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Abstract

This study illustrates a methodology that deals with three basic problems that concern the calibration of marine ecosystem

models: (a) How many parameters can be calibrated? (b) Which subsets of parameters can be calibrated ? (c) How can the

uncertainty in a given model output be estimated?

The methodology is based on an a priori approach: this means that the results depend only on the structure of the model and

on the set of variables which forms the data available for assimilation. The methodology is based on the computation of the

sensitivities of the state variables to the model parameters, and enables one to analyze the role additional observations could

play in constraining the model parameters. The methodology was applied to a one-dimensional (1D) primary production

multinutrient model that describes the dynamics of pelagic ecosystem. The model describes nitrogen, phosphorus, and carbon

cycles by means of a trophic chain constituted by two phytoplanktonic functional groups, one zooplanktonic pool and the

detritus compartment. Nitrates, phosphates, and ammonia are considered as inorganic dissolved nutrients.

Results show that the sensitivities of the majority of the parameters are strongly correlated and, therefore, only 5 of 43

parameters of our model could be accurately calibrated, even if daily measurements of nutrients and chlorophyll a were

available for 1 year and at three different depths. Most of the state variables show the highest sensitivity to parameters related to

the water temperature, phytoplankton growth, and phytoplankton mortality. The analysis of this case study, which, in our

opinion, is representative of oligotrophic mid-latitude environments, suggests that water shading coefficient, optimal

temperature coefficients for small phytoplankton, optimal temperature coefficient for large phytoplankton, a grazing parameter,

and a parameter that describes the influence of water temperature on biological and chemical kinetics could be simultaneously

and efficiently calibrated.

Finally, indications about observational strategies are also given.
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1. Introduction

The growing interest of the marine scientific com-

munity in data assimilation (DA) is testified by the

increasing number of papers and workshops devoted
s reserved.
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to this subject, which is today recognized as a timely,

important, and exciting research topic for modelers, as

well as for all marine scientists (Robinson and Ler-

mousiax, 2000).

Such an interest arises as a consequence of the

facts that: (a) mathematical models are now com-

monly used both as research and management tools;

(b) the reliability of model predictions depends upon

the quality of the model used (i.e., upon its capa-

bility of reproducing interactions and flows between

its major compartments); and (c) in order to improve

such reliability, a model can be adjusted to fit the

observations, and the constrained model can then be

used for making assessments. This adjustment is

generally called DA. A variety of DA techniques

have been used to improve numerical models and

their forecasts. These numerical techniques, based

on inverse theory, allow one to use the available

experimental information for estimating the parame-

ters of the model and/or constraining the model out-

put.

DA is a research topic quite well known from a

theoretical point of view (Gelb, 1979; Luenberg,

1968), but relatively new in marine ecology. Its

application to marine ecosystem models is limited

because the data are often very scarce and/or uncer-

tain, there are many unknown parameters to be

estimated, and the standard calibration algorithms

may not converge or may lead to optimum estimates,

which are ecologically unrealistic.

In marine ecosystem studies, the technique most

frequently used is referred to as data fitting, or

parameter estimation, or parameter calibration (Law-

son et al., 1996; Matear, 1995; Prunet et al., 1996a,b;

Spitz et al., 1998; Vallino, 2000). This technique

seeks the values of the model parameters that min-

imize a given ‘‘cost function.’’ In fact, parameter

estimation is an optimization problem that consists

of (a) defining a cost function, which is as a measure

of the misfit between observed data and model

prediction, and may include some penalty terms

(Matear, 1995), and (b) seeking for the set of param-

eter values that minimizes the cost function. The

procedure, however, does not always yield mean-

ingful results: in fact, in marine ecosystem model,

as well as in water quality models, the overriding

difficulty is the lack of parameters identifiability

(Beck, 1987).
Even though the failure in the determination of

a unique set of optimal parameters can be justified

by many reasons, in this paper we focus on the

lack identifiability due to the shape of the cost

function in the neighborhood of the initial estimates

of the parameters, which will be called the ‘‘nom-

inal’’ set.

In marine ecosystem literature, parameter estima-

tion is usually dealt with by adopting an a posteriori

approach: given a set of observations, it is assumed

that the discrepancies between model predictions and

actual data can be accounted for by calibrating the

values of a predefined subset of the parameters. The a

posteriori approach is quite useful for defining the

number of parameters that one can calibrate against a

given data set, and also for estimating the confidence

in the results. However, the choice of the subset of the

parameters is arbitrary and the results depend on the

given set of experimental data. Therefore, doubts

always persist on the generality of the results thus

achieved: Would the conclusion be the same if a

different set of parameters had been selected to begin

with? Would the estimates be different if more data, or

more accurate data, had been available? To answer

these questions, in this paper, we present an a priori

method, which allows one to investigate the behavior

of the model in the neighborhood of the nominal set of

parameters. In this way, the whole set of parameters

can be taken into consideration and the results do not

depend on any assumption on data quality and num-

ber, but only on the intrinsic properties of the model

structure (i.e., the way in which the parameters are

mutually related in the conceptual representation of

the phenomena).

The a priori analysis was performed with the

purposes of: (1) determining the maximum number

of parameters that can be simultaneously estimated

from a given data set; (2) providing suggestions on

which subset of parameters can be more accurately

estimated; (3) comparing the magnitude of the stand-

ard errors of the parameters; and (4) obtaining an

initial estimation of the uncertainty in a given model

output. Furthermore, the method provides useful indi-

cations about the efficiency of alternative sampling

strategies in relation to the above four questions. The

analysis is based on the computation of local sensi-

tivities, which are then organized in sensitivity matri-

ces. The methodology is computationally efficient,
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and can be implemented also in the analysis of

complex models, such as three-dimensional (3D)

coupled models at a basin scale. The analysis was

applied on a one-dimensional (1D) primary produc-

tion multinutrient model for the upper layer of a

pelagic ecosystem.
2. Methods

Let the dynamics of an ecosystem be described by

the model:

ẋ ¼ f ðx; p̃; tÞ ð1Þ

where xaRnv is the state vector, which describes the

state of the system, and p̃aRnp is the nominal param-

eter vector. Let us denote the nominal solution of Eq.

(1) for the initial condition x0 by:

x̃ðp̃; tÞ ¼ Fðx0; p̃; tÞ ð2Þ

If a parameter p̃j is slightly changed in pj= p̃jj +Dpj,

the new trajectory x( p,t) can be approximated by a

Taylor series expansion around the nominal trajectory

x̃(p̃,t):

xðp; tÞix̃ðp̃; tÞ þ BFðx0; p̃; tÞ
Bpj

Dpj ð3Þ

The first-order sensitivity of the vector x to a param-

eter pj, or simply sensitivity (Turànyi and Rabitz,

2002), is the vector SjaRnv defined as:

SjðtÞu
Bx̃ðp̃; tÞ
Bpj

ð4Þ

These coefficients are local, in the sense that their

numerical value depends on the point in the space of

the parameter around which the linearization (Eq. (2))

is performed. Local Sensitivity Analysis (LSA) can be

used for producing the ensemble of the trajectories

corresponding to all the possible (small) variations

around the nominal vector p̃:

xix̃ðp̃; tÞ þ
X
i

SiDpi ð5Þ

LSA provides important information about param-

eter identifiability. In fact, if two or more trajectories

of this ensemble are ‘equal’ (i.e., if different combi-
nations of the parameters give the same output x),

then:

xðp̃þ dp; tÞ ¼ x̃ðp̃; tÞ þ
X
j

Sjðx̃; p̃; tÞdpj

¼ xðp̃þ dpV; tÞ ¼ x̃ðp̃; tÞ þ
X
j

Sjðx̃; p̃; tÞdpjV
X
j

Sjðx̃; p̃; tÞdpj ¼
X
j

Sjðx̃; p̃; tÞdpjV
X
j

Sjðx̃; p̃; tÞðdpj � dpjVÞ ¼
X
j

Sjðx̃; p̃; tÞa ¼ 0

that is, the sensitivities Sj are not linearly independent.

Conversely, if two or more sensitivities are not

linearly independent, different combinations of the

parameters yield the same trajectory. In fact, if

S1 = aS2, the following equalities hold in a small-

enough neighborhood of (p̃1,p̃2):

xðp̃1 þ Dp1; p̃2 þ Dp2; tÞ
¼ x̃ðp̃1; p̃2; tÞ þ S1D p1 þ S2 D p2

¼ x̃ðp̃1; p̃2; tÞ þ aS2 dp1 þ S1=ad p2
¼ x̃ðp̃1; p̃2; tÞ þ S1ðd p2=aÞ þ S2ðadp1Þ
¼ x̃ðp̃1; p̃2; tÞ þ S1D p1Vþ S2 Dp2V

that is, given any trajectory x(p̃1 +Dp̃1,p̃2 +Dp2) in

the neighborhood of p̃, there exist at least two

different couples of parameters, which produce this

trajectory:

x ¼ xðp̃1 þ dp1; p̃2 þ dp2; tÞ
¼ xðp̃1 þ dp2=a; p̃2 þ ad p1; tÞ

This is true also for the nominal trajectory, since if

one chooses Dp2 =� aDp1,

xðp̃1 þ Dp1; p̃2 þ Dp2; tÞ ¼ x̃ðp̃1; p̃2; tÞ

and therefore there exist at least two different couples

of parameters, which produce the trajectory x̃.

Therefore, the parameters whose sensitivities are

perfectly correlated cannot be calibrated against the

same data set because the effects of their variations

on the goal function are linearly related. On this

basis, it is possible to regroup such parameters, as

the results of the calibration are meaningful only if

one parameter per subset is optimized. These sub-

sets can be found by means of a Principal Compo-

nent Analysis (PCA) of the matrix r = sTs, where s
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is the normalized local concentration sensitivity

(Turànyi, 1990):

sv;jðtÞ ¼
BxvðtÞ
Bpj

pj

xv
ð6aÞ

In Eq. (6a), the index v runs over the nv state

variable, and s is a matrix which is described right

below.

Alternatively, sensitivities can be normalized by

dividing by the average value of the state variables, xav:

savv;jðtÞ ¼
BxvðtÞ
Bpj

pj

xav
ð6bÞ

Definition (6a) will be used throughout the paper,

but there is one point where definition (6b) will be

preferred.

The sensitivity matrix s is an np column matrix,

where np is the number of parameters, made up of nt

blocks. Each block is composed by (nv� ns) rows

and contains the sensitivities to all state variables at

times t1,t2,. . .,nt, where nv is the number of state

variables and ns is the number of sampling points.

The diagonal elements of the matrix sTs are then

proportional to the variances of the model output that

would be obtained if a single parameters would be

slightly perturbed, while the off-diagonal ones are
Fig. 1. Conceptual scheme of the interaction between the f
proportional to the co-variances induced by the

simultaneous perturbation of each couple of parame-

ters (Turànyi and Rabitz, 2002).

If the correlation between sensitivities is low, the

off-diagonal elements are much smaller than the

diagonal ones: in this case, it would be possible, in

principle, to calibrate all the parameters. On the

contrary, if the off-diagonal elements are important,

this means that the variability of sTs can be summar-

ized by a fewer factors, which are linear combinations

of the parameters. In this case, even the calibration of

a ‘‘good’’ model (i.e., a structurally correct model)

against a set of ‘‘good’’ data would lead to high

variances of the ‘‘best’’ parameters. The PCA re-

presents one of the most common methods for iden-

tifying these factors. This method extracts the eigen-

vectors of the matrix sTs and gives the weight of the

parameters in each eigenvector, which are called

loadings. Therefore, it provides a basis for regrouping

the parameters because the loadings of the parameters,

whose sensitivities are strongly correlated, are very

similar, or nearly opposite, in the most important

eigenvector.

Once the PCA has been performed, one has still to

select the parameters to be calibrated. The analysis of

the sensitivity matrix can help in choosing these

parameters, by selecting the ones that could be esti-
 

 

 
     

 

unctional compartments in the ecological submodel.



Table 1

Parameterisation of the ecological submodel

dZ=dt ¼ fkgrz½f ðPsÞ þ f ðPlÞ	 � kmz � kescz* gZ ðT1Þ

dPs=dt ¼ lsflimsPs � ðkmPs þ ksedPs þ krPs* ÞPs � kgrzf ðPsÞZ ðT2Þ

dPl=dt ¼ llflimlPl � ðkmPl þ ksedPl þ krPlÞPl � kgrzf ðPlÞZ ðT3Þ

dNHþ
4 =dt ¼ �RNCftlsfsðIÞfsðTÞfsðNHþ

4 ÞfsðPO3�
4 Þ � krPs* bPsg

� RNCftllflðIÞflðTÞflðNHþ
4 ÞflðPO3�

4 Þ � krPl* bPlg
þ knitfnitðOÞNHþ

4 � RNCf�kdec* f ðOÞDC

þ tkescz* � ð1� elÞf ðPlÞ � ð1� esÞf ðPsÞbZg ðT4Þ

dNO�
x =dt ¼ �RNCftlsfsðIÞfsðTÞfsðNO�

x Þe�wsNH
þ
4 fsðPO3�

4 Þ
� krPs* bPsg � RNCftllflðIÞflðTÞflðNO�

x Þ
� e�wlNH

þ
4 flðPO3�

4 Þ � krPl* bPlg
� knit* fnitðOÞNHþ

4 � RNCf�kdec* f ðOÞDC

þ tkescz* � ð1� elÞf ðPlÞ � ð1� esÞf ðPsÞbZg ðT5Þ

dPO3�
4 =dt ¼ �RPC tðllfliml � krPl* ÞPl þ ðlsflims � krPs* ÞPs b

þ RPC tkescz* � ð1� elÞf ðPlÞ � ð1� esÞf ðPsÞbZ ðT6Þ

dDN=dt ¼ RNCðkmPsPs þ kmPlPl þ kmzZÞ
� ðkdecN* fDNðOÞ þ ksedÞDN ðT7Þ

dDC=dt ¼ kmPsPs þ kmPlPl þ kmzZ � ðkdecC* fDCðOÞ þ ksedÞDC

ðT8Þ

dDP=dt ¼ RPCðkmPsPs þ kmPlPl þ kmzZÞ � ðkdecP* fDPðOÞ þ ksedÞDP

ðT9Þ

dO=dt ¼ ðlsflims � krPs* ÞPs þ ðllfliml � krPl* ÞPl

� kdecC* fDCðOÞDC � knitf ðOÞNHþ
4 RON ðT10Þ

Grazing limitation

f ðPsÞ ¼ aPs=ðaPs þ Pl þ kfzÞ ðT11Þ

f ðPlÞ ¼ Pl=ðaPs þ Pl þ kfzÞ ðT12Þ

Growth limitation (x = s,l)

flimx ¼ fxðIÞfxðTÞtfxðNHþ
4 Þ þ fxðNO�

x Þe�cxNO
�
x bfxðPO3�

4 Þ ðT13Þ

Light limitation (x = s,l)

fxðIÞ ¼
I

IOx
exp 1� I

IOx

� �
ðT14Þ

Light absorption and phytoplankton self-shading

I ¼ Iiexp

Z z

1

½�kwz� kpðPs þ PlÞ � kdDc	dz ðT15Þ

Table 1 (continued )

Temperature limitation (x = s,l)

fxðTÞ ¼ ½ðTxmax� TÞ=ðTxmax� TxoÞ	axðTxmax�TxoÞ

� exp½axðT � TxmaxÞ	 ðT16Þ

Nutrient limitation (x = s,l; Y =NH4
+, NOx

�, PO4
3�)

fxðY Þ ¼ Y=ðY þ kYxÞ ðT17Þ

Nitrification and decomposition (x = nit, DP, DN, DC)

fxðOÞ ¼ DO=ðDOþ kxÞ ðT18Þ

Arrhenius formulation (x = escz, dec, rPl, rPs)

kx*¼ kx#
ðT�TxÞ
x ðT19Þ
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mated with the highest degree of accuracy or those

whose accurate determination minimizes the uncer-

tainty in a given model output.

The choice can be addressed by the determination

of the ‘‘tuning importance’’ of each parameter (Tur-

ànyi, 1990), which allows one to rank the parameters

in respect to their effect on model output. Sensitivities

to different parameters are compared using relative

sensitivities (Eq. (6a)), which are dimensionless.

Tuning Importance (TIv,j) of the variable v in

respect to the parameter pj is defined as the sum of

squares of relative sensitivities (Turànyi, 1990):

TIv;j ¼
Xnt
it¼1

s2j; v; it ð7Þ

If the effect of the parameters on more than one

variable needs to be considered, the Global Tuning

Importance GTI (Turànyi, 1990) is used:

GTIj ¼
X
v

Xnt
it¼1

s2j; v; it ð8Þ

The indexes GTIj are the diagonal terms of the

matrix (sTs). Therefore, if the variables considered in

GTI are the output variables, high values of GTIj are

associated with low standard errors on the parameter pj,

since, in the linear hypothesis, these are proportional to

the diagonal elements of the inverse matrix (sTs)� 1.

The TI gives an indication about which variable con-

tributes more to GTI and therefore in reducing the

standard errors, since the TI is a contribution of each

state variable to GTI. Once the standard errors are

determined, the uncertainty in a given linear function



Table 2

List of the parameters of the ecological submodel

Z Density of zooplankton zoo

Ps Density of phytoplankton small phys

Pl Density of phytoplankton large phyl

NH4
+ Water concentration of reduced

inorganic nitrogen

nh4

NOx
� Water concentration of oxidized

inorganic nitrogen

nox

PO4
3� Water concentration of reactive

phosphorous

po4

DC Carbon in the detritus

DN Nitrogen in the detritus

DP Phosphorous in the detritus

O Dissolved oxygen

ls Max growth rate phyto small ta

Tsmax Inhibition temperature for phyto small tmaxs

Tso Optimal temperature for phyto small topts

as Coefficient for temperature function

for phyto small

cls

Ios Optimal light for phyto small ios

knhs Ammonia halfsaturation for phyto small knhs

knos Nitrogen halfsaturation for phyto small knos

ws Inhibition nitrogen uptake

coefficient phyto small

psis

kpo Phosphorus halfsaturation for phyto small ksps

krPs Respiration rate phyto small krs

kexuPs Exudation rate phyto small kexs

kmPs Mortality rate phyto small kds

ll Max growth rate phyto large mul

Tlmax Inhibition temperature for phyto large tmaxl

Tlo Optimal temperature for phyto large topl

Al Coefficient for temperature

function for phyto large

cll

Iol Optimal light for phyto large iol

knhl Ammonia halfsaturation for phyto large knhl

knol Nitrogen halfsaturation for phyto large knol

wl Inhibition nitrogen uptake

coefficient phyto large

psil

kpol Phosphorus halfsaturation for phyto large kpol

krPl Respiration rate phyto large krpl

kexuPl Exudation rate phyto large kexupl

kmPl Mortality rate phyto large kmpl

kgrz Max grazing rate zooplankton kgrz

kpz Grazing halfsaturation kpf

a Grazing preference alpha

el Efficiency yield phyto

large to zooplankton

effs

es Efficiency yield phyto small

to zooplankton

effl

kmz Mortality rate zooplankton kmz

kescz Excretion rate zooplankton kescz

knit Nitrification rate knit

konit Oxygen halfsaturation for nitrification konit

kdecN Decay rate nitrogen kdecn

kdecP Decay rate phosphorus kdecp

Table 2 (continued )

ksedPl Sinking rate phyto large ksedpl

ksed Sinking rate detritus ksedd

krear Superficial recreation rate krear

kps Shading coefficient for phyto small kps

kpl Shading coefficient for phyto large kpl

kw Shading coefficient for water kw

kd Shading coefficient for detritus kd

h Arrhenius coefficient teta

Ta Arrhenius reference temperature ta
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L(x) of a model output can be estimated by means of

Eq. (5). For example, the variance of the (time) average

value of the ith state variable, as a function of the

standard error ypj, can be estimated as:

VarðxavÞc
X
t

Sj;i;t

" #2

ðypjÞ2 ð9Þ

However, care must be taken when using Eq. (9)

for ranking the parameters in respect to their contri-

bution to uncertainty in model output, because the

linear approximation may be violated if ypj is too

large. For this reason, if the analysis is focused on

estimation of uncertainty, the validity of the ranking

provided by this local analysis should be checked by

using also global methods (Pastres and Ciavatta,

2002; Pastres et al., 1999).

The above equations can be extended to time- and

space-dependent models, like the one which is ana-

lyzed in this paper. In this case, the state equation

becomes:

Bxi=Bt ¼ j � ðKjxiÞ þ ð v! �jÞxi þ f ðx; pÞ ð10Þ

The sensitivities can be computed by solving,

together with the state equation, a set of additional

vector partial differential equations:

BSi=Bt ¼ j � ðKjSiÞ þ ð v! �jÞSi þ J Si þ Bf =Bp

ð11Þ

where J is the Jacobian matrix, not to be confused

with the cost function indicated in this paper by W.

There are several ways of solving Eq. (11). In our

work, the direct method (Koda et al., 1979), which is

described in detail in Appendix A, was applied.
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3. Results

The methods outlined above were applied to a 1D

water column model, as part of a general research

project concerning the modelling of the Mediterra-

nean Sea (http\\:www.ogs.trieste.it). The model equa-

tion reads as:

ẋðzÞ ¼ jzkjzxðzÞ
diffusion

þ f ðxðzÞ; pÞ
reaction

þ vsjzxðzÞ
sinking

ð12Þ

The application of Eq. (11) to the state equation

leads to (see Appendix A):

BSi=Bt ¼ jzðkjzSiÞ
diffusion

þ J Si þ Bf =Bp
reaction

þ vsjzS
sinking

þ hshad
shading

ð13Þ
where a new term, hshad, appears explicitly (see also

Appendix A). This term takes into account the shad-
Fig. 2. Time evolution of the simulated concentrations of primary producer

the water column.
ing of the incident light, which depends on the depth

but cannot be assimilated to the transport terms nor to

the reaction one. The reaction term of Eq. (12) is

described in detail in Crispi et al. (1998). Both nitro-

gen and phosphorus were taken into account, since

each nutrient is potentially limiting. Two different

species of primary producers were considered, which

are representative of large and small phytoplanktonic

species, respectively, such as diatoms and autotrophic

microflagellates. The main interactions among the

ecological compartments are visualized in Fig. 1.

The dependence of phytoplankton growth on water

temperature was modelled by using the empirical for-

mulation proposed by Lassiter and Kearns (1974),

which is characterized by an optimum temperature

and a cut-off temperature. The limitations due to other

factors were described by means of a multiplicative

model: the effect of nutrient was described by a

Monod kinetic, while that of light was modelled using
s (mg/l C), zooplankton (mg/l C), and nutrients (mg/l N or P) along

 http\:www.ogs.trieste.it 
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Steele formulation. Zooplankton grazing was modelled

by a Hollings Type II functional response (Holling,

1965).

The biogeochemical cycles of the carbon and of the

macronutrients were closed by introducing the detritus

compartment, which receives the nonliving particulate

and dissolved organic matter. The latter is produced

by mortality processes, excretion, and exudation. The

dynamics of dissolved oxygen was also simulated,

since this variable, besides being frequently sampled,

is an aggregated index of the quality of a water body.

Table 1 summarizes the structure of the biological

submodel.

The model is driven by light intensity at the surface

and a vertical profile of temperature, which were

computed for the Tyrrhenian Sea by using the 3D

model of the Mediterranean Sea quoted above. Trans-

port processes were described by means of the sinking

and diffusion processes, while advective terms were

not considered. The nominal values of the 43 param-
Fig. 3. Time evolution of the relative sensitivity, in the water column, of ph

large density.
eters of the model are listed in Table 2. Whenever

possible, they were chosen according to the sugges-

tions of the specific literature regarding the Mediter-

ranean ecosystem models (Varela et al., 1992, 1994,

1995; Crise et al., 1999; Crispi et al., 1999; Pinazo et

al., 1996; Tusseau et al., 1997). When any specific

information was lacking, the nominal values were

taken from general literature on marine ecosystem

models (Fasham et al., 1990; Moisan and Hofmann,

1996). Eqs. (12) and (13) were solved numerically by

using a DEC alpha workstation: a yearly simulation

took around 20 min.

The nominal trajectory of the model reproduces

correctly the formation of the deep chlorophyll max-

imum (Fig. 2) and the seasonal succession of the two

phytoplanktonic functional groups (Crispi et al.,

2002). The increases in light and temperature trigger

the bloom of the large phytoplankton (phyl) in the

early spring, followed by a bloom of the small

phytoplankton (phys), which reaches its maximum
ytoplankton small density to maximum growth rate of phytoplankton
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productivity at higher levels of light intensity and

temperature than phyl. The blooms cause a rapid

depletion of nutrients: this effect is more pronounced

near the surface. The grazing activity starts affecting

the phytoplanktonic stocks toward the end of the

spring, as one can see from the increase in zooplank-

ton density.

An example of the use of LSA for gaining a deeper

insight in the mechanism of the model is illustrated in

Fig. 3, which shows the sensitivity of phys to mul, the

maximum growth of phyl. The sensitivity does not

show an appreciable spatial variation with depth until

the end of April, when an increase in mul causes an

increase in phys in the upper 50 m and a decrease

below that depth. In fact, an increase in this parameter

increases the competitiveness of phyl, and therefore

causes an earlier bloom. As a consequence of this

temporal shift, the bloom of phys occurs a little bit

later and takes place at a lower depth than in the

nominal trajectory.

The results of the identifiability analysis depend on

the choice of the model output. Our analysis was

performed by taking as components of the output

vector the concentrations of ammonia, nitrate, and

phosphate, and the total phytoplankton biomass, which

is the sum of phys and phyl. Furthermore, we assumed a
Fig. 4. Scree plot for the PCA p
‘‘sampling scenario’’ in which each output variable is

sampled once a day at the three different depths (5, 50,

and 100 m), which are indicated by the stripes in Fig. 3.

Therefore, the sensitivity matrix was formed by 43

columns, one per each parameter, and by 365 blocks,

one per each day, each one made up of 4 (output

variables)� 3 (depths) rows.

The results of the Principal Component Analysis of

the matrix sTs are summarized in the scree plot of Fig.

4 and in Table 3, which shows the loadings in the

eigenvectors: loadings higher than 0.7 are marked in

bold. Table 3 shows the loadings of the factors after a

VariMax rotation (Legendre and Legendre, 1998),

which allows one to compare the loadings more

easily, but unrotated loadings were considered as well.

The scree plot of Fig. 4 shows that the first four

eigenvalues account for most of the total variance

(92%). Parameters whose sensitivities are correlated

appear with similar, or opposite, loadings in the most

important components, as it happens for the three

parameters ksps, krs, and kexs. The inspection of

Table 3 indicates that most of the parameters cluster-

ize in agreement with their role in the dynamics of the

system. Parameters referring to the two different pools

of phytoplankton fall in two distinct factors; therefore,

it is possible to calibrate one parameter per pool.
erformed on the matrix s.



Table 3

Loadings (VariMax-normalized) of each parameter in the factors of the PCA performed on the matrix s

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7

Max growth phyto s ta � 0.19939 0.235856 0.93880 � 0.104926 0.012715 � 0.043388 � 0.072432

Inhibition temperature phyto s tmaxs � 0.27786 0.040837 0.94651 � 0.090800 � 0.027584 � 0.051700 � 0.088536

Optimal temperature phyto s topts 0.24052 � 0.097462 � 0.94865 0.104998 0.069136 0.049115 0.089023

Coefficient temperature phyto s cls 0.29373 0.026884 � 0.94186 0.068737 0.023128 0.052450 0.095551

Optimal light phyto s ios � 0.83568 � 0.109920 0.01564 0.055422 0.449778 0.033104 0.001652

Ammonia halfsaturation phyto s knhs � 0.32568 � 0.293963 � 0.84360 0.164129 � 0.093295 0.103745 � 0.176376

Nitrogen halfsaturation phyto s knos 0.09304 � 0.308472 � 0.18114 � 0.019402 � 0.922407 � 0.008128 0.028241

Inhibition nitrogen phyto s psis � 0.86782 � 0.028520 � 0.22389 � 0.356308 0.013223 0.001476 0.138945

Phosphorus halfsaturation

phyto s

ksps 0.11494 � 0.229321 � 0.95618 0.077716 � 0.026475 0.045687 0.081338

Respiration rate phyto s krs 0.04041 � 0.123799 � 0.96472 0.066373 � 0.149147 0.076918 � 0.113587

Exudation rate phyto s kexs 0.04042 � 0.123798 � 0.96472 0.066355 � 0.149163 0.076915 � 0.113567

Mortality rate phyto s kds 0.44649 0.184346 � 0.86129 0.044484 � 0.012223 0.026525 0.101715

Max growth phyto l mul � 0.97494 0.046415 0.19915 0.046462 � 0.003716 � 0.017745 � 0.041874

Inhibition temperature phyto l tmaxl � 0.91129 0.222264 0.30361 � 0.060130 � 0.043858 � 0.032954 � 0.008435

Optimal temperature phyto l topl 0.94480 � 0.154373 � 0.26507 0.014897 0.028368 0.025981 0.021556

Coefficient temperature phyto l cll 0.89087 � 0.254735 � 0.32156 0.085540 0.052540 0.037553 0.002368

Optimal light phyto l iol 0.77633 0.386537 0.13912 � 0.414049 � 0.101095 � 0.003786 0.064401

Ammonia halfsaturation phyto l knhl 0.93231 0.183607 0.06907 � 0.258864 � 0.062180 0.005992 0.030606

Nitrogen halfsaturation phyto l knol 0.94271 � 0.144388 � 0.28108 0.029446 0.024502 0.030914 0.049759

Inhibition nitrogen phyto l psil 0.87471 0.277138 0.04426 � 0.358103 � 0.072298 0.009610 0.056772

Phosphorus halfsaturation

phyto l

kpol 0.97086 � 0.060944 � 0.21218 � 0.025517 0.016451 0.023070 0.040685

Respiratory rate phyto l krpl 0.98407 0.056022 0.02425 � 0.116799 � 0.014003 0.025524 � 0.014344

Exudation rate phyto l kexupl 0.98407 0.056024 0.02425 � 0.116802 � 0.014004 0.025524 � 0.014341

Mortality rate phyto l kmpl 0.95536 � 0.075453 � 0.26035 0.031180 0.029201 0.038517 0.008021

Max grazing zoo kgrz � 0.00196 � 0.978620 � 0.13083 0.132618 � 0.041671 0.031649 � 0.010329

Grazing halfsaturation kpf U0.10326 0.961184 0.21441 � 0.101971 0.070315 U0.031887 � 0.004563

Preferred grazing alpha 0.27143 0.936256 0.12430 U0.150204 0.021522 � 0.017924 0.027251

Efficient grazing phyto l effs 0.03661 � 0.981946 � 0.02893 0.140366 � 0.034339 0.004597 0.036978

Efficient grazing phyto s effl 0.42291 � 0.681360 � 0.49673 0.247440 0.001786 0.043982 � 0.002161

Mortality rate zoo kmz � 0.10950 0.974329 0.11927 � 0.092954 0.083709 � 0.018818 0.052926

Excretion rate zoo kescz � 0.25404 0.928904 0.16793 � 0.050107 0.115308 0.010589 � 0.094111

Nitrification rate knit 0.71718 � 0.052349 � 0.46472 � 0.109673 � 0.176777 0.238051 0.398982

Oxygen halfsaturation

nitrogen

konit � 0.70588 0.053300 0.44527 0.119436 0.201731 � 0.256432 � 0.413517

Decay rate nitrogen kdecn � 0.73537 � 0.546083 0.34362 0.014206 0.032757 � 0.043053 � 0.095851

Decay rate phosphorus kdecp � 0.72603 0.278915 0.50453 0.031167 0.069734 � 0.024567 � 0.033771

Recreation rate krear 0.17314 � 0.027284 � 0.28676 0.030855 0.013543 0.938407 0.028100

Shading coefficient phyto s kps 0.39705 0.378426 0.32936 � 0.739550 0.014930 � 0.060706 0.049821

Shading coefficient phyto l kpl 0.19196 0.492590 0.31566 � 0.734690 � 0.029170 0.028831 � 0.003969

Shading coefficient water kw 0.79824 0.315537 0.03302 � 0.489172 0.031062 � 0.002171 0.039417

Shading coefficient detritus kd 0.11021 0.472714 0.51832 � 0.675958 � 0.042115 � 0.022437 � 0.033062

Arrhenius coefficient teta � 0.69007 0.181804 0.53068 0.186081 � 0.082887 � 0.252828 � 0.062841

Arrhenius reference

temperature

ta � 0.82985 0.153409 0.33923 0.199470 0.130553 � 0.201210 � 0.038933

Sinking rate phyto l 0.52878 0.681859 � 0.30048 0.035755 � 0.010866 0.065382 0.057867

Explained variance 17.16801 8.427458 10.60362 2.648596 1.275066 1.168131 0.508484

Percent variance

total explanation

0.39926 0.195987 0.24660 0.061595 0.029653 0.027166 0.011825

Parameter whose loadings are higher than 0.7 are marked in bold. Last two rows indicate, respectively, the total variance and the percentage of

the total variance explained by each of the factors.
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Table 4

Groups of parameter that have correlated sensitivities

Group Parameters Opt

1 teta, mul, kmpl, tmaxl, cll, Iol, kpol, knol,

kexupl, knhpl, krpl, psil, Ios, psis, ta, kdecn,

kedcp, knit, konit, kw, ta

teta

2 topts, tmaxs, mus, kds, cls, kexs, ksps, krs knhs topts

3 alpha, kgrz, kpf, effs, kmz, escz alpha

4 kps, kpl, kd kps

5 knos knos

6 krear krear

Mix teta, effl, ksedph, teta

The last column gives, for each group, the parameter with the

highest TI, and indicates an initial optimal subset of parameters.
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Parameters related to zooplankton activity are grouped

together in the third factor of the PCA, which still

explains 19% of the total variance. The fourth factor,

which explains 6% of total variance, is dominated by

phytoplankton and detritus shading. Water shading

coefficient is instead correlated with the parameters of

the first factor. On this basis, the sets of parameters

presented in Table 4 may be tentatively identified as
Fig. 5. Global Tuning Importance of the parameters of the model. Differen

Table 4 (i.e., parameters whose sensitivities are correlated have the same c

dimensionless).
independent. These sets include 40 of 43 original

parameters. The three left parameters, whose sensitiv-

ities are not clearly correlated to those of other sets,

are listed in a seventh additional ‘mixed’ set. Among

them, only teta has an high GTI, as is shown in Fig. 5.

The relative importance of the parameters was

investigated by comparing the GTIs, computed by

means of Eq. (8), which are shown in Fig. 5. The

inspection of Fig. 5 shows that parameters related to the

influence of the temperature on the growth of phyto-s

and phyto-l (topts and toptl) and with the other pro-

cesses following Arrhenius law (teta) have the greatest

tuning importance. Parameters related to the other

external forcings, nutrient availability, and light inten-

sity are far less important. Moreover, parameters

related to maximum phytoplanktonic growth, grazing

activity, and shading are of relevance, while the tuning

importance of all the other ones is small. The ranking

reveals that parameters that play similar roles, such as

mortality, respiration, and exudation, have different

tuning importance: such a finding would have been

hard to foresee. In the figure, different colors indicate
t colors indicate parameters belonging to different groups defined in

olor, and dominate one of the principal components) (TI values are



Fig. 6. Comparison of the contribution of different parameters to the uncertainty in the yearly integrated value of the total phytoplanktonic biomass

(above) and of the yearly integrated value of phosphorus (below). Different colors indicate parameters belonging to different groups, as in Table 4.
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parameters belonging to different groups, defined in

Table 4. The last column of Table 4 gives, for each

group, the parameter with the highest tuning impor-

tance, and therefore indicates an initial optimal set of

parameters to be calibrated, namely the subset of

parameters that could be calibrated with the lowest

standard error on their estimates.

The sensitivity matrix can also be used for obtain-

ing a first estimation of the uncertainty in a linear

function L(x) of the state vector, which could be of

interest. This application of LSA is here illustrated by

considering the uncertainties in the yearly integrated

values of the two phytoplanktonic groups yphtot, and

of the total phosphorous yphos. For example, an

accurate knowledge of the first quantity may be more

important than the accurate knowledge of the actual

trajectory if one is dealing with the analysis of the

carbon cycle in the context of global changes. If one

assumes that the standard deviation of all the param-

eters is given by the same percentage of their nominal

values, the variances of the yearly integrated values

can be estimated by using the expression:

VarðyivÞ~
Xnp
j¼1

X365
d¼1

x1si;j

X365
d¼1

xi

2
66664

3
77775

2

ð14Þ

The results are summarised in Fig. 6, which shows

that the contribution of a given parameter to the total

uncertainty is markedly different. For example, an

accurate estimation (i.e., a low standard deviation) of

the semisaturation value kpol would markedly reduce

the uncertainty in the total phosphorous, whereas it

would not improve the accuracy of the estimation of

total phytoplankton. In the figure, different colors

indicate parameters belonging to different groups, as

in Table 4.
4. Discussion

4.1. Parameter identifiability

Most of the applications of DA to marine ecosys-

tem have been focused so far on the parameter

estimation problem, which can be reduced to the
following question: ‘Given a certain model structure,

is it possible to estimate accurately, uniquely, and with

as little uncertainty as possible the unknown param-

eters?’ Usually, the question is addressed by following

an a posteriori approach (i.e., by finding in some way

the set of optimal parameter and their standard error).

This approach relies on the particular data set used,

and implicitly assumes that a solution does exist.

The novelty of this paper is that we suggest to use

LSA in order to check a priori if there are different

vectors of parameters that would give the same trajec-

tory. In such a case, it would not be possible to discri-

minate among such vectors, and therefore the solutions

of the calibration problem would not be unique, at least

in the neighborhood of the nominal set of parameters.

As shown in the Methods section, this situation occurs

if two sensitivities are linearly dependent. The exis-

tence of at least one trajectory, which is produced by

two distinct combinations of parameters, is an equiv-

alent condition. The number of parameters or, more

precisely, of linear combinations of parameters, which

can be actually constrained by a given data set, can be

found by applying the PCA to the matrix sTs.

From another point of view, the sensitivity matrix

can be used for the creation of a set of error-free

synthetic data (Eq. (5)), and the PCA represents an

attempt to determine whether or not it is possible to

recover the nominal parameters through model calibra-

tion and to assess, if this is not possible, the maximum

number of parameters that can be recovered. The plus

in the a priori approach is that the sensitivity matrix s

contains information about all the trajectories, which

results from any arbitrary, slight variations yp in the

parameter set. In this way, the analysis can be seen as an

ensemble of an infinite number (one for each possible

variation yp) of twin experiments.

The present analysis was performed by assuming

that four output variables, nutrients, and total phyto-

planktonic biomass were sampled with a very high

frequency. The results of the PCA analysis show that

the first four eigenvalues account for more than 90% of

the total variance, and that 40 parameters can be

divided into six sets of correlated parameters, while

the three remaining ones identify a seventh group. In

addition, it can be seen that the most important

parameters can be divided in only five of these groups.

Therefore, a small number of parameters (at most

seven) could be simultaneously and efficiently cali-



Table 5

Comparison of possible optimal subsets of parameters, obtained by

maximization of GTI (A), minimization of uncertainty on yphtot

(B), and minimization of uncertainty on yphos (C)

1 2 3 4 5 6 7

A (GTI) toptl alpha topts kps knos krear teta

B (yphtot) toptl alpha topts kps knos krear teta

C (yphos) kpol kmz topts kps knos krear teta
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brated, even if daily data were available. This is in

agreement with Prunet et al. (1996b) and Matear

(1995), who, by using an a posteriori approach, con-

cluded that, at most, seven to eight parameters could be

estimated by calibration against experimental data. In

both cases, the complexity of their models is similar to

the one we use, but the data set was slightly different.

A much greater number of parameters, around 30,

were instead identified in Vallino (2000), but his own

analysis showed that the estimates were not unique.

Qualitatively similar results were obtained by

applying the PCA analysis to a different sampling

scenario, in which weekly data were assumed to be

collected. This finding agrees with the results pre-

sented in Lawson et al. (1996), who analysed the

influence of different sampling schemes on parameter

identifiability by using an a posteriori approach. Their

analysis showed that the frequency of the sampling is

a critical factor below a certain threshold, but that

above the threshold, an increase in the frequency of

the sampling leads to more accurate estimates but

does not enhance substantially the possibility to

identify the parameters.

4.2. Ranking of the parameters and choice of the

subset of parameters to be estimated

Once the maximum number of parameters that can

be calibrated has been determined, there still is the

necessity to decide which combinations of parameters

can be estimated. As remarked in the Methods section,

the analysis of sensitivity matrix is useful in choosing

parameters that are ‘important,’ either because they

strongly affect model output (i.e., have high TI) or

minimize the uncertainty in a given model output. The

results of the Principal Component Analysis of the

matrix sTs suggest that, at most, seven parameters can

be independently calibrated. However, the maximiza-

tion of the tuning importance, which led to the subset

presented in the last column of Table 4, should not be

considered as the only criterion for selecting the

parameters. In fact, one could be interested also in

the minimization of the uncertainty in a given model

output, and take into account the results of uncertainty

analysis. For example, Table 5 compares the subsets

that are obtained by minimizing the uncertainty in

yearly average of total phytoplankton (yphtot), second

row, and yearly average of total phosphorous (yphos),
third row, with the one identified on the basis of the

tuning importance. The comparison among the three

subsets shows that the maximization of GTI and the

minimization of the uncertainty in phytot leads to the

same choice. Furthermore, the five parameters topts,

kps, knos, krear, and teta satisfy also the third crite-

rion, which instead suggests the substitution of toptl

with kpol and alpha with kmz.

Even though the three subsets include parameters

that have an independent effect on the model output,

three of them (knos, krear, kps) contribute very little

to the GTI and to uncertainties in yphytot and yphos,

as one can see from Fig. 5. Therefore, it seems

reasonable to eliminate these parameters and to

include tentatively some parameters that are partially

correlated with the left four ones, in bold in Table 5.

Two criteria can be taken as guidelines for the final

choice: the ranking of the parameters and their degree

of correlation with the basic subset, which often

depend on the ecological role. For example, the first

group of Table 4 includes 21 of 43 parameters: 15 of

them are directly related to the dynamics of the two

phytoplanktonic groups, while the other six are

involved in other processes. Among them, the most

important parameter is kw, whose loads on the first

four eigenvectors are rather different from the ones of

toptl, which already belong to the basic set ‘‘A.’’ The

degree of correlation of the subset thus identified can

be estimated by computing the inverse of the matrix

R, which is obtained by extracting from the matrix

sav
Tsav only the row and columns that correspond to the

five candidate parameters. Low values of the condi-

tion number (i.e., the ratio of the largest singular value

to the smallest) indicate that the matrix R is not ill

conditioned and, therefore, can be easily inverted: in

turn, this means that the calibration of the parameters

leads to meaningful results, as the standard errors are

proportional to the diagonal elements of the matrix

(sav
Tsav )� 1. In this case, if we add to the four pa-
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rameters (in bold) of group A the parameter kw, a

condition number of 167.12 is obtained, whereas a

condition number of 1726 is computed if we add the

parameter mul, whose loads are similar to those of

toptl (see Table 3). Analogous results are obtained by

considering the subset B and adding to the parameters

marked in bold the same parameter kw.

4.3. Choice of the sampling strategy

The importance of a variable in constraining a mo-

del parameter (i.e., the contribution of the variable to

the gradient of the cost function W ) can be assessed by

computing the indexes TI. Analogously, the analysis of

the evolution of sj
2 in time provides information on the

contribution to the gradient ofW of measurement taken

at different times. In fact, a high value of sj
2 implies a

high contribution to GTI, which—as remarked in the
Fig. 7. Time evolution of the TI of nutrients and phytoplankton to the param
Methods section—is inversely related to standard

errors on the parameters. Therefore, the analysis of

the evolution of sj
2 for the parameters, which one has

decided to calibrate, can provide useful indications on

optimal sampling strategy. A detailed analysis of this

important issue is beyond the scope of this paper, in

which we illustrate the potentiality of a preliminary

analysis only by means of the following qualitative

example. However, the methods could be used to

compare the effectiveness of alternative sampling

plans, in order to optimize the resources. As an exam-

ple, the TI values of the output variables (i.e., nutrients

and total phytoplankton) of the five candidate param-

eters topts, toptl, alpha, teta, and kw are compared in

Fig. 7. The inspection of the figure evidence as the

measurement of phytoplankton and phosphorus is

more valuable than those of nitrogen, and that sampling

is more informative in March and August.
eters that compose the optimal subset (TI values are dimensionless).
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5. Conclusion

The paper illustrates a methodology for selecting

the parameters to be estimated when assimilating

ecological data in a model of marine ecosystem. The

a priori approach here adopted gives one the possi-

bility of exploring the identifiability of the parameters

without being constrained by the collection of a given

data set. In our opinion, this grants more general

validity to the conclusions, in respect to a posteriori

analysis based on a specific data set.

The choice of the parameters should be guided by

(a) a careful comparison of the sensitivities, and

sensitivity-derived indexes such as tuning importance

and global tuning importance, (b) the constraints

posed by the identifiability problem, and (c) the

parameters one is most interested in.

In regard to the identifiability problem (point b), a

formal proof is given that no data set allows one to

discriminate among different parameters if there exists

a single data set which could have been produced by

two (or more) distinct combinations of such parame-

ters. This is equivalent to say that the sensitivities of

the data set to these parameters are linearly correlated.

It is then shown how a statistical analysis of the

sensitivities helps one in organizing this information,

by indicating groups of parameters with correlated

effects on model output.

Even though, in principle, each parameter of a

given group could be calibrated, a calibration algo-

rithm converges more quickly and the uncertainties of

the estimates are lower if one chooses among each

group the parameter with the greatest tuning impor-

tance (point a). In this case, the focus is on sensitivity

and sensitivity-derived indexes (TI and GTI) of the

variable homologous to the available data eventually

used for the assimilation. Furthermore, sensitivities

and sensitivities-derived indexes provide information

on how valuable the knowledge of a given parameter

is in respect to some specific process ( point c) (i.e.,

how much the uncertainty on a given parameter

contributes to the uncertainty in a given model out-

put). Therefore, there might be different optimal

choices for different purposes. Finally, one might like

to consider also the amount of information already

available for each parameter.

The paper presents in Appendix A also an ad hoc

implementation of the so-called ‘direct method’ useful
for a systematic computation of the local sensitivities.

This method is computationally efficient and can be

applied to 3D models. The implementation here

described permits one to consider processes, like

shading effect of plankton and detritus on the light

intensity along the column, that cannot be included in

a straightforward implementation of the method.

The specific results of our analysis evidence that

only a small number of parameters (i.e., five) can be

calibrated on the basis of the sampling scenario here

hypothesized. Further, a clear distinction appears

among parameters that are related to the two primary

producers and with zooplankton. Our analysis indi-

cates that the parameters which relate water temper-

ature to biological activity exert a strong influence on

model output: this influence is not considered in other

papers, where an important, but less systematic,

sensitivity analysis of ecosystem models is performed,

such as Varela et al. (1992), where temperature is not

considered and light intensity and nitrogen availability

are indeed indicated as the key factors in regulating

deep chlorophyll maximum. Fasham et al. (1990)

investigate the effect of a large number of parameters

on annual net primary production and f ratio, but

temperature is not considered as a force of the model.

In Levy et al. (1998), temperature is considered in the

model, but temperature-related parameters are not

included in the set of parameters subjected to sensi-

tivity experiments.

The results also suggest that it is possible to extract

information on the dynamics of both primary pro-

ducers and zooplanktonic pools from total phyto-

plankton biomass data. From a modelling point of

view, this motivates a more complex biological sub-

model than those which consider a single planktonic

pool. On the other hand, since it is not possible to rely

on calibration for more than very few parameters, it is

necessary to estimate most of them from direct (or

laboratory or mesocosm) measurements. Since direct

measurements of rates of biological processes and

multiannual time series are both still rare, model

parsimony in building mathematical models of pelagic

ecosystems looks appropriate.

The results include the ranking of the parameters,

according to TI, s, and GTI. Sensitivities of the

trajectories are generally higher than sensitivities of

yearly integrated values, indicating that in most cases,

the modification of a parameter causes a temporal, or



C. Solidoro et al. / Journal of Marine Systems 40–41 (2003) 79–97 95
spatial, shift in the plankton evolution, but does not

substantially change the annual standing crop. In

general, the parameters that relate biological activity

with water temperature (topts, toptl, teta, and, to a

lower extent, tmaxl and tmaxs) are the most important.

They are followed by phytoplankton growth rates

(mul and mus) and mortalities (kdl and kds), and then

by grazing parameters (kgrz and alpha). Best results

can be achieved by constraining the set of parameter

composed by topts, toptl, alpha, kw, and teta.

Data can be ranked, too, based on their relative

importance in constraining the parameters. Indications

are given on optimal observing strategies for the most

important parameters: the observation of phytoplank-

ton and phosphorus allows one to estimate the optimal

subset of parameters with the greatest accuracy, and

March and August are the more valuable sampling

moments.
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Appendix A

There are several ways to compute sensitivities.

The most frequently used is the ‘brute force’ method,

that is, the comparison of the nominal trajectory,

which is the trajectory obtained using the reference

values of the parameters, and several trajectories

obtained by running the model after perturbing each

parameter at a time. The brute force method can be

easily understood and implemented; indeed, it has

been used also for performing sensitivity analysis

referring to marine ecosystem. (Fasham et al., 1990;

Varela et al., 1994, 1995). However it is expensive

from a computational point of view, and would be

hardly applicable for analysis as detailed as the one

here presented, especially if these would be extended

to basinwide 3D models. However, it is possible to

use approaches more sophisticated and efficient than

the brute force method.
In fact, if one takes into consideration—to begin

with—a spatially homogenous system in which the

state variables evolve in agreement with Eq. (1), by

differentiating Eq. (1) in respect to a parameter pj,

commuting the order of differentiation, and substitut-

ing dx/dpj with Sj, one finds:

Ṡj ¼
d f ðx; p; tÞ

dpj
¼ Bf ðx; p; tÞ

Bpj
þ Bf ðx; p; tÞ

Bx
Sj ðA1Þ

The simultaneous integration of Eqs. (1) and (A1)

gives the time evolution of S(x,p,t).

The implementation of this method requires addi-

tional programming work, since the Jacobian matrix

Bf/Bx has to be computed, but once this operation is

done, any single run enables one to obtain the

sensitivities of x to each of the parameters, nearby a

given point of the parameter space: if the sensitivities

have to be computed around a different nominal

trajectory, the computer code does not require any

modification.

The analysis can be extended to spatially hetero-

geneous systems by using the so-called direct method

of Koda et al. (1979), which has been applied to a 1D

model of a eutrophic channel in Pastres et al. (1997).

In the direct method, one adopts a finite-difference

scheme for the space discretization of Eq. (12): in this

way, the system is defined by a state vector x,

continuous in time, of dimension nz*nv, where nz is

the number of vertical grid points. Analogously, the

vector p becomes an nz*np vector. The dynamics of

this system is then defined by a set of ordinary

differential equations, to which Eq. (A1) can be

applied. The evolution of a generic variable v in the

generic layer z reads as:

ẋv;z ¼
1

Dz2
fk�ðxv;z�1 � xv;zÞ þ kþðxv;zþ1 � xv;zÞg

þ vv

Dz
ðxv;z�1 � xv;zÞ þ fzðx; pzÞ ðA2Þ

where v ranges from 1 to nv, z ranges from 1 to nz, and

k� and k+ are, respectively, the eddy diffusion coef-

ficients between the cell z and z� 1 and the cells z and

z+ 1, while Dz is the spatial (vertical) step. Note that

the local term fz(x,p) may depend on all the compo-

nents of the vector x, while it depends explicitly only

on the parameters defined for the layer z.
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After differentiating Eq. (A2) in respect to pj,k, one

obtains the following equation:

Ṡj;v;z;k ¼
1

Dz2
fk�ðSj;v;z�1;k � Sj;v;z;kÞ

þ kþðSj;v;zþ1;k � Sj;v;z;kÞg þ
vv

Dz

�ðSj;v;z�1;k � Sj;v;z;kÞ þ
Bfzðx; pÞ
Bpj;k

þ
Xnz
q¼1

Xnv
w¼1

Bfzðx; pÞ
Bxw;q

Sj;w;q;k ðA3Þ

The sensitivity Sj,v,z,k represents an estimate of the

effects of the variations of the jth component of p in a

layer k, and pj,k on the state variable v at the layer z.

Since, in our hypothesis, pj is changed simulta-

neously in the water column, its sensitivity is obtained

by summing over all the layers k the sensitivities

given by Eq. (A3):

Ṡj;v;z ¼
X
k

Sj;w;z;k ¼
k�

Dz2
ðSj;v;z�1 � Sj;v;zÞ

þ kþ

Dz2
ðSj;v;zþ1 � Sj;v;zÞ

vs;v

Dz
ðSj;v;z�1 � Sj;v;zÞ

þ
X
k

Bfzðx; pÞ
Bpj;k

þ
X
w;q

Bfzðx; pÞ
Bxw;q

Sj;w;q ðA4Þ

The reaction term of Eq. (A2) depends explicitly

only on the parameters of the current layer z, that is,
Bfz
Bpj;k

¼ 0 for k p z. Therefore, the corresponding term

of Eq. (A4) simplifies to:

X
k

Bfzðx; pÞ
Bpj;k

¼ Bfz

Bpj;z
ðA5Þ

Further, if the reaction term of Eq. (A2) depends

explicitly only on the variables of the current layer z,

that is, Bfz
Bxw;q

¼ 0 for q p z, the corresponding term of

Eq. (A4) becomes:

X
w;q

Bfzðx; pÞ
Bxw;q

Sj;w;q ¼
X
w

Bfzðx; pÞ
Bxw;z

Sj;w;z ðA6Þ

As a consequence, in this case, the sensitivities can

be handled in the code simply as additional state

variables: the reaction term of their state equation is

given by Eqs. (A5) and (A6), and, like other variables
(Eq. (A2)), they are subjected to sinking and diffusion

processes:

Ṡj;v;z ¼
k�

Dz2
ðSj;v;z�1 � Sj;v;zÞ þ

kþ

Dz2
ðSj;v;zþ1 � Sj;v;zÞ

þ vs;v

Dz
ðSj;v;z�1 � Sj;v;zÞ þ

Bfzðx; pÞ
Bpj;z

þ
X
w

Bfzðx; pÞ
Bxw;z

Sj;w;z ðA7Þ

In our case, however, as it is shown in Table 1, the

simplification expressed in Eq. (A5) cannot be

applied, since only a weaker form of it (Eq. (A8))

holds true:

Bfz

Bxv;q
¼ 0 only if q > z ðA8Þ

and Eq. (A4) is rewritten as:

Ṡj;v;z ¼
k�

Dz2
ðSj;v;z�1 � Sj;v;zÞ þ

kþ

Dz2
ðSj;v;zþ1 � Sj;v;zÞ

þ vs;v

Dz
ðSj;v;z�1 � Sj;v;zÞ þ

Bfzðx; pÞ
Bpz

þ
X
w

Bfzðx; pÞ
Bxw;z

Sj;w;z þ
X
w

Xz�1

h¼1

Bfzðxv;kÞ
Bxw;h

Sj;w;h

ðA9Þ

In this particular case, the last term of Eq. (A9)

turns out to be fairly simple, as it depends only on the

three variables that are involved in shading (i.e., phyto

large, phyto small, and detritus). As a result, the

sensitivities can be computed without introducing

too much complication in the code, which remains

quite efficient. It can be seen as Eq. (9) is the discrete

form of Eq. (13).
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