 

Red 
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Blue 
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n.10 

Green 
n.11 Tot. Detected Prevailing 

Node 
2019-02-17 43 0 2 2 0 47 42 node 4 
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Figure 9. The first 4 h (UTC time) of the seismogram (east–west STRA channel) filtered in the VLP
frequency band (0.05–0.5 Hz) of four of the five sample days representative of the main SOM nodes.
(a) 2019-02-17, the red ovals mark the events belonging to node 4 (Red cluster). (b) 2019-05-16, the
blue ovals mark the events belonging to node 9 (Blue cluster). (c) 2019-06-08, the blue ovals mark the
events belonging to node 10 (Blue cluster). (d) 2019-08-06, the green ovals mark the events belonging
to node 11 (Green cluster).

Table 2 reports in the column “Detected” the number of explosions recorded by the
seismo-acoustic trace, and falling into the corresponding prevailing node (last column) that
could be identified by the camera images. Some of them are shown in Figure 10. Actually,
the observation of the camera images allowed us to recognize the vent (Figure 10a,f) and
the eruptive style of prototypal explosions belonging to the three clusters. In particular, on
17 February, the SQV camera (Q in Figure 1) recorded 43 explosions from node 4, which
belongs to cluster Red (Table 2). All of them were characterized by well-collimated jets
from the N1 vent (Figure 10a), with approximately the same elevation (~200 m), and lasting
on average ~5.6 s (three SQV frames). Only two events out of 43 lasted longer (8 s), whereas
12 events lasted less (4 s). These explosions ejected juvenile pyroclastic fragments showing
ballistic trajectories.
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Figure 10. (a) Photo taken from Il Pizzo Sopra la Fossa showing the labels of the active vents
within the crater terrace of Stromboli. (b) Example of an explosion falling into cluster Blue, node 9.
(c) Example of an explosion falling in cluster Blue, node 10. (d) Example of an explosion falling in
cluster Green, node 11. (e) Example of an explosion falling in cluster Red, node 7. (f) Example of an
explosion falling in cluster Red, node 4. Panels (b) to (f) show from top to bottom: UTC date and
time, node to which they belong, camera image, raw seismic signal, VLP seismic signal, the high-pass
filtered infrasonic signal (>0.5 Hz), the zoomed-in view of the infrasonic signal.

On May 16, the SPT camera (P in Figure 1) recorded 10 of the 40 explosions that fall
into node 9 (cluster Blue). Most of the SPT videos recorded on 16 May 2019 were damaged
due to technical problems, probably related to the data transmission system, and could
not be used, but the few available allowed observations of this activity that cannot be
detected from other cameras because of too-low intensity and very short gas plume. The
observed explosions were all from the SW2 vent (Figure 10a). They were mild and mostly
gas-dominated (Type 0, according to Leduc et al. [26]), displaying slow bowl-shaped gas
emissions with no visible ash or incandescent lapilli. The max height reached by these
explosions was around 10–20 m and their duration ranged between 11 and 33 s (average
18.7 s).
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On June 8, the SPT camera recorded 31 of the 40 explosions that fell into node 10
(cluster Blue). These explosions were Type 0 events occurring from SW1, SW2 (most
common), or C1 vents (Figure 10a,c), having a duration between 9 and 72 s (average 22.5 s).
Some of them were not visible on the surface (nine events) probably because they were too
weak and occurred within the conduit.

On 9 July, the SQT camera recorded 32 powerful explosions belonging to node 7
(cluster Red) generally with well-collimated jet and ballistic ejections from the SW vent
region (Figure 10a,e). We could not exactly distinguish the vent because of the inclined
view offered by this camera. The duration ranged between 10 s and 28 s (18.6 average).

On 6 August, 26 explosions belonging to node 11 (cluster Green) were recorded. In
this period, a lava flow descended along the SW slope of the Sciara del Fuoco (Figure 1).
Given the almost continuous explosive activity that accompanied this effusive phase, it was
difficult to identify the explosions associated with the seismo-acoustic signals. However,
the SQV camera recorded some of these events. They may be related to explosions from
multiple vents, generally the South West (SW) and Central (C) vent regions (Figure 1).
These explosions were characterized by the ejection of pyroclastic fragments, most of which
were incandescent spatter-like, with a wide range of ejection angles that gave the explosion
an almost hemispherical shape, and the height reached a maximum of 80 m.

Figure 10 shows an example for each of the main nodes belonging to one of the three
clusters. In particular, panels (b) to (f) show the images and the seismo-acoustic recordings
of the event types for nodes 9 and 10 (cluster Blue), node 11 (cluster Green), and nodes
4 and 7 (cluster Red). For each of them, the date, the node they belong to, the image of
one of the cameras used for the analysis, the raw seismic signal, the seismic signal filtered
in the VLP band (0.05–0.5 Hz), the high-pass filtered infrasonic signal (>0.5 Hz), and a
zoomed-in view of the infrasonic signal are shown from top to bottom. The SPV and SPT
cameras are very close to the vents whereas the SQV and SQT cameras are further away
from them (Figures 1 and 10a), therefore the explosions that produce a weak signal in the
camera recordings (e.g., panels b and c) are visible only from the cameras installed at site P
in Figure 1 (SPV and SPT). Figure 10b,c represents two event types of cluster Blue, which
is associated with gas explosions, belonging to nodes 9 and 10, respectively. The events
of this cluster show VLPs (Figure 9b,c) characterized by prolonged oscillation, especially
evident in the events falling into node 9, and peak-to-peak amplitude generally higher
than that of the events belonging to the other two clusters (particularly evident in node
10). The infrasonic signal associated with these events is almost indistinguishable from the
background noise. Figure 10d shows an example of cluster Green, consisting of only node
11, which groups explosions with ballistic spatters and hemispherical shapes. The raw
seismic signal associated with this explosion is modest in amplitude whereas the sustained
VLP signal includes numerous oscillations. The infrasonic signal does not show an evident
pulse linked to the explosion and is characterized by repeated minor pulses linked to
spattering activities. Finally, Figure 10e,f represents two event types of cluster Red, falling
on nodes 4 and 7, respectively. These events are characterized by a VLP signal with a
distinct amplitude pulse and an infrasonic transient of remarkable amplitude. The raw
seismic signal shows a greater contribution of the high-frequency components compared
to the other types of events, in part due to the coupling of the infrasonic signal with the
ground [60]. These seismo-acoustic events are associated with explosions that produce a
well-collimated jet, with ejection of ballistic fragments as described above for the events of
cluster Red.

3.4. Seismo-Acoustic Clusters and GBInSAR Measurements

We compared the time evolution of seismo-acoustic clusters with the ground defor-
mations (Figure 11a) measured by the GBInSAR device in the summit area of the volcano
(Figure 1). The investigated period was characterized by an oscillatory trend of deforma-
tions, with displacements towards the sensor (i.e., inflation), and displacements away from
it (deflation). We observed an initial period from 15 November 2018 to 5 February 2019 (1
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in Figure 11), characterized by high displacements (on average 1.8 mm/day) towards the
sensor (inflation), a period of low to null displacement until March 3 (2 in Figure 11), and
new inflation of about 5 mm/day toward the sensor, which lasted until March 15, 2019 (3
in Figure 11). After this inflation, there was a period characterized by small fluctuations in
displacements, which in any case remained low or null until 19 July 2019 (4 in Figure 11).
The following period was characterized by displacement towards the sensor (inflation),
with an average rate of 2.8 mm/day and peaks that reached even more than 30 mm/day (9
August 2019 and 10 September 2019).

Remote Sens. 2022, 14, 1287 18 of 27 
 

 

 
Figure 11. Comparison between the cumulative LOS displacement measured by the GBInSAR 
device (a) and the temporal evolution of the three main clusters, Red (b), Blue (c), and Green (d), 
obtained from the SOM analysis. Numbers 1 to 5 indicate the dates when the displacement rate 
changes. (1) 5 February 2019; (2) 3 March 2019; (3) 15 March 2019; (4) 19 July 2019; (5) 28 August 
2019, when the second paroxysm occurred. The black rectangle indicates the interval between 1 June 
2019 and 3 July 2019 when the first paroxysm occurred. 

A very striking feature, currently never observed in the GBInSAR data from 
Stromboli (e.g., [56]), was the increase in the oscillations of the crater terrace, which can 
be deduced here from the increase in the standard deviation of the daily displacement 
rate. In particular, the period considered can be divided into three subperiods: (i) from 15 
November 2018 to 5 April 2019, with a low standard deviation (on average 24 mm/day); 
(ii) from 8 May 2019 to 8 July 2019 (period preceded by the absence of data due to technical 
problems of the instrument), with an increase in the standard deviation (on average 45 
mm/day); (iii) from 9 July 2019 to 15 September 2019, which was characterized by high 
standard deviation values (on average 105 mm/day), testifying the strong oscillations of 
the crater terrace in the time of acquisition of the GBInSAR data. 

By comparing this displacement data with SOM clusters and then with the camera 
images, we found that the period dominated by the gas explosions of cluster Blue (Figure 
11c), which begins in early April (the predominance of cluster Blue is highest in June 2019, 
as shown by the black rectangle in Figure 11), occurs during a stasis of ground 
deformation interposed between two phases of inflation of the upper part of the volcanic 
edifice (Figure 11a). On the contrary, the explosions of clusters Red and Green (Figure 
11b,d), that are dominated by the ejection of coarse juvenile ballistic particles, occur in 

Figure 11. Comparison between the cumulative LOS displacement measured by the GBInSAR device
(a) and the temporal evolution of the three main clusters, Red (b), Blue (c), and Green (d), obtained
from the SOM analysis. Numbers 1 to 5 indicate the dates when the displacement rate changes. (1) 5
February 2019; (2) 3 March 2019; (3) 15 March 2019; (4) 19 July 2019; (5) 28 August 2019, when the
second paroxysm occurred. The black rectangle indicates the interval between 1 June 2019 and 3 July
2019 when the first paroxysm occurred.

A very striking feature, currently never observed in the GBInSAR data from Stromboli
(e.g., [56]), was the increase in the oscillations of the crater terrace, which can be deduced
here from the increase in the standard deviation of the daily displacement rate. In particular,
the period considered can be divided into three subperiods: (i) from 15 November 2018
to 5 April 2019, with a low standard deviation (on average 24 mm/day); (ii) from 8 May
2019 to 8 July 2019 (period preceded by the absence of data due to technical problems of
the instrument), with an increase in the standard deviation (on average 45 mm/day); (iii)
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from 9 July 2019 to 15 September 2019, which was characterized by high standard deviation
values (on average 105 mm/day), testifying the strong oscillations of the crater terrace in
the time of acquisition of the GBInSAR data.

By comparing this displacement data with SOM clusters and then with the camera im-
ages, we found that the period dominated by the gas explosions of cluster Blue (Figure 11c),
which begins in early April (the predominance of cluster Blue is highest in June 2019, as
shown by the black rectangle in Figure 11), occurs during a stasis of ground deforma-
tion interposed between two phases of inflation of the upper part of the volcanic edifice
(Figure 11a). On the contrary, the explosions of clusters Red and Green (Figure 11b,d),
that are dominated by the ejection of coarse juvenile ballistic particles, occur in periods
characterized by inflation of the crater area. In particular, cluster Green, erupting large
spatter, seems temporally correlated with the phases of more intense inflation of the top of
the volcano.

4. Discussion

In a previous study, Giudicepietro et al. [4] highlighted the precursors of the 2019
paroxysmal phase through the calculation of seismic parameters such as the polarization
of the seismic signal, the peak-to-peak amplitude of VLP events, and the VLP size. The
comparison of these parameters with the temporal evolution of the seismo-acoustic clusters
retrieved with the SOM analysis clearly shows that the anomalies of the seismic parameters
are linked to a significant change in the types of explosions before the 2019 paroxysmal
phase (Figure 12).

In particular, significant variations have been recognized thanks to the definition of the
VLP size parameter, which provides a value representative of the magnitude of the main
VLP event for each half an hour. When the continuity of the seismic signal is satisfactory,
48 values per day relating to 48 VLP events are retrieved. The events identified by the VLP
size calculation carried out in Giudicepietro et al. [4] have been selected to constitute the
dataset analyzed in this work.

The time series of the VLP size in the period 15 November 2018–15 September 2019
shows a remarkable increase before the 3 July 2019 paroxysm. This increase is reflected in
the time evolution of the seismo-acoustic clusters (Figure 13). Actually, about three months
before the first paroxysm (3 July 2019), the occurrence of seismo-acoustic events belonging
to cluster Blue (gas explosions or Type 0) increased with respect to the occurrence of seismo-
acoustic events belonging to clusters Red and Green. This indicates that the gas explosions
were predominant in the persistent Stromboli activity for about three months before the 3
July 2019 paroxysm. Furthermore, our findings indicate that Type 0 explosions produce
large VLP events whereas they do not generate evident signals in the camera recordings,
which in some cases do not record the event at all. We interpret this as the effect of large
gas slugs that cause a volumetric variation in the source area of the VLP seismic signals
when they rise along the conduit [24]. However, they do not generate ejection of pyroclastic
fragments, or hot material, which should be detected by visible and thermal cameras,
nor do they generate remarkable infrasonic signals, in frequencies greater than 0.5 Hz
(Figure 10). Therefore, Type 0 explosions may not be detected at all by monitoring cameras
and infrasonic networks whereas they are always clearly evident in broadband seismic
signals. A low-frequency infrasonic signal, e.g., within the frequency range of the band of
VLP seismic events (0.05–0.5 Hz), has been observed in some cases, but this component
of the infrasonic spectrum has not been considered for the parameterization of the signals
because it is generally affected by strong noise due to atmospheric weather conditions.
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paroxysm of 3 July 2019 was not a phase of inflation but rather an interruption of the 
inflation and a trend towards deflation in the last month before the paroxysm (Figure 11). 
The relationship between the prevailing type of explosions and the ground deformations 
in the crater area (Figure 11) indicates the consistency of the clustering obtained with the 
SOM with physical variations of the state of the volcano. In particular, the prevalence of 
gas explosions (cluster Blue) during a period of little or no inflation of the crater area is 
consistent with the fact that the gas is compressible and therefore when it passes through 
the final part of the conduit it produces less deformation than magma. On the other hand, 
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Figure 12. Comparison between: (a) seismo-acoustic clusters obtained with SOM analysis,
(b) polarization of the seismic signal, (c) peak-to-peak amplitude of VLP events, (d) VLP size. The
parameters shown in panels (b–d) were calculated in Giudicepietro et al. [4]. The dark gray bars are
relevant for the period before the paroxysm of 3 July 2019 whereas the light gray bars are relevant for
the period following that paroxysm.
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Compared to the explosions of cluster Red, this second type of explosion is linked to a 
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Figure 13. The time evolution of the VLP size parameter (a) and seismo-acoustic clusters (b). Relative
daily occurrence of the three seismo-acoustic clusters (Red, Blue, and Green) contains one event per
half hour of signal, so the maximum number of events in a day is 48. The black rectangle indicates
the interval between 1 June 2019 and 3 July 2019 when the paroxysm occurred. The vertical black line
indicates the 28 August 2019 paroxysm.

The comparison between the GBInSAR measures and the SOM clustering of the
seismo-acoustic features highlights that, counterintuitively, the geodetic precursor of the
paroxysm of 3 July 2019 was not a phase of inflation but rather an interruption of the
inflation and a trend towards deflation in the last month before the paroxysm (Figure 11).
The relationship between the prevailing type of explosions and the ground deformations
in the crater area (Figure 11) indicates the consistency of the clustering obtained with the
SOM with physical variations of the state of the volcano. In particular, the prevalence of
gas explosions (cluster Blue) during a period of little or no inflation of the crater area is
consistent with the fact that the gas is compressible and therefore when it passes through
the final part of the conduit it produces less deformation than magma. On the other hand,
the temporal correlation between the inflation phases in the crater area with the prevalence
of explosions belonging to cluster Red (well-collimated jets of ballistics), and especially to
cluster Green (erupting large spatter), is consistent with a condition in which the final part
of a shallow conduit is filled with magma. This condition is typical of the effusive phase (3
July–30 August 2019) fed by the SW vent region, during which the occurrence of the Green
cluster explosions increased.

The abrupt change in the eruptive style that arose when the paroxysm of 3 July
2019 occurred is noteworthy, suddenly determining the transition between an activity
characterized by a prevalence of gas explosions with little or no emission of pyroclastic
material (explosions of the Blue cluster) to an activity characterized by explosions that eject
incandescent ballistic pyroclasts in conjunction with effusive activity (Figures 11 and 13).
The explosions that emit incandescent ballistic fragments, which appeared immediately
after the paroxysm of 3 July 2019, are distributed in two different clusters that correspond
to different characteristics of the explosive mechanism whose fingerprints are recognizable



Remote Sens. 2022, 14, 1287 21 of 26

in the seismo-acoustic features. In particular, the explosions of cluster Red are characterized
by a well-collimated jet, which reaches a height of more than 200 m above the vent, and by a
remarkable infrasonic transient. Those of cluster Green are characterized by the emission of
incandescent ballistic spatter with a wide range of ejection angles and do not show an easily
recognizable infrasonic transient associated with them. The latter show a hemispherical
shape and reach a lower height (around 80 m). Compared to the explosions of cluster Red,
this second type of explosion is linked to a greater height of the magma column in the
conduit, which is completely filled with magma, as also observed in other volcanoes, for
example, Etna [61]. After the paroxysm of 3 July 2019, the Green cluster explosions became
frequent and probably occurred at the same SW vents that fed the lava flow. A small but
significant variation in the locations of the VLP events reported in Giudicepietro et al. [4]
corresponded to the sudden change in the eruptive style (3 July 2019, in Figures 11 and 13).
These locations were concentrated in the SW sector of the VLP source volume before
the paroxysm of 3 July 2019, and migrated slightly NE after this paroxysm, indicating a
resumption of the activity in the NE vent region (see Figure 7 in Giudicepietro et al. [4]).

Information on the final part of the conduits linked to the eruptive vents is contained
in the seismo-acoustic features as also highlighted in the analysis of experimental seismo-
acoustic events in Giudicepietro et al. [45]. Actually, clusters Blue and Red are composed of
more than one node, and the subdivision of the seismo-acoustic events into the different
nodes typically corresponds to explosions with a similar mechanism emitted from different
vent regions, as in the case of nodes 4 (N1 vent) and 7 (SW vents) that form cluster Red
(Figure 10a,e,f).

All the three main types of explosions recognized by the SOM analysis generally
manifest themselves in the persistent activity of Stromboli, each of which can occur in
different vent regions (Figure 1). Therefore, the anomaly that preceded the first paroxysm of
2019 was the clear predominance, within our dataset, of gas explosions (cluster Blue), which
reached 96.12% of the total in the last month before the 3 July 2019 paroxysm (Figure 13).
As already specified in the Data and Methods section, our dataset does not include all
explosions, which can exceed 400 per day, but only those associated with the largest VLP
size of every half-hour, for a maximum of 48 events per day. This selection allowed us to
extract the 14,289 and 14,179 most significant seismic and infrasonic recordings, respectively,
and to prevent the dataset from reaching dimensions that are not easy to handle for analysis.
In the period preceding the paroxysm of 3 July 2019, the predominance of cluster Blue in
this dataset indicates a degassing activity that is not accompanied by an effective emission
of juvenile material, consistently with the deflation or the absence of inflation in the crater
area, therefore indicating a remarkable anomaly in the pattern of the persistent activity
of Stromboli. The eruptive style change before the paroxysmal phase, which is clearly
recognizable in the temporal evolution of the seismo-acoustic clusters found with the
SOM analysis (Figures 11 and 13), is an important finding because it highlights hidden
variations in the state of the volcano that may reveal undetected escalation of volcanic
plume degassing and/or precursory leakage from deeply stored gas-rich magma (e.g., [62]).
Actually, despite Stromboli being a well-monitored volcano, when the first paroxysm of the
2019 eruptive crisis occurred, it was considered to be in a state of normal activity.

The second paroxysm, which occurred on 28 August 2019, happened 56 days after the
start of the effusive activity, which began immediately after the first paroxysm on 3 July
2019. Therefore, this event occurred in a different condition compared with the first one, as
also indicated by the temporal evolution of the seismo-acoustic clusters (Figures 11–13).
Considering the models of Stromboli paroxysm triggering proposed in the literature, the
first paroxysm (3 July 2019) could be explained by an increased supply of gas and magma
from the depths (e.g., [39,62,63]). However, the neural analysis of the eruptive style and
its comparison with the deformation of the summit area allowed us to discover that this
paroxysm was preceded by a phase of decrease in the feeding of the persistent activity,
which is highlighted by the decreased emission of pyroclastic material and by the deflation
of the summit area accompanied by a greater release of degassing (Type 0 explosions
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of the Blue cluster). For this reason, the input of gas and magma from the depths that
caused the paroxysm does not seem linked only to increased activity of the deep magma
system but also to a deceleration, in the period preceding the paroxysm, of persistent
activity, which is partly controlled by the shallow volcanic system. On the contrary, the
paroxysm of 28 August 2019 is consistent with a trigger due to the drainage of the highly
porphyritic magma which is typically found in the upper part of the conduit, due to the
effusive activity that began about two months earlier, which determined the rise of low-
porphyritic magma capable of producing paroxysmal eruptions (e.g., [64]). In any case,
the GBInSAR measurements indicate that in the medium term a deflation shortly before
the event occurred for both paroxysms. Furthermore, in the short term, the strainmeter
data show that similar dynamics occurred in both paroxysms, as reported in Giudicepietro
et al. [4] and Di Lieto et al. [65].

5. Conclusions

The SOM analysis of the seismo-acoustic features associated with a set of about 14,200
explosions selected based on the VLP size parameter allowed us to identify three main
clusters in the period 15 November 2018–15 September 2019, which contains the paroxysmal
phase of July–August 2019.

The comparison of a subset of events with the visible and thermal camera images
allowed us to associate distinct explosive types to the three main seismo-acoustic clusters.
In particular, the cluster called Red is associated with explosions characterized by well-
collimated vertical jets of ~200 m in height, which eject incandescent ballistic pyroclastic
fragments and produce a remarkable infrasonic signal. Cluster Blue is associated with
gas explosions with height in the range 10–20 m and with little or no ash and ballistic
emission. These bursts may not be detected by the camera recordings and infrasonic signals
whereas they are evident in the VLP seismic signals (filtered in the 0.05–0.5 Hz frequency
band). Cluster Green groups explosions characterized by the ejection of incandescent
spatter-like pyroclastic fragments, with a wide range of ejection angles and hemispherical
shape. The explosions of cluster Red are mainly generated in the NE vent region whereas
the explosions of clusters Blue and Green are mainly emitted from the central and SW
vent regions.

Looking at the time evolution of the three main clusters, we discovered that the erup-
tive style of Stromboli was affected by significant changes in the three months preceding
the 3 July 2019 paroxysm and that the gas explosions (Type 0; Leduc et al. [26]) falling into
cluster Blue dominated the persistent Strombolian activity, especially in the last month
before this paroxysm, forecasting the ascent of gas-rich magma from a depth [62].

Finally, by comparing the temporal evolution of the clusters with the deformations
of the top of the volcano retrieved through GBInSAR measurements, we were able to
recognize a relationship between the eruptive style and the inflation/deflation phases
of the crater area. Actually, the period dominated by the gas explosions of cluster Blue
(early April–late June 2019) was characterized by the absence of significant deformations
whereas the effusive phase between the two paroxysms (early July–mid September 2019),
dominated by explosions falling into clusters Red and Green, was characterized by inflation
of the crater area, especially from July 19 until the end of our target period (15 September
2019). The explosions of clusters Red and Green are both characterized by the emission of
incandescent ballistic pyroclasts but with different mechanisms: the explosions of cluster
Red produce vertical jets, with a narrow ejection cone, and generate a distinct infrasonic
transient associated with them; the explosions of cluster Green eject the ballistic pyroclasts
according to a wide range of ejection angles assuming a hemispherical shape. The latter are
linked to a high level of magma in the conduit and are often associated with spattering.
Among the three main clusters, only the explosions falling in the Red cluster generate
clearly recognizable infrasonic transients in the frequency band >0.5 Hz.

This study allowed us to discover variations in the pattern of the persistent activity
of Stromboli that preceded the 2019 eruptive crisis and to interpret the geophysical data
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in terms of variations in the eruptive style and the state of activity of the volcano. The
results obtained increase our ability to distinguish the different Strombolian mechanisms
and suggest new opportunities for an advancement in the monitoring of Stromboli focused
on the forecasting of potentially dangerous eruptive activity variations and early warning
for paroxysms.
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