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• A “glass-box” machine learning model is
used to map landslide susceptibility
under extreme rainfall event conditions

• A new rainfall variable, namely rainfall
anomaly, expresses the intensity of the
event compared to past rainfall patterns

• Rainfall anomaly and model intelligi-
bility are used to estimate landslide
occurrence under different rainfall
scenarios
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A B S T R A C T

Extreme rainfall events represent one of the main triggers of landslides. As climate change continues to reshape
global weather patterns, the frequency and intensity of such events are increasing, amplifying landslide occur-
rences and associated threats to communities. In this contribution, we analyze relationships between landslide
occurrence and extreme rainfall events by using a “glass-box” machine learning model, namely Explainable
Boosting Machine. What sets these models as a “glass-box” technique is their exact intelligibility, offering
transparent explanations for their predictions. We leverage these capabilities to model the landslide occurrence
induced by an extreme rainfall event in the form of spatial probability (i.e., susceptibility). In doing so, we use
the heavy rainfall event in the Misa River Basin (Central Italy) on September 15, 2022. Notably, we introduce a
rainfall anomaly among our set of predictors to express the intensity of the event compared to past rainfall
patterns. Spatial variable selection and model evaluation through random and spatial routines are incorporated
into our protocol. Our findings highlight the critical role of the rainfall anomaly as the most important variable in
modeling landslide susceptibility. Furthermore, we leverage the dynamic nature of such a variable to estimate
landslide occurrence under different rainfall scenarios.
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1. Introduction

Landslides induced by extreme rainfall events represent a significant
threat to communities in many regions around the world (Clò et al.,
2024; Haque et al., 2019; Kirschbaum et al., 2012; Marengo et al.,
2020). These events occur when heavy rainfalls exceed the drainage
capacity of soils, leading to unstable conditions. As a result, mass
movements are mainly triggered due to an increase in pore-pressure,
and an associated decrease in soil strength (Bogaard and Greco, 2016;
Wang and Sassa, 2003). Extreme rainfall events are often associated
with weather phenomena such as tropical cyclones, monsoons, or
intense convective storms (Barlow et al., 2019; Dayan et al., 2015; Prein
et al., 2017). As climate change continues to influence global weather
patterns, the frequency and intensity of these events are expected to
increase, amplifying the probability of landslide occurrence (Crozier,
2010; Gariano and Guzzetti, 2016). This implies an increasing threat for
communities residing in landslide-prone areas.
Understanding and modeling the occurrence of such events is a

crucial step in implementing landslide risk assessments (Corominas
et al., 2014) or suitable early warning systems (Intrieri et al., 2012).
Forecasting “where” a landslide might occur belongs to the landslide
susceptibility framework (Guzzetti, 2005). The term landslide suscep-
tibility refers to the likelihood of a landslide or a population of landslides
in a given area based on the terrain conditions (Brabb, 1984). Often-
times, landslide susceptibility is confused with landslide hazard
(Reichenbach et al., 2018). However, it is important to stress that sus-
ceptibility represents only the spatial component of hazard assessment
(Caleca et al., 2022; Guzzetti et al., 2005).
Since the 1970s, research on landslide susceptibility has yielded a

variety of approaches, broadly classified into the following categories: i)
analysis of landslide inventories (Campbell, 1973; Carrara andMerenda,
1976; Wieczorek, 1984); ii) geomorphological mapping (Lee, 2001;
Pike, 1988; Reichenbach et al., 2005); iii) knowledge-driven or heuristic
methods (Barredo et al., 2000; Hansen et al., 1995; Stanley and
Kirschbaum, 2017); iv) physically-based models (Alvioli et al., 2014;
Montgomery and Dietrich, 1994; Rossi et al., 2013; Salvatici et al.,
2018); v) statistically-based models (Carrara et al., 1991; Lombardo and
Mai, 2018; Reichenbach et al., 2018; Yalcin, 2008; Zêzere et al., 2017).
The initial three categories, marked by an inherent subjectivity, are
largely superseded by physical and statistically-based approaches in the
last decades.
Statistically-based models belong to the family of data-driven ap-

proaches (Lima et al., 2022). They are based on the assumption that past
landslide occurrences might be the key to predicting new ones (Coro-
minas et al., 2014). This implies that a data-driven model is capable of
analyzing the relationship between the distribution of stable/unstable
slopes with a set of predisposing/triggering factors (Guzzetti et al.,
2012). Specifically, the target distribution represents the dependent
variable of the model and is typically expressed in a binary structure (i.
e., presence or absence of landslides) within the selected mapping unit,
either a regular grid (Meijerink, 1988) or a slope unit (Carrara et al.,
1991; Giles and Franklin, 1998). As a consequence, the fitted model is
adopted to define the propensity of landsliding for each mapping unit.
The field of statistically-based models has seen the growth of different
techniques, spanning from linear models (Camilo et al., 2017) to recent
deep learning approaches (Huang et al., 2020). Generalized Linear
Models (GLMs) (Nelder and Wedderburn, 1972) represent one of the
most common approaches in landslide susceptibility modeling (Ayalew
and Yamagishi, 2005; Lee, 2005; Lombardo and Mai, 2018; Merghadi
et al., 2020; Steger et al., 2017). The main advantage of GLMs is the clear
interpretability, stemming from their treatment of the effect of cova-
riates on the landslide event as a linear function. However, this
assumption may be a simplification of these relationships and may not
hold for all factors (Brenning et al., 2015). In view of this, alternative
approaches have been implemented, aiming to incorporate non-linear
effects and capture more complex relationship between landslide

occurrence and triggering/predisposing factors. Among the alternatives,
Generalized Additive Models (GAMs) have earned attention for their
capacity to improve flexibility through the incorporation of smooth
functions (Hastie and Tibshirani, 1987), thereby allowing non-linear
relationships (Brenning, 2008; Goetz et al., 2011; Lin et al., 2021).
Other notable approaches are decision tree models (Arabameri et al.,
2022; Nefeslioglu et al., 2010) and Random Forest algorithms (Catani
et al., 2013; Rosi et al., 2023; D. Sun et al., 2020; Zhang et al., 2023),
which demonstrate efficacy in capturing complex non-linear patterns.
Support Vector Machines (SVMs) (Huang and Zhao, 2018; Yao et al.,
2008) constitute another facet of alternative approaches. Furthermore,
Artificial Neural Networks (ANNs) (Amato et al., 2023; Ermini et al.,
2005; Gameiro et al., 2021) and Deep Learning approaches (Azarafza
et al., 2021; Bui et al., 2020; Van Dao et al., 2020; Xia et al., 2024),
represent a category of models that exhibits notable efficacy in capturing
intricate relationships.
Aside from GAMs, which still allow the visualization and associated

interpretation of how predictors affect the response variable, recent
machine-learning techniques direct their efforts towards higher pre-
dictive capabilities at the expense of interpretability (Caruana et al.,
2020; Murdoch et al., 2019). In other words, simpler models like GLMs
are easier to interpret, while complex models like deep neural networks
are harder to interpret (Baryannis et al., 2019; Greenwell et al., 2023;
Linardatos et al., 2020). For this reason, complex algorithms are
commonly named “black-box” models (Rudin, 2019).
In the context of modeling landslide occurrence, the ability to pro-

vide high-accurate results accompanied by explainable predictions
represents a valuable tool. In light of this consideration, Dahal and
Lombardo (2023) showcase the potential of Explainable Artificial In-
telligence (ExAI) in landslide susceptibility modeling. Recently, the
geoscience community has been shifting towards the adoption of more
interpretable algorithms (Collini et al., 2022; Toms et al., 2020; Youssef
et al., 2023). This trend arises from the wish to unravel the intricate
mechanisms behind predictive models, making them not only high-
performing but also comprehensible to any user.
In this contribution, wemodel the landslide occurrence in the form of

susceptibility by exploring the capabilities of a recent generation of
interpretable models, namely Explainable Boosting Machines (hereafter
EBMs) (Nori et al., 2019). Unlike the majority of explainable approaches
that unveil the decisions of a “black-box”model in a post-processing step
using techniques like SHAP (SHapley Additive exPlanations) (Lundberg
and Lee, 2017), LIME (Local Interpretable Model-agnostic Explanations)
(Ribeiro et al., 2016), or sensitivity analyses for the impact of each
variable on predictions (Jacinth Jennifer and Saravanan, 2021), EBMs
offer direct interpretability. This implies that the generated explanations
are exact, providing full transparency. As a consequence, EBMs fall into
the category of “glass-box” models. Despite their potential implications
in landslide susceptibility modeling, EBMs have rarely been employed in
this field. A careful review of the literature shows only one instance of
their application in such studies, described by Maxwell et al. (2021).
Given this gap, we aim to explore and demonstrate their capabilities in
landslide susceptibility modeling.
Specifically, the incorporation of “glass-box” models within studies

focusing on the relationship between landslide occurrence and extreme
rainfall events raises considerable interest and represents the aim of this
study. To do so, we use as context the landslides occurrence triggered by
a heavy rainfall event on September 15, 2022, in the Misa River basin
(Central Italy). To analyze the interaction between slope failure and the
event, we include a rainfall anomaly among our set of predictors, which
expresses the intensity of such an event compared to the average annual
cumulative rainfall. Notably, this variable is computed as the percentage
of precipitation attributed to the event compared to the mean annual
rainfall.
To summarize (see Fig. 1), we implement an EBM for modeling

landslide susceptibility by including a spatial variable selection scheme
for identifying the optimal subset of predictors. The predictive
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capabilities of the model are evaluated through two different cross-
validation routines. The outcomes identify the areas more prone to
failure, highlighting the paramount role of rainfall anomaly in defining
the spatial pattern of triggered landslides. Notably, the fitted model
might be also useful in predicting new unstable areas under different
weather conditions and rainfall events by leveraging the dynamic nature
of rainfall anomaly variable. This might represent a useful tool for land
use planning and risk mitigation in the context of climate change and the
expected increased frequency of extreme events.

2. Study area and landslide inventory

The geographic context we leverage as a study area is the Misa River
basin (Central Italy – Marche region), which is a part of the Northern
Marchean Apennines. From a geological perspective, hemipelagic, tur-
biditic and evaporitic deposits from the Miocene to lower Pleistocene
overly a Jurassic-Paleogene carbonate succession (Calderoni et al.,
2010; Vannoli et al., 2004). The most recent tectonic phase (Upper
Pliocene – Lower Pleistocene) caused the emersion of the piedmont area
(Bartolini, 2003; Centamore et al., 1996; Seta et al., 2008) with the
contemporary establishment of the first stream network (Mayer et al.,
2003). As a consequence of this phase, the main watercourses are
southwest-northeast oriented.
The Misa River basin covers an area of approximately 384 km2,

ranging from a maximum elevation of 825 m above sea level to a min-
imum elevation equal to sea level (Fig. 2A). From a geomorphological
point of view, the Misa River basin can be split into two main parts: i) a
mountainous region with steep slopes situated in the southwestern
sector, characterized by the presence of marly limestone and flysch
formations from the Apennine chain (Centamore et al., 1979; Coltori,
1997); ii) in the northeastern part, a flatter piedmont sector that extends
towards the Adriatic sea. Here, the river valley is characterized by fluvial
terraces, showcasing alluvial and eluvial-detrital sediments resulting
from river transport (Coltori, 1997).

On September 15, 2022, the region was subjected to an unprece-
dented rainfall event. Gauge stations distributed across the study area
recorded a maximum precipitation of 204 mm within 12 h. Moreover,
few stations in the proximity of the study area reported a rainfall amount
of 480 mm in only 9 h. The event's intensity triggered widespread
landslides and floods, which caused extensive damage and human life
losses. The extreme severity of the impacts is testified by the activation
of a national-level state of emergency, which is a relatively uncommon
measure, especially if compared with other parts of Italy (Gatto et al.,
2023). Specifically, 630 shallow landslides have been mapped within
the Misa River basin. Their mapping has been realized through visual
interpretation with the support of semi-automated methods imple-
mented on Very High Resolution optical multispectral images, validated
and integrated with in situ survey carried out in the aftermath of the 15
September event. The acquired optical images consist of several data-
sets, whose spatial resolutions range from 0.4 m to 3 m. Looking at the
spatial distribution of landslides (Fig. 2A), reveals a notable concen-
tration in the mountainous sector, with only a few instances occurring in
the flatter area. In the mountainous area, landslides have been triggered
on sandy and calcareous soils with high permeability. On the contrary,
hilly and flatter areas are mainly characterized by clay soils with low
permeability overlaid by eluvial deposits. According to the World
Reference Base for Soil Resource classification (Deckers and Nachter-
gaele, 1998), the most prevalent soil families are calcaric regosols and
calcisols. Specifically, these latter are present with varying calcium
carbonate concentrations, including categories such as hypercalcic and
hypocalcic. The occurrence of landslides in these gently sloping areas
underscores the extraordinary nature of the event, emphasizing its ca-
pacity to generate such phenomena even in less steep terrain.

3. Data and methods

In the following sections, we describe the mapping unit for our
modeling purposes (Section 3.1), the predisposing and triggering factors

Fig. 1. Flowchart of the methodological phases in this work.
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we include in our set of landslide predictors (Section 3.2) as well as the
structure of the model (Sections 3.3 and 3.3.1) and the routines we
implement for evaluating its performance (Section 3.4).

3.1. Mapping unit

In this contribution, we divide our study area into Slope Units
(hereafter SUs). A SU is a topographical unit defined by hydrological and
geomorphological criteria and bounded by drainage and divide lines
(Carrara et al., 1991; Carrara, 1983; Giles and Franklin, 1998; Tsuka-
moto and Ohta, 1988). Although no universally accepted cartographic
unit exists as the optimal choice for landslide susceptibility modeling
(Ba et al., 2018; Erener and Düzgün, 2012), the concept of SUs aligns
well with the depiction of single slopes, a combination of adjacent
slopes, or sub-catchments. This implies that SU-based models are highly
reliable from a geomorphological perspective, thereby supporting their
suitability for such applications (Chang et al., 2023; Guzzetti et al.,
2006, 1999; Jacobs et al., 2020; Loche et al., 2022; Lombardo et al.,
2020).
The partition is done by using the r.slopeunits software developed by

Alvioli et al. (2016). The software automatically delineates SUs
requiring as only input data a Digital Elevation Model (DEM). SUs are
generated by clustering pixels of slope exposure and following hydro-
logical criteria. This relies on a set of parameters that users are required
to configure. For a detailed technical description of these parameters, we
refer the reader to Alvioli et al. (2016). The configuration we adopt is
reported below: minimum area = 15,000 m2; circular variance = 0.4;
clean size = 10,000 m2; threshold = 20,000 m2; reduction factor = 10.
The partition is built upon a 10× 10 m DEM (Tarquini et al., 2023,

2007) and results in 2049 SUs (Fig. 2B) with a mean planimetric area of
0.20 km2 and a variability of 0.19 km2 expressed into a single standard
deviation. Each of the generated SUs represents the target of the
modeling we implement.

3.2. Landslide predictors

The variables to be included in the set of landslide predictors should
contain information to be statistically related to the observed landslide
presence or absence in each mapping unit (Budimir et al., 2015; Glade
and Crozier, 2005; Guzzetti, 2005; Lima et al., 2023). For our modeling,
we create an initial set of eighteen environmental and terrain variables
including geomorphological, geological, land-use, soil and meteorolog-
ical properties. Specifically, predisposing and triggering factors are
selected according to current literature (Conforti and Ietto, 2021; Liu
et al., 2023; Reichenbach et al., 2018), the availability and quality of
data as well as the knowledge of characteristics of the study area and the
type of landslides under investigation.
The geomorphological parameters are derived from a 10× 10 DEM

(Tarquini et al., 2023, 2007), and include: i) slope steepness (Taylor,
1948; Zevenbergen and Thorne, 1987); ii) general, profile and planar
curvature (Heerdegen and Beran, 1982; Moore et al., 1991); iii) eastness
and northness (Brenning and Trombotto, 2006; Stage, 1976); iv)
Topographic Wetness Index (Beven and Kirkby, 1979; Moore et al.,
1991); v) Stream Power Index (Moore et al., 1991); vi) upslope
contributing area and catchment slope angle (Quinn et al., 1991).
Notably, we opt to include the upslope contributing area, transformed
logarithmically to reduce skewness, and its average slope angle (catch-
ment slope angle), as proxy for soil moisture and depth, and destabi-
lizing forces upslope (see, Brenning et al., 2015; Persichillo et al., 2017).
The geological property is represented by the outcropping lithology

in the study area and is extracted by a national lithological map of Italy
(see, Bucci et al., 2022). The land-use component is expressed through
the land-cover distribution and acquired from the 2018 version of
CORINE-Land Cover database (Bossard et al., 2000). The information on
soil properties is represented by the spatial distribution of soil typologies
across the study area, and related data are accessed through a regional
database (http://suoli.regione.marche.it/ServiziInformativi/Cartografi
a.aspx).

Fig. 2. Panel A depicts the elevation of the study area and the locations of landslides triggered on September 15, 2022. In Panel B, the partition of slope units and the
exposition of slopes in the study area are illustrated.
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To capture the meteorological forcing, we opt to include two
different variables, respectively rainfall anomaly and preparatory rain-
fall. Rainfall anomaly is designed to convey the magnitude of the rainfall
event on September 15, 2022, in comparison to annual rainfall patterns.
To do so, we collected rainfall data records for both the target event and
each year, starting from 2009, which is the common initial recording
year for all gauge stations within the study area. Subsequently, we
compute both the cumulative 24-h rainfall of the event and the mean
annual rainfall for each station over the period spanning from 2009 to
2021. In turn, we define a rainfall anomaly for each station. This is
achieved by dividing the respective cumulative 24-h precipitation and
mean annual rainfall. As a result, we obtain the percentage of precipi-
tation attributed to the September 15, 2022 event relative to the mean
annual rainfall for each station. For instance, a hypothetical value of
0.15 means that at the specific location, the recorded rainfall measured
during the event amounted to 15% of the mean annual rainfall. To
spatially distribute the acquired rainfall anomalies from the local rain
gauge network to the total extent of the study area, we interpolate such
values by using the Inverse Distance Weighted (IDW) technique (Philip
and Watson, 1982; Watson, 1985). The preparatory rainfall expresses
the cumulative precipitation over the 30 days leading up to the occur-
rence on September 15, 2022. This antecedent rainfall serves as an in-
dicator to assess the contribution of antecedent rainfall as a preparatory
factor to predispose landslide triggering during the event. Equally to the
rainfall anomaly computation, the preparatory variable is computed for
all rain gauges and then spatially interpolated through the IDW
algorithm.
In addition to all the described predictors, we incorporate two more

variables: the slope unit area and catchment ID. Despite these parame-
ters do not describe any predisposing or triggering condition, they are
included for modeling purposes. Specifically, the slope unit area is
considered to account for a bias that may arise from a spatial uneven
landslide mapping (Loche et al., 2022; Steger et al., 2017; Steger et al.,
2016a, 2016b). SUs with a larger area might contribute much more to
the final probability of landslide occurrence compared to ones with a
smaller extent (see, Moreno et al., 2024). The catchment ID is designed
to induce a spatial proximity dependence in our model. Notably, a
spatial model requires that mapping units located close to each other
should be treated differently to those far from them (see, Wang et al.,
2024b).
Dealing with a SU-based model requires choosing an attribute to

describe the variability of predictors within SUs. The most common
approach is to express their distribution by assigning for each SU the
mean and standard deviation of each variable (Canavesi et al., 2020;
Lombardo et al., 2021; Schlögel et al., 2018; X. Sun et al., 2020). An
alternative strategy is to express the variability by accounting for the
quantile values (Amato et al., 2019; Camilo et al., 2017). In this work,
we opt to represent the distribution of continuous variables through the
mean and standard deviation values.
To summarize this information, we list the predictors and their

respective statistical attributes in Table 1.

3.3. Model - explainable boosting machines

Explainable Boosting Machines (EBMs) are a new generation of
Generalized Additive Models (GAMs), which offer both direct inter-
pretability and competitive accuracy. Differently from GAMs, where
non-linear relationships between dependent variable and independent
variables are accommodated using smoothing functions in the form of
splines (Hastie and Tibshirani, 1987), EMBs use gradient boosting and
decision trees (Nori et al., 2019). What distinguishes an EBM as a “glass-
box” model is its straightforward intelligibility and not an approxima-
tion as in “black-box” explanation methods such as SHAP (see, Lundberg
and Lee, 2017) or LIME (see, Ribeiro et al., 2016). In the context of our
modeling, where the dependent variable indicates the presence or
absence of landslides for each SU, we implement a Binomial EBM, whose

general form can be expressed as follows:

log(odds(p) ) = β0 +
∑

fi(xi)+
∑

fi,j
(
xi, xj

)
, (1)

where the term log(odds(p) ) is the logarithm of the odds (i.e., logit link
function) of landslide occurrence (p) that EBM models and it corre-
sponds to:

log(odds(p) ) = log
(

p
1 − p

)

, (2)

In Eq. (1), β0 stands for the global intercept of the model. Notably, an
EBM learns each feature function fi(xi) via a boosting procedure (Lou
et al., 2012), which is restricted to train on one feature at a time in a
round-robin cycle using a very low learning rate so that feature order
does not matter (Nori et al., 2019). As a result, the final function (i.e.,
shape function) for each feature xi is obtained by adding all the functions
for that feature:

fi(xi) = fi
(
x1i
)
+ fi

(
x2i
)
+ fi

(
x3i
)
+…+ fi

(
xri
)
, (3)

where r indicates the number of iterations. Such a procedure mitigates
the effects of co-linearity among predictors and allows showing how
each of them contributes to the model's prediction (Nori et al., 2019;
Wick et al., 2020). This implies that each contribution can be visualized
and understood by plotting fi making EBMs highly intelligible. EBMs
adopt the additive structure inherited from GAMs, enabling each inde-
pendent variable to contribute to predictions in a modular fashion. This
characteristic facilitates a straightforward understanding of how each
feature influences the prediction (Nori et al., 2019).
The novelties introduced by EBMs also extend to the incorporation of

two-dimensional interactions between variables, which further in-
creases accuracy while maintaining intelligibility. In Eq. (1), this joint
effect is captured by the term fi,j

(
xi, xj

)
. Specifically, EBMs define the

pairwise interaction effect of xi and xj using the FAST algorithm, for
whose technical description we refer the reader to Lou et al. (2013). In
our context, we leverage this skill of EBMs to model the interaction
between the two precipitation parameters we include in our predictors:
rainfall anomaly and preparatory rainfall.
Moreover, EBMs provide a means to quantify the overall importance

of each independent variable in the model's prediction. To elaborate,
EBMs take instances of a particular variable, pass them into the learned
shape function, and compute the average of the absolute values across
all data instances. This process can be expressed mathematically as
follows:

Table 1
Predictor summary table. Continuous variables are aggregated to SU-level by
calculating their respective mean or standard deviation values. Categorical
variables are included by defining the predominant class. Each statistical
attribute indicates a single predictor.

Predictor Statistical attribute

Slope steepness Mean and standard deviation
General curvature Mean
Planar curvature Mean
Profile curvature Mean
Northness Mean
Eastness Mean
TWI Mean
SPI Mean
Contributing area Mean
Catchment slope angle Mean
Lithology Majority
Land-cover Majority
Soil type Majority
Rainfall anomaly Mean
Preparatory rainfall Mean
Slope unit area n.a.
Catchment ID Majority

F. Caleca et al.
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yxi =

∑N

k=0

⃒
⃒fi
(
xk,i

) ⃒
⃒

N
, (4)

where yxi is the absolute score (i.e., importance) of the feature xi, k is the
data instances, N is the number of data instances.
Similarly to “black-box” explanation methods (Dahal and Lombardo,

2023; Lundberg and Lee, 2017; Ribeiro et al., 2016), EBMs offer the
capability to analyze the decision-making process for an individual
prediction. This involves each function fj serving as a lookup table for
each predictor, providing a term contribution. These term contributions
are added up, and passed through the link function, in our case the
logarithm of the odds, to compute the final prediction.
As discussed in Section 3.2, we want to incorporate a mechanism in

our modeling to avoid the propagation of a spatial bias that might arise
from uneven landslide mapping. To do so, we leverage the flexibility
that EBMs inherit from GAMs and use specific covariates (e.g., slope unit
area) to capture the effect of such a bias during the model fit. In turn, we
zero out the effects of such covariates during the prediction (Lin et al.,
2021; Moreno et al., 2024; Steger et al., 2016a). As a result, the final
output would remain unbiased (Steger et al., 2021).
The implementation of our EBM is accomplished in a Python envi-

ronment (Van Rossum et al., 1995; Van Rossum and Drake, 2009) by
using the Interpret library (Nori et al., 2019).

3.3.1. Spatial variable selection
Variable selection is a common procedure aiming to identify an

optimal subset of predictors for constructing a model. Various tech-
niques, such as Ridge (Hoerl and Kennard, 1970; McDonald, 2009),
LASSO (Muthukrishnan and Rohini, 2016; Tibshirani, 1996), and step-
wise approaches (Bendel and Afifi, 1977; Blanchet et al., 2008; Nar-
isetty, 2020; Vu et al., 2015), can be employed for this purpose (Heinze
et al., 2018).
In this research, we adopt a stepwise forward procedure. Theoreti-

cally, such a procedure starts with a null model (i.e., devoid of any
variables), and a new variable is sequentially introduced at each step
based on predefined criteria. Notably, the variable that maximizes the
improvement in the chosen criterion is selected. As a result, the pro-
cedure yields a sequence of models, and the final model is selected when
no significant improvement in criteria is observed.
However, the variable selection we implement does not cover the

whole initial dataset of our predictors. Specifically, we do not include in
this process four variables: rainfall anomaly, preparatory rainfall, slope
unit area and catchment ID. The above-mentioned predictors are
included as ex-officio members in our modeling. We force the presence
of such variables because they play a crucial role in capturing essential
aspects of the phenomenon and modeling, and their exclusion might
lead to a skewed representation of the dynamics we aim to understand.
As a result, our stepwise routine does not start with a null model, but
with a default one including these variables.
Within this framework, we employ the Area Under the Curve (here-

after, AUC) as the criterion to guide the selection process from our initial
set of predictors (see, Section 3.2). The AUC is associated with the
Receiver Operating Characteristic Curve, which is constructed by plotting
on the y-axis the True Positive Rate (TPR) or Sensitivity, whereas on the x-
axis is reported the False Positive Rate (FPR) or 1-Specificity. In our
framework, the TPR corresponds to the rate of SUs correctly classified
with the presence of landslides, while the FPR is the rate of SUs wrongly
labeled with landslides. The AUC stands out as a widely used cut-off
independent metric for evaluating the performance of binary classifi-
cation models (Hosmer and Lemeshow, 2000; Hossin and Sulaiman,
2015).
To improve the model's robustness, we also take into account for

spatial dependence in our selection procedure. Specifically, the variable
selection procedure works in conjunction with a spatial cross-validation
routine (Brenning, 2012; Meyer et al., 2018), allowing to select variables

that lead to the highest spatial performance (Meyer et al., 2019). To
achieve this, the K-Means algorithm (Lloyd, 1982; MacQueen et al.,
1967) is used to group SUs into a predetermined number of clusters. In
our context, we spatially divide our data into five clusters. We opt for
this specific number of clusters after conducting numerous tests.
Notably, it emerged as the minimum required to prevent the occurrence
of clusters devoid of SUs labeled with presence of landslides. As a
consequence, the impact of each variable is evaluated by fitting the
associated model on four clusters and evaluating its performance on the
remaining one. The process iterates until the model is tested on all
clusters, with the variable contributing to the highest average AUC score
being added to the subset at each step.

3.4. Performance assessment

In this section, we describe the adopted cross-validation routines to
evaluate the performance of our model. Our first approach involves the
implementation of a classic random cross-validation (RCV). This tech-
nique implies the division of the dataset into ten subsets. The model is
then trained on nine of these subsets, constituting 90 % of the dataset,
and subsequently evaluated on the remaining subset, representing 10 %
of the dataset (Rodriguez et al., 2009; Wieczorek, 1984). This process is
repeated iteratively until each subset serves as a test set. However, the
use of a single RCV iteration may yield a somewhat noisy estimate of the
model's performance. Therefore, we choose to repeat the partitioning
procedure ten times, resulting in a total of 100 subsets. This iterative
repetition serves to mitigate the influence of any specific random split,
offering a more stable and representative evaluation of the model's
overall performance (Kim, 2009). Despite the repetition of partition, a
classical RCV approach may ignore the spatial dependence in the dataset
leading to an overoptimistic performance estimation (Brenning, 2005;
Gudmundsson and Seneviratne, 2015; Meyer et al., 2018).
As a consequence, several approaches to incorporate a spatial

dependence within cross-validation procedures have been proposed
(Brenning, 2012; Le Rest et al., 2014; Pohjankukka et al., 2017; Roberts
et al., 2017). These methods are often referred to as spatial cross-
validation (SCV) and offer dependable assessments of model perfor-
mance. In short, SCV enables the examination of how the model's pre-
dictive abilities may differ across spatial areas, offering insights into its
spatial robustness. Consequently, it becomes possible to identify areas
associated with the worst-case scenario. In light of these considerations,
we opt to build a SCV strategy to further delve into our model capabil-
ities. The SCV strategy we develop is based on the K-means clustering
algorithm. As for the variable selection procedure (see, Section 3.3.1),
we cluster our SUs into five folds by using the x and y coordinates of
their centroids. To further randomize this clustering we choose to repeat
it ten times, resulting in a five-by-ten partition. As a result, we train the
model over four folds and test its performance with the remaining one,
and repeating this routine across all the random spatial folds for a total
of 50 replicates.
Similarly to the selection of the best subset of predictors, we evaluate

the model's performance in both routines through the AUC.

4. Results and discussion

In this section, we present and discuss the results of our modeling.
We initially show the results of our spatial variable selection and report
the best subset of predictors on which we build our EBM (Section 4.1). In
Section 4.2, we examine the intelligibility of our EBM by showing the
overall importance of each predictor, the global feature effects, and local
explanations for individual mapping units. Subsequently, we provide a
summary of the model performances resulting from the RCV and SCV
routines we implement (Section 4.3). Ultimately, we describe the
cartographic transposition of model outputs (Section 4.4).
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4.1. Spatial variable selection

In Fig. 3, we present the outcomes of the variable selection process.
The x-axis displays the number of variables incorporated into our
model's default configuration. In contrast, the y-axis reports the mean
AUC value obtained through spatial validation for each new model
configuration. A notable observation is the limited difference among the
performances of various configurations. Despite this, the models
consistently demonstrate average performance values below 0.70,
indicating an apparent limitation in accuracy (Streiner and Cairney,
2007). However, the reason behind this trend is primarily attributable to
the spatial distribution of SUs labeled with landslides. The implications
of this distribution on AUC computation are discussed in Section 4.3.
Notably, the mean AUC values resulting from spatial cross-

validations show a marginal discrepancy of 0.01 A closer analysis re-
veals an ascending trend in AUC scores up to the sixth addition to the
default model configuration. Subsequent iterations do not display any
noticeable increase or decrease, leading to the identification of the sixth
iteration as the optimal model configuration.
As a result, our final set of predictors is constituted by ten variables:

rainfall anomaly, preparatory rainfall, slope unit area, catchment ID,
standard deviation of slope, soil type, land cover, lithology, catchment
slope angle, and contributing area. This selected set includes the vari-
ables that collectively contribute to the highest average spatial impact
on model performances. For instance, one can notice the absence of the
mean slope steepness among the final set of predictors. The spatial se-
lection highlights the limited influence of this variable on the model's
predictive capabilities. The homogeneity in mean slope steepness values
across all SUs precludes its utility as a discriminatory predictor for dis-
tinguishing SUs with landslides from those without. Conversely, the
standard deviation of slope steepness results as the first variable added
to the default configuration. This is not surprising, as similar outcomes
are reported also in other studies (Canavesi et al., 2020). This outcome is
consistent with earlier considerations regarding slope steepness: the
standard deviation captures better than the mean value the variability
and the peculiarity of the geomorphological features of each SU. As a
result, this predictor proves to be an optimal proxy for terrain roughness
and demonstrates greater discriminatory capability in our specific
context.
Furthermore, excluded predictors include northness, eastness, TWI,

SPI, and several types of curvatures. Despite being conventional vari-
ables in landslide susceptibility modeling (Fang et al., 2023; Goetz et al.,
2015; Marjanović et al., 2011), these parameters show negligible spatial

influence in our case study. For instance, TWI is valuable in assessing
general terrain wetness and moisture conditions (Sørensen et al., 2005).
However, these indirect parameterizations become uninfluential if
triggering and antecedent rainfall patterns are explicitly used as inputs
to the model.
Similarly, northness and eastness do not only express the orientation

of a slope but they also acquire the relationship between orientation and
soil conditions. However, their role in triggering landslides is debated
and largely dependant on local climatic and morphological conditions
(Nurwatik et al., 2022). Focusing on the northern hemisphere, land-
slides are more common in north and west-facing slopes than in the
south or east-facing directions (Gritzner et al., 2001). The primary
reason is related to solar radiation, north and west-facing slopes receive
less direct sunlight and, consequently, tend to be shaded (Måren et al.,
2015). This may result in slower evapotranspiration and lead to higher
soil water content. As a result, the increased water content may reduce
shear strength and contribute to slope instability. However, the exclu-
sion of northness and eastness suggests that the spatial orientation of
slopes may not significantly contribute to the landslide occurrence
under such conditions. In extreme rainfall events, the intensity and
duration of rainfall play a crucial role in triggering landslides (Guzzetti
et al., 2008; Rosi et al., 2012; Saito et al., 2010; Segoni et al., 2014).
Whether the event is exceptionally intense (as in our case), the role of
slope orientation may be overshadowed. In addition, extreme events
lead to rapid saturation of the soil and an increase in pore pressure in a
short time. As a consequence, the role of those settings that normally
control such conditions is minimized.
Therefore, these exclusions are further proof of the exceptional na-

ture of the modeled event. Specifically, the variables included in the
final set mainly represent conditions related to the triggering event, such
as rainfall anomaly and preparatory rainfall, as well as predisposing
factors. Among these latter, the presence of contributing area and
catchment slope angle allows for capturing the terrain response to
extreme rainfall, offering a more targeted and contextually relevant
landslide susceptibility modeling under such conditions. In short, the
final set is closely tied to the dynamics of extreme rainfall-induced
landslides, ensuring a more tailored and effective representation of the
susceptibility factors in our specific modeling context.

4.2. Model interpretability

In this section, we show the direct intelligibility of our model by
reporting the overall importances, the global and local effects of land-
slide predictors.
Fig. 4 displays the importance of each variable within our modeling

framework. The importance quantification is achieved through a mean
absolute score, as determined by the application of Eq. (4). In short, this
absolute score provides a metric for the average impact of each inde-
pendent variable on the final estimation (see, Section 3.3). Upon
analyzing the overall impacts, it is evident that rainfall anomaly emerges
as the most important variable. This observation suggests that the model
distinctly recognizes the dominant influence of rainfall event dynamics
on landslide occurrence. Notably, slope unit area, lithology, the pairwise
interaction between rainfall anomaly and preparatory rainfall, as well as
catchment ID, show notable high absolute scores. Conversely, the vari-
able of land cover turns out to be the least significant in terms of
importance.
Specifically, the presence of slope unit area among variables with

higher scores suggests its ability to capture a potential mapping-related
bias within our modeling framework.
In Fig. 5, we present an overview of the estimated variable effects,

which are expressed at the scale of logits. We opt to show them at this
scale instead of the response scale due to its preferable interpretability
for the analysis of individual variable contributions. However, the in-
formation is essentially the same between the logit and response scales.
Specifically, a negative score means that the response (i.e., susceptibility

Fig. 3. Results of the spatial variable selection procedure. On the y-axis, the
AUC values related to each corresponding subset of predictors are reported. The
x-axis shows the number of variables within each subset.
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estimate) tends to decrease suggesting in our context more stable con-
ditions. Conversely, a positive contribution indicates an increase in the
susceptibility, hence a greater likelihood of landslide occurrence.
Going back to the overall effects, we notice that the standard devi-

ation of slope steepness (Fig. 5A) shows a negative influence up to a
threshold of 4◦. Beyond this threshold, a positive trend is linearly re-
ported. A possible justification for this pattern lies in the fact that a
rougher terrain denotes a more juvenile landscape where geomorphic
processes tend to be more intense and frequent (Glenn et al., 2006;
Helming et al., 1998). As a consequence, this soil may be more sus-
ceptible to destabilization during an extreme rainfall event.
In Fig. 5B and C, the contributions of logarithmic contributing area

and corresponding average slope angle are reported. These are initially
included in our set of predictors to capture effects related to soil mois-
ture and destabilizing force upslope. Both shape functions show some
artifacts due to the absence of values in specific intervals. The low data
density contributes to a significant variability of effects, evident in the
larger grey bands within these regions. An example of this is observed
into the influence associated with a logarithmic contributing area
greater than 7 (corresponding to 10 km2). By delving into the impact of
the upslope contributing area, one can notice an increasing trend be-
tween the interval corresponding to 10,000 m2 and 100,000 m2. During
this range, the effect transitions from negative to positive scores. A
plausible explanation for this influence is that soil saturation is more
likely to occur in larger contributing areas. In these areas, the accu-
mulation of water from various sources, such as precipitation and up-
stream flow, may be more substantial (Montgomery and Dietrich, 1994).
As a result, the soil is rapidly saturated and the slope stability may be
compromised under the increased moisture content.
The catchment slope angle shows a negative influence up to 11◦,

after which we observe a positive contribution to landslide occurrence.
From a geomorphic perspective, the observation is reasonable since
steeper upslope areas may be destabilized due to overloading (Brenning
et al., 2015). This overload can lead to increased stress and reduced
stability, contributing to conditions conducive to landslides.
Overall, the standard deviation of slope steepness, the logarithmic

upslope contributing area, and the catchment slope angle do not report
positive effects overtaking a threshold of 0.5. This means they have a
weak influence on the landslide occurrence in our context. Notably, they
are included in the last four variables in terms of importance. These
results point out that the landslide occurrence wemodel is mainly driven
by triggering factors rather than geomorphological settings. The effects
of additional predisposing conditions—specifically lithology, land
cover, and soil type—are displayed in panels D, E, and F of Fig. 5
respectively. The lithological class with the most significant positive
influence on our susceptibility estimates is Lit7, which corresponds to
flysch. These sedimentary rocks consist of alternating layers of hard,
resistant rocks, and softer ones. Notably, the presence of weaker layers
within the flysch sequence is usually associated to potential slip planes
for landslides (Azañón et al., 2010; Borgatti et al., 2006). In case of their
saturation, the clayey layers can lose their strength, leading to failure
and sliding. Given the rapid rates at which saturation can occur during

Fig. 4. Summary of predictor's importances. The importances are expressed via
a mean absolute score. Rainfall interaction means the pairwise interaction term
between preparatory rainfall and rainfall anomaly.

Fig. 5. Overview of the single effects of variables. The effects on prediction are represented in logits. Continuous variables (Panels A, B, C, G, H) display mean effects
with red lines and 95 % confidence intervals with grey bands. Categorical variables (Panels D, E, F) depict mean effects with red circles and 95 % confidence intervals
with grey error bars. Note that dark blue regions indicate high data density, whereas white areas signify low densities. Panel I reports the corresponding effect of each
catchment. The corresponding classes of lithology, land cover, and soil type are described in Tables S1, S2 and S3, respectively.
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extreme rainfall events, the estimated effect aligns logically with our
study context.
Looking at the contribution of land cover classes (Fig. 5E), one can

notice that class LC5 shows both the highest positive influence and
larger variability. This class represents open spaces with little or no
vegetation across our study area. A possible justification for its effect
may be found in the role of vegetation on slope stability. Specifically,
vegetation helps in stabilizing soil and preventing erosion. The root
systems of plants bind soil particles together, reducing the likelihood of
slope failure (Masi et al., 2021). In open spaces with little or no vege-
tation, there is less reinforcement of soil structure, making the area more
susceptible to landslides. On the contrary, the scrub class (LC4) displays
the most negative effect on landslide occurrence. Different from open
spaces, scrub lands may have strong root systems that contribute to soil
stability.
In Fig. 5F, the effects associated with soil typologies are depicted.

One can notice that several typologies provide weak positive influences
on landslide occurrence. Conversely, the most popular class S4-calcaric
regosols- shows the most negative estimated effect. A plausible expla-
nation for this trend may lie in their role in human activities. In our
study area, the calcaric regosols are mainly associated with lands
assigned to agricultural practices that involve terracing. Such activities
may improve the stability and contribute to decreasing the likelihood of
landslide occurrence. On the contrary, the S7 – hypocalcic calcisols class
reports the highest influence on landslide occurrence. This relationship
has been already observed in other contexts of the Italian Apennines.
Specifically, the reason may lie in the presence of a harder, less
permeable horizon rich in carbonate concretions at depth. This layer
allows rainwater to accumulate during intense rainstorms, which in-
creases pore-water pressure leading to slope failure (Bordoni et al.,
2021a).
The effect associated with the rainfall anomaly is depicted in Fig. 5G.

We recall that this variable is computed to capture the intensity of the
rainfall event of September 15, 2022, in relation to past rainfall patterns.
The estimated influence shows an almost linear trend, as the rainfall
anomaly increases, so does the impact. The rainfall anomaly effect can
be further divided into three distinct sectors. In the range of the rainfall
anomaly from 0.03 to approximately 0.08, the effect increases, although
it remains negative. This trend highlights moderate rainfall intensities
that do not represent a relevant trigger for the analyzed landscape.
Beyond 0.08, the influence shows a shift to neutral and then positive
scores, steadily increasing until reaching the threshold of 0.18. This
tendency suggests that increasing levels of extreme rainfalls are anom-
alous compared to typical climatic conditions of the study area, thus
representing a relevant trigger for new landslides. Subsequently, there is
another significant jump in scores, resulting in a highly positive influ-
ence on landslide occurrence. Specifically, after the 0.18 value an in-
crease in rainfall anomaly does not directly translate into an increase in
susceptibility. The reason may lie in the fact that after a given threshold
value of rainfall is exceeded, all possible landslides would have been
triggered. It's important to note that this phenomenon is primarily
associated with low data densities for values within the mentioned range
of rainfall anomalies. As a consequence, the variability in this range is
more pronounced compared to the earlier trends. Overall, the spatial
pattern of rainfall anomalies controls the spatial occurrence of
landslides.
The effect of interaction between rainfall anomaly and preparatory

rainfall is displayed In Fig. 6. We recall that the preparatory rainfall
expresses the cumulative precipitation over the 30 days before the
analyzed rainfall event. By examining this joint effect, noteworthy in-
stances of positive impact emerge. Specifically, positive scores are
observed when both rainfall anomaly and preparatory rainfall reach
their peak values. However, these scores show considerable variability
due to the limited data densities associated with high values of both
rainfall parameters. Furthermore, a substantial positive effect is dis-
cerned when the rainfall anomaly falls within the range of 0.025 to

approximately 0.100, with preparatory rainfall close to 110 mm.
Delving into the interaction within the region of the highest data density
for both rainfall anomaly and preparatory rainfall also reveals a positive
influence on landslide occurrence. Conversely, the most negative effect
is shown when rainfall anomalies exceed 0.175 and preparatory rainfall
is less than 90 mm. Although this trend may appear somewhat coun-
terintuitive, considering the expectation of a positive influence for the
highest values of rainfall anomaly, it is plausible to interpret it as a
suggestion that the overall effect of event intensity is amplified by spe-
cific antecedent conditions. However, it should be noted that such an
occurrence does not happen in our context. By analyzing the SUs
reporting a rainfall anomaly greater than 0.175, we notice that they
show a minimum preparatory rainfall of 118 mm. As a consequence, this
particular case is characterized by a notable degree of uncertainty.
The variable slope unit area exhibits a relatively continuous

increasing trend, as depicted in Fig. 5H. By analyzing this effect, it be-
comes evident that SUs with larger areas tend to have a higher influence
to landslide occurrence. At first glance, one might infer a direct corre-
lation: the larger the SU, the higher the estimated landslide suscepti-
bility. However, such an interpretation is misleading, as the areal extent
of a mapping unit does not inherently influence slope stability. To
address this potential bias, we have incorporated a procedure for bias
capture and removal within our analysis. This step enables the model to
isolate the areal contribution, ensuring that it does not directly propa-
gate its impact on our landslide susceptibility scores (Moreno et al.,
2024). By excluding this effect, our analysis aims to avoid any ambiguity
in predictions associated with the choice of mapping units.
The same analytical steps are applied to the variable catchment ID

(Fig. 5I). This variable is incorporated into our model to account for
spatial relationships among slope units (SUs). However, the catchment
ID itself does not directly influence the likelihood of slope failure.
Therefore, the model incorporates its effect and subsequently, we
exclude it during the prediction phase.
As outlined in Section 3.3, EBMs offer the capability to visualize the

local effects of variables. In short, the model explains its decision-
making process for each prediction. By leveraging this capability, it is
possible to analyze how each variable influences the estimated suscep-
tibility score. For brevity, we present a concise overview of this

Fig. 6. Summary of the effect associated with the pairwise interaction between
rainfall anomaly and preparatory rainfall. The histograms on the upper axis
show the distribution of rainfall anomaly intervals. Conversely, the histograms
on the right axis display the distribution of corresponding preparatory rain-
fall intervals.
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interpretability aspect for three distinct cases (Fig. 7). A local explana-
tion for a SU for which the model predicts a final susceptibility estimate
close to 0 is depicted in Fig. 7A. Among all variables, land cover emerges
as the unique contributor with a positive influence on the susceptibility
estimate. However, this influence is nearly negligible, compared to the
impact of other predictors. Conversely, all other predictors exhibit
negative scores, leading the model to predict a very low susceptibility
value for the examined SU. Notably, rainfall variables show the most
significant influences among all predictors.
In Fig. 7B, we display a scenario where the final susceptibility score is

0.50. This implies a condition halfway between an unstable and stable
slope. One can notice that the effects of the predictors seem to offset
each other to some extent.
Ultimately, we provide an overview of an SU in Fig. 7C, where the

model predicts a very high susceptibility score. In this case, only one
variable, the catchment slope angle, has a negative impact on the model
output. Conversely, the remaining predictors demonstrate positive in-
fluences, with rainfall components showing the most substantial
contribution.

4.3. Model performances

Here, we show the results of the two cross-validation routines we
implement to assess the performances of our model. We recall that the
routines are based respectively on a random (RCV) and spatial (SCV)
partition of our dataset.
The outcomes resulting from the 100-fold RCV are depicted in Fig. 8.

Looking at the AUC score for the reference model reveals a value of 0.87,
which indicates an excellent classifier according to Hosmer and Leme-
show (2000). Similarly, the scores resulting from the 100-fold RCV
routine highlight the optimal classification capabilities of our model.
Specifically, this routine shows a mean AUC of 0.86, which is close to the
score of the reference model. The marginal discrepancy observed be-
tween these performance metrics suggests an inherent robustness of the
model. By analyzing in depth the 100 performances resulting from the
random partition, we notice the associated AUC scores exhibit a vari-
ability of 0.03, expressed as a single standard deviation. Notably, the
worst scenario is represented by an AUC of 0.78, whereas the best sce-
nario achieves an AUC of 0.92. This range further confirms the robust-
ness and classification capabilities of our model.
However, using a RCV scheme may occasionally result in an over-

optimistic representation of model capabilities. This is because a random
split might yield a favorable partition that aligns well with the model fit.
In short, the associated performances may not accurately reflect the
model's true generalization ability to unseen data. To both delve into the
performances of our model and evaluate it on unknown regions, we
implement a 50-fold SCV (see, Section 3.4).
Fig. 9 displays the results of such a routine through a cartographic

representation. Specifically, we visualize for each partition the spatial
distribution of associated AUC scores and the number of SUs labeled
with landslides via a bivariate scheme. This allows us to recognize the
relationship between the adopted evaluation metric and the number of
true positive cases. Notably, the AUC values are grouped into three
classes following the classification scheme proposed by Hosmer and
Lemeshow (2000), whereas the number of SUs with landslides is clas-
sified through the Jenks method (Jenks and Caspall, 1971; North, 2009).
Overall, the outcomes of the SCV scheme report AUC scores ranging
from 0.50 to 0.94, hence spanning from a random classifier to an
excellent one. This information is captured by a mean value of 0.60 and
a standard deviation of 0.10, which indicates a higher variability
compared to that observed in the RCV procedure. Specifically, the re-
ported mean value may suggest a weakness in our model. However,
these data might be misleading by looking at the overall context dis-
played in Fig. 9. Notably, each clustering iteration shows several worst-
case scenarios of performance (grey and blue clusters). In particular, the
areas where the model struggles to accurately predict landslide occur-
rence are situated in both the southern and northern sectors of the study
area. There are numerous reasons behind these poor predictive capa-
bilities. In the case of the southern sectors, the main justification is the
huge amount of SUs hosting landslides within their domains. Going back
to Fig. 2A, one can notice that these regions encompass the majority of
mapped landslides. Therefore, when they serve as validation clusters,
the model fit is devoid of an enormous quantity of landslide information.

Fig. 7. Examples of local explanations for three different predicted susceptibility scores. The x-axis shows the associated local effects of each predictor, a rightward-
directed effect (red bars) means a positive impact on landslide occurrence. Conversely, a leftward-directed one (green bars) indicates a negative impact. It is
noteworthy that the effects of slope unit area and catchment ID are always zero because they are zeroed during prediction.

Fig. 8. Summary of the 100-fold RCV. The average ROC curve resulting from
the routine is displayed with the associated confidence interval. The ROC curve
of the reference model is represented by the red curve. The boxplot shows the
distribution of the AUC values resulting from the RCV routine.
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As a consequence, the model is not capable of learning the prevailing
conditions that contribute to slope instability. The incomplete under-
standing of such conditions leads the model to fail in predicting these
occurrences. For instance, this case is represented by iteration 9 (Fig. 9I),
where the blue cluster contains 58 % of SUs labeled with landslides. As
verification of this observation, one can notice that no cluster classified
with the highest class of number of SUs with landslides provides medium
or high AUC values.
Conversely, the poor quality of prediction in the northern clusters

may be associated with the scarce quantity of SUs with landslide pres-
ence. For instance, in iteration 1 (Fig. 9A) the northernmost sector re-
ports only five SUs with landslides, which corresponds to 1.2 % of
mapping units within their domains. As a result, the scarcity of these
instances affects the ROC curve and the associated AUC. Notably, this
highly unbalanced proportion means that the model might be inclined
towards predicting the majority class (absence of landslides). As a
consequence, the performances may report a high true negative rate
(Specificity) but a low true positive rate, resulting in a low AUC.
Another explanation for this trend in the northern regions may be

associated with the dynamics of the rainfall event. By referring to the
rainfall anomaly, we notice that the intensity of the event in such regions
is low (Fig. 10A), with the majority of the values concentrated around
the threshold of 0.02 (Fig. 10B). Specifically, going back to the global
effect of rainfall anomaly (Fig. 5G), it is clear that the observed anomaly
values show markedly negative contributions to landslide occurrence.
As a result, the presence of landslides in the northernmost sectors may
elude the majority of learned model relationships, leading to model
failure in this particular region. In short, while the model may capture
predominant patterns between landslide presence and predisposing or
triggering factors, it fails to account for outlier events that do not adhere

to these learned relationships. Consequently, the model's predictive ef-
ficacy diminishes in scenarios where landslides occur in unexpected
areas.
A further justification of the drop in model performances can be

attributable to the bias removal step we include within our protocol.
Notably, the removal of bias captured by the effect of slope unit area,
which significantly influences model predictions on average (Fig. 4),
may result in a deterioration of accuracy. However, this procedural step
is essential for generating more reliable products, even though it may

Fig. 9. Summary of the 50-fold SCV procedure. The clusters of each partition are visualized through a bivariate scheme in which the associated AUC values and
number of SUs with landslides are compared.

Fig. 10. Panel A shows the spatial distribution of rainfall anomaly across the
study area. The example clustering partition is derived from iteration 5 in
Fig. 9E. Panel B reports the distribution of rainfall anomaly values within the
northernmost cluster.
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entail an apparent reduction in predictive skills (Steger et al., 2021).
Conversely, the SCV scheme reveals multiple instances where the

model exhibits medium to high AUC scores. These occurrences are
specifically linked to conditions where the model effectively compre-
hends the relationship between predictors and landslide occurrences,
while also being able to validate itself in regions with a substantial
presence of landslides. Notably, this is exemplified in cases observed
during both iteration 3 (Fig. 9C) and iteration 10 (Fig. 9J), where the
model reaches excellent AUC scores.
Overall, the SCV routine seems to provide more biased estimates of

model accuracy rather than the RCV approach. The pessimistic results of
SCV are probably caused by strongly distinct conditions in the test areas
compared to the training ones, suggesting a thorough underestimation
of model capabilities.

4.4. Model results

After presenting the intelligibility and predictive capabilities of our
model, we proceed to illustrate the cartographic representation of its
results. The probabilistic map generated by our modeling is displayed in
Fig. 11. Specifically, we opt to represent the susceptibility scores along a
continuous spectrum, rather than categorizing them into distinct sus-
ceptibility levels. As a consequence, the susceptibility estimates range
from 0 to 1.
By analyzing the spatial distribution of susceptibility scores, a clear

trend emerges, indicating that SUs with a higher likelihood of experi-
encing landslides are mainly situated in the southern-western regions.
From a geomorphic perspective, this spatial correlation seems reason-
able given that these SUs are positioned within the most mountainous
sector of the study area (see, Fig. 2A). Therefore, it is plausible to
attribute this pattern to the joint influence of predisposing factors and
the rainfall event, creating conditions conducive to landslide occur-
rences. Conversely, areas characterized by susceptibility probabilities
closer to zero are primarily concentrated in the northern sector. In these

regions, the rainfall anomaly shows the lowest values (see, Fig. 10),
whereas the geomorphological context is less pronounced to promote
landslide.
Overall, the spatial arrangement of susceptibility scores appears to

closely mirror the patterns observed in the rainfall anomaly. Specif-
ically, regions that received highly anomalous rainfall amounts during
the 15 September event show higher susceptibility probabilities. On the
contrary, areas marked by lower intensities of rainfall events display
generally lower susceptibility estimates. The observed correlation be-
tween the spatial distribution of susceptibility values and the rainfall
anomaly pattern is a direct consequence of the objective of our work: in
modeling landslide susceptibility based on a single extreme rainfall
event, we introduce triggering factors among the input variables and we
develop a model that adequately replicates reality by leveraging both
environmental features and rainfall. This poses the basis for possible
application of the same model, in the same area, simulating the effect of
different rainfall scenarios.

4.4.1. What if the rainfall anomaly changes?
In this section, we delve into the interplay between the likelihood of

landslide occurrence and the intensity of rainfall event, extending
beyond the modeling of a past event to explore potential scenarios by
varying the rainfall anomaly. Notably, the calculation of rainfall
anomaly introduces a dynamic dimension to our model configuration, as
contrarily to all other parameters used by the model, the rainfall
anomaly received by each SU may vary at every future rainfall event. By
leveraging this aspect, we extend our model protocol to two distinct
scenarios: one where the rainfall anomaly is uniformly set at 0.08 and a
second scenario defined by a rainfall anomaly equal to 0.18. We use
these two values for our test because they are the values corresponding
to the first and second sharp increment in the rainfall-susceptibility
relationship (see, Fig. 5G).
Fig. 12 shows landslide susceptibility maps under varied rainfall

anomaly scenarios. The residuals (i.e. the difference in susceptibility
scores from the starting susceptibility estimates portrayed in Fig. 11) are
also shown in Fig. 12A' and B'. Negative values (blue colors) suggest that
the starting probabilities exceed those of the new scenarios, indicating a
reduction in susceptibility. Conversely, positive scores (red colors)
indicate an increase in the likelihood of landslide occurrence, high-
lighting that the new scores are greater than the initial ones. As a result,
one can notice that differences in susceptibility estimates are directly
related to changes in rainfall anomaly values. For instance, the southern
SUs in Fig. 12A show lower probabilities since the initial scores are
modeled with higher rainfall anomalies, hence a more positive influence
on the final response. This concept is even more amplified in residuals
resulting from probabilities modeled with a rainfall anomaly equal to
0.18 (Fig. 12B'). Notably, the outcomes of this configuration show a
widespread increase in probabilities within the almost entire study area.
One can notice that the maximum growth is registered in northern areas,
reaching a peak of 0.6 in the scores.
The differences between the scenarios in Fig. 12A' and B' are sum-

marized in Fig. 12C. Specifically, the two curves show comparable and
symmetrical distributions. The curve corresponding to the scenario with
a rainfall anomaly equal to 0.08 (light-blue curve) demonstrates a left-
ward orientation, while the curve associated with the extreme anomaly
conditions (light-red curve) reports a rightward direction. These obser-
vations imply that the less extreme scenario may depict a condition
more closely aligned with ordinary circumstances, whereas the more
extreme scenario represents conditions considerably deviating from the
normality.

4.5. Considerations: strengths and weaknesses

In this section, we provide an overview of the strengths of our
analytical protocol as well as the weaknesses that came to light.
Our modeling leveraged the direct intelligibility of EBMs to inspectFig. 11. Landslide susceptibility map.
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the relationship between landslide occurrence and extreme rainfall
events. The inherent “transparency” in our modeling approach facili-
tated the extrapolation of the impact of event intensity, expressed as
rainfall anomaly, on the probability of landslide occurrences throughout
the study area. The contribution of rainfall anomaly (see, Fig. 5G) aligns
well with the concept of rainfall thresholds for landslide occurrence (see,
Segoni et al., 2018). By delving into this effect, we can identify potential
thresholds that may hold the key to defining preliminary warning levels
in our study area. For instance, when anticipating rainfall at 8 % of the
average annual precipitation, a landslide probability close to 0.5
emerges, which may indicate a moderate warning level. Conversely, a
rainfall exceeding 18 % annually corresponds to a probability of 0.73,
signaling a high warning level. The affinities with rainfall thresholds
may be extended even to the pairwise interaction we introduced among
rainfall parameters. Notably, rainfall thresholds can be also defined
considering antecedent rainfall conditions (Glade et al., 2000; Lee et al.,
2015; Nocentini et al., 2023a). As a consequence, our joint effect of
rainfall parameters may serve as a further tool for delineating warning

levels. This observation aligns well with the growing number of studies
suggesting close interoperability between susceptibility modeling and
dynamic rainfall parameters (Khan et al., 2022; Lee et al., 2022;
Nocentini et al., 2023b; Ren et al., 2024; Segoni et al., 2015).
The insights provided by our analytical protocol extend to the local

level, specifically scrutinizing the decision-making process for esti-
mating landslide susceptibility within individual SU. Specifically, every
SU can be analyzed to understand which factors are more convenient to
be addressed by mitigation measures to reduce landslide hazard (Dahal
and Lombardo, 2023; Wang et al., 2024a). Fig. 7C shows an instructive
example, allowing for a detailed examination of how each predictor
shapes the predicted susceptibility score for the relevant SU. In this
hypothetical scenario, the primary drivers influencing the probability of
landslide occurrence turn out to be the rainfall parameters. As a result,
the outcomes may suggest the implementation of a drainage system or
reforestation measures to facilitate water flow, thereby mitigating the
probability of soil saturation and erosion—factors that could otherwise
contribute to the initiation of landslides. Overall, this process can be

Fig. 12. Overview of landslide susceptibility values under varied rainfall anomaly scenarios. Panel A displays the landslide susceptibility scores resulting from the
scenario with rainfall anomaly set to 0.08. Panel A' depicts the spatial distribution of residuals resulting from the comparison between the above-mentioned sus-
ceptibility scores and the starting susceptibility estimates (Fig. 11). Panel B reports the landslide susceptibility scores modeled with a rainfall anomaly equal to 0.18.
Panel B′ showcases the corresponding residual distribution. Panel C compares the distribution of the two residuals' scenarios.
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systematically extended to all SUs. By doing so, one can identify the
most critical predisposing conditions to landslides, set priorities to
design mitigation measures and evaluate the cost/benefit of different
intervention strategies.
Another novelty introduced by our study lies in the rainfall param-

eters we leverage as landslide predictors. Differently from the majority
of landslide susceptibility studies, where the meteorological component
is expressed by the mean yearly or monthly rainfall value (Chen and Li,
2020; Xing et al., 2021), we opt to distinguish it into event-based and
antecedent conditions. As a result, we introduce a dynamic component
within our modeling, which differentiates it from traditional landslide
susceptibility models. Specifically, this aspect allows for producing
predictions on different rainfall scenarios as discussed in Section 4.4.1.
This dynamic capability proves to be a powerful asset in the context of
landslide studies considering the current scenario of climate change
(Araújo et al., 2022; Ozturk et al., 2022), where the incidence of extreme
weather events is on the rise (AghaKouchak et al., 2020). In light of these
considerations, the ability to predict landslide occurrence under
different scenarios becomes particularly significant. This can be ach-
ieved by configuring new rainfall parameter values, either by extrapo-
lating them from future projections or utilizing short-term weather
forecast data. Consequently, our findings expand their utility beyond
predictive modeling. In fact, they may be leveraged to produce pre-
liminary warning levels in a cartographic format, predicting the likeli-
hood of landslide occurrence based on different rainfall data. For
instance, our modeling can be easily updated by using near-real-time
rainfall data, hence it may provide a useful product for communica-
tion on landslide threats.
Despite its inherent dynamic nature, our modeling currently focuses

solely on predicting the probability of landslide occurrence in a spatial
dimension. This is because our model analyzes relationships between
landslide events and predictors based on single-event conditions.
Notably, our model currently examines the influence of extreme rainfall
conditions on landslide occurrence. While this spatial analysis provides
valuable insights, a constraint arises from the absence of temporal in-
formation in the Italian Landslide Inventory (Trigila et al., 2010). The
absence of temporal data presents a limitation, impeding the imple-
mentation of a more detailed approach. Ideally, incorporating temporal
data into our modeling framework may enable a comprehensive space-
time analysis of landslide occurrence (Fang et al., 2024; Lombardo et al.,
2020; Nocentini et al., 2023b). This approach could capture both pre-
disposing and triggering conditions of landslides on a temporal basis,
allowing for a finer examination of factors evolving over months or
years. Such a space-time modeling approach may facilitate a deeper
understanding of the intricate interplay of factors over time. This
modeling configuration may also represent an improvement to current
procedures, which treat the spatial and temporal probabilities of
occurrence separately due to the assumption that they are uncorrelated
(Bordoni et al., 2021b; Park et al., 2019). In this perspective, future
studies could explore how certain predisposing conditions influence
susceptibility over a time interval. Additionally, it could help our pro-
tocol to model ordinary conditions that currently are excluded from our
analysis due to the lack of temporal information on previous landslides.

5. Conclusion

In this contribution, we explored the capabilities of a new generation
of explainable machine-learning models to analyze relationships be-
tween landslide occurrence and extreme rainfall events. Leveraging the
context of landslides induced by an extreme rainfall event (September
15, 2022) in the Misa River basin, we introduced a novel variable,
rainfall anomaly, to express the magnitude of the reference rainfall
event in our susceptibility modeling and to allow further assessment of
response to different rainfall scenarios.
Our analysis revealed that rainfall anomaly emerged as the most

crucial variable influencing landslide occurrence. The exact

intelligibility of our modeling allowed for a comprehensive under-
standing of its contribution in the modeled event to landslide occurrence
in comparison to other predictors. The introduction of rainfall anomaly
also brought a dynamic facet to our protocol, enabling the estimation of
landslide susceptibility under varying rainfall scenarios. This adapt-
ability is particularly significant in the context of increasing extreme
events due to climate change as it allows modeling the response of ter-
ritory (in terms of ground effects to hypothetical or forecasted future
rainfall scenarios.
Our procedure represents a promising step that could be strength-

ened in the future as long as the effects of the next extreme rainfall
events are considered to broaden the calibration. Indeed, at present our
modeling relies solely on information from the analyzed event, lacking
temporal details from previously mapped landslides. Such data would
have allowed for the implementation of space-time predictive analysis
and modeling the landslide occurrence on both a spatial and temporal
basis. Furthermore, this approach would have captured ordinary con-
ditions that currently are excluded from our analysis.
In light of these considerations, a bunch of future improvements can

be already listed. A refined modeling of rainfall scenarios, especially in
its spatial distribution, may lead to a more detailed mapping of landslide
susceptibility under different climatic conditions. The incorporation of
temporal information on previous landslides would refine our modeling,
encompassing both extreme and ordinary conditions. Covering the
whole spectrum of possible triggering conditions could contribute to a
more comprehensive landslide hazard assessment. A complete landslide
hazard evaluation demands not only spatial and temporal probability
estimation but also intensity assessment. Although spatiotemporal
probabilities can be defined using a more detailed landslide inventory
with temporal information, landslide intensity may be evaluated
through various means, such as modeling the landslide area (Moreno
et al., 2023) or considering the number of events (Di Napoli et al., 2023)
per SU.
Aside from these aspects, our findings may represent a useful product

for master planning and communication on possible landslide threats.
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Brenning, A., Schwinn, M., Ruiz-Páez, A., Muenchow, J., 2015. Landslide susceptibility
near highways is increased by 1 order of magnitude in the Andes of southern
Ecuador, Loja province. Nat. Hazards Earth Syst. Sci. 15, 45–57.

Bucci, F., Santangelo, M., Fongo, L., Alvioli, M., Cardinali, M., Melelli, L., Marchesini, I.,
2022. A new digital lithological map of Italy at the 1: 100 000 scale for
geomechanical modelling. Earth Syst. Sci. Data 14, 4129–4151.

Budimir, M., Atkinson, P., Lewis, H., 2015. A systematic review of landslide probability
mapping using logistic regression. Landslides 12, 419–436.

Bui, D.T., Tsangaratos, P., Nguyen, V.-T., Van Liem, N., Trinh, P.T., 2020. Comparing the
prediction performance of a Deep Learning Neural Network model with
conventional machine learning models in landslide susceptibility assessment. Catena
188, 104426.

Calderoni, G., Della Seta, M., Fredi, P., Lupia Palmieri, E., Nesci, O., Savelli, D.,
Troiani, F., et al., 2010. Late Quaternary geomorphological evolution of the Adriatic
coast reach encompassing the Metauro, Cesano and Misa river mouths (Northern
Marche, Italy). Geo Acta Spec. Publ. 3, 109–124.

Caleca, F., Tofani, V., Segoni, S., Raspini, F., Rosi, A., Natali, M., Catani, F., Casagli, N.,
2022. A methodological approach of QRA for slow-moving landslides at a regional
scale. Landslides 19, 1539–1561.

Camilo, D.C., Lombardo, L., Mai, P.M., Dou, J., Huser, R., 2017. Handling high predictor
dimensionality in slope-unit-based landslide susceptibility models through LASSO-
penalized Generalized Linear Model. Environ. Model Softw. 97, 145–156.

Campbell, R.H., 1973. Isopleth map of landslide deposits, Point Dume Quadrangle, Los
Angeles County, California; an experiment in generalizing and quantifying areal
distribution of landslides. In: Technical Report. US Geological Survey.

Canavesi, V., Segoni, S., Rosi, A., Ting, X., Nery, T., Catani, F., Casagli, N., 2020.
Different approaches to use morphometric attributes in landslide susceptibility
mapping based on meso-scale spatial units: a case study in Rio de Janeiro (Brazil).
Remote Sens. 12, 1826.

Carrara, A., 1983. Multivariate models for landslide hazard evaluation. J. Int. Assoc.
Math. Geol. 15, 403–426.

Carrara, A., Merenda, L., 1976. Landslide inventory in northern Calabria, southern Italy.
Geol. Soc. Am. Bull. 87, 1153–1162.

Carrara, A., Cardinali, M., Detti, R., Guzzetti, F., Pasqui, V., Reichenbach, P., 1991. GIS
techniques and statistical models in evaluating landslide hazard. Earth Surf. Process.
Landf. 16, 427–445.

Caruana, R., Lundberg, S., Ribeiro, M.T., Nori, H., Jenkins, S., 2020. Intelligible and
explainable machine learning: best practices and practical challenges. In:
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 3511–3512.

Catani, F., Lagomarsino, D., Segoni, S., Tofani, V., 2013. Landslide susceptibility
estimation by random forests technique: sensitivity and scaling issues. Nat. Hazards
Earth Syst. Sci. 13, 2815–2831.

Centamore, E., Chiocchini, U., Cipriani, N., Deiana, G., Micarelli, A., 1979. The minor
basins in the context of the Umbro-Marchean region tectonic-sedimentary evolution
during Middle-Upper Miocene. In: Ann. Geol. Pays Hellen, Tome Hors Serie,
pp. 247–251.

Centamore, E., Ciccacci, S., Del Monte, M., Fredi, P., Palmieri, E.L., 1996. Morphological
and morphometric approach to the study of the structural arrangement of
northeastern Abruzzo (central Italy). Geomorphology 16, 127–137.

Chang, Z., Catani, F., Huang, F., Liu, G., Meena, S.R., Huang, J., Zhou, C., 2023.
Landslide susceptibility prediction using slope unit-based machine learning models
considering the heterogeneity of conditioning factors. J. Rock Mech. Geotech. Eng.
15, 1127–1143.

Chen, W., Li, Y., 2020. GIS-based evaluation of landslide susceptibility using hybrid
computational intelligence models. Catena 195, 104777.
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