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Via Alfonso Valerio 12/1, 34127 Trieste, Italy

gloria.pietropolli@phd.units.it, lmanzoni@units.it
2 National Institute of Oceanography and Applied Geophysics - OGS

Borgo Grotta Gigante 42/c, 34010 Sgonico, Trieste, Italy
gcossarini@ogs.it

Abstract. Monitoring the marine ecosystem can be done via observa-
tions (either in-situ or satellite) and via deterministic models. However,
each of these methods has some drawbacks: observations can be accurate
but insufficient in terms of temporal and spatial coverage, while deter-
ministic models cover the whole marine ecosystem but can be inaccurate.
This work aims at developing a deep learning model to reproduce the
biogeochemical variables in the Mediterranean Sea, integrating observa-
tions and the output of an existing deterministic model of the marine
ecosystem. In particular, two deep learning architectures will be proposed
and tested: first EmuMed, an emulator of the deterministic model, and
then InpMed, which consists of an improvement of the latter by the
addition of information provided by in-situ and satellite observations.
Results show that EmuMed can successfully reproduce the output of
the deterministic model, while ImpMed can successfully make use of the
additional information provided, thus improving our ability to monitor
the biogeochemical variables in the Mediterranean Sea.

1 Introduction

Improving the capability of monitoring and forecasting the status of the marine
ecosystem has important implications (e.g. sustainable approaches to fishing and
aquaculture, mitigation of pollution, and eutrophication), especially considering
the changes caused by human activities [6]. An unprecedented improvement in
monitoring the oceans has arisen from satellite sensors in the 90s and in situ
autonomous oceanographic instruments, such as float in the 2000s. Floats consist
of a two meters long robotic device, that collects marine variable data by diving
in the ocean and varying its depth; for more details see the GOOS (Global
Ocean Observing System) website [1]. While these instruments do not need
human intervention and provide profiles while the battery lasts, however, they are
expensive and thus perform relatively few measurements compared to the whole
area to cover (Figure 1 shows the distribution of the float measurement collected
during 2015 over the entire Mediterranean sea), which, consequently, cannot



be modeled by only relying on these observations. Satellites cover with high
resolution the whole marine domain but only at the surface and they suffer from
cloud cover. Hence, observational data available are largely spatially sparse, and
with a scarcity of series spanning more than a few decades. Deterministic models
have been exploited to simulate the marine environment, as they can provide
reanalyses and predictions for the whole 3D domain. However, uncertainties in
parameterization and input data and high computational costs can impact their
reliability and applicability. The current state-of-the-art deterministic marine
ecosystem modeling merges observations (e.g. satellite ocean color, BGC argo
float, and so on) with ocean model through data assimilation methods [7]. The
incorporation of machine learning (ML) techniques offers alternative and stimulant
opportunities for advancing the capacity of integrating theory, knowledge and
observations to simulate the marine environment [13]. That is, ML is a new way,
compared to existing data assimilation methods, of integrating observations and
theory. The present work aims to develop a novel deep learning approach to
assess spatial and temporal variability of physical and biogeochemical variables in
the marine domains, that combines the knowledge provided by the deterministic
model and the in-situ and satellite observations. Embedding of ML techniques
to physical and biogeochemical oceanography received significant attention in
recent years [12], for a comprehensive review of the current state of the art of
ML application to this field the reader can refer to [13].

The deep learning method proposed in this work is based on the approach of
filling missing pixels of a considered image, which is a well-known and extensively
studied computer vision task, often referred to as image inpainting [3]. Since this
method has been created specifically to synthesize visually realistic, coherent,
and semantic plausible pixels for missing regions, our idea was to exploit its archi-
tecture to assemble a model capable of skilfully reconstructing the physical and
biogeochemical variables and also to fill the information gap provoked by the in-
homogeneity of in-situ observation. This novel approach has been implemented in
the Mediterranean Sea, a semi-enclosed sea where a rich collection of model, satel-
lite, and in-situ data are already available: a validated model [5], high-resolution
satellite data from Copernicus [4] and in-situ BGC-Argo floats [14]. The first ML
model that we will introduce, named EmuMed, exploits Generative Adversarial
Networks (GAN) [8], and is based on an inpainting architecture [9]. EmuMed
learns spatial and temporal relationship among the marine ecosystem variables
starting from the deterministic model MedBFM output thanks to the nature of its
architecture. The second ML model, that we define is InpMed, adds observations
to EmuMed while maintaining the same architecture of EmuMed. We remark
that modeling marine ecosystem variables by ML presents several challenges.
First of all, marine datasets span four dimensions (i.e., temporal, vertical and two
horizontal) which are characterized by different scales and units (e.g., kilometer
and meter respectively for horizontal and vertical spatial dimensions). Moreover,
unlike many ML applications, in geosciences we cannot rely on ground-truth data.
Indeed, the deterministic model is just an approximation itself of the marine
ecosystems, with the observations providing only a very sparse and scarce picture
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Fig. 1. Map of the float measurements over the Mediterranean Sea collected during the
year 2015.

of it. These motivations encourage us to select a convolutional-based architecture,
as it is naturally suitable for dealing with spatial data. The main idea was to treat
horizontal maps of the considered domain as images that capture the marine
environment as if it were photography, where the classical RGB channels are
substituted with channels representing the marine variables. Indeed, in images,
the three colors channels are strongly interrelated and dependent on each other,
as they need to collaborate to produce a whole range of colors. Similarly, we aim
to introduce an intrinsic strong relation between marine ecosystem variables as
they are also naturally correlated.Then, considering that dealing with in-situ
measurements leads also to the aforementioned problem of the insufficient spatial
coverage of information, an architecture capable of filling areas where measure-
ments are missing becomes essential. These considerations lead us to choose as
learning architecture GAN specifically constructed to deal with inpainting tasks
to deal with horizontal sections of the marine domain.

The paper is structured as follows: Section 2 provides a description of the
proposed models. In particular, Section 2.1 introduces the deep learning archi-
tecture, Section 2.2 defines and describes EmuMed, while Section 2.3 illustrates
InpMed. In Section 3 the experimental settings are provided and experimental
results are reported in Section 4. Section 5 recalls the main contributions of the
paper and provides directions for further research.

2 Material and Method

In this section, we introduce the deep learning architecture employed. In Sec-
tion 2.2 we discuss an intermediary version of the method we build: EmuMed.
Finally, a final and improved model, InpMed, will be presented and discussed in
Section 2.3.

2.1 Deep Learning Architecture

The deep learning architecture employed will take advantage of Convolutional
Neural Network (CNN) [10]. CNN performs proficiently in machine learning
problems dealing with multiple dimensional input domains, such as image data,
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since they conserve the spatial structure of the input; for further details, the reader
can refer to [2]. The models introduced in this work are based on a convolutional
inpainting architecture [9], which is in turn based on Generative Adversarial
Networks (GAN) [8]. The original purpose of GAN is to train the generative model
by using an auxiliary network, called discriminator, which serves to distinguish
real images with respect to the one generated by the generative model. The
general inpainting architecture consists of the training of a generative network to
“fill-in” in the most realistic way possible an image with one (or even more) parts
of it masked. In this paper, we will consider an inpainting model composed of
three interacting convolutional neural networks: the completion network used to
complete the image; the global discriminator, and the local discriminator, which
are two auxiliary networks. The completion and the discriminators compete in a
two-player game, where simultaneous improvements are made to both of them
during the training phase. Thus, while the completion network learns how to fill
the holes in a realistic and coherent way, discriminators are trained to understand
whether or not the provided input has been completed. The improvement of the
completion implies a betterment of the discriminators’ performance; and vice-
versa, the improvement of the discriminators’ capability to recognize completed
input implies a rise in the completion performance, to fool the discriminators.

Completion Network. The completion network is a convolutional neural network,
consisting of 17 layers, as detailed in [9]. The architecture exploits an encoder-
decoder technique that initially decreases the resolution of the input features to
reduce the computational effort, and then restores the original resolution. Like
in image generation task, the input of the completion network is an RGB image
with binary channels, where 1 indicates that a mask is applied to the input pixel,
and the output is an RGB image, properly completed.

Discriminator Networks. Two discriminators play against the completion network
introduced above: the global discriminator and the local discriminator. The
former tests the reliability of the input in its entirety, while the latter focuses
on a particular and smaller area, thus paying more attention to details. The
discriminators take as input the complete image (adequately re-scaled), both of
them are implemented using convolutional neural networks followed by a fully-
connected layer producing a real-valued vector as output. Finally, the two resulting
vectors are concatenated and passed again as input of a fully-convolutional layer,
that returns a continuous value indicating the probability that the provided input
is real or fake.

Training. The loss function employed to train the completion network, introduced
in [11], is the weighted MSE defined as follows:

L(x,Mc) = ||Mc ⊙ (C(x,Mc)− x)|| (1)

where ⊙ stands for the pixel-wise multiplication and || · || is the Euclidean norm.
Furthermore, the GAN loss [8] is used for training together completion and
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discriminators network. While discriminators aim to maximize the average of
the log-probability of real images and the log of the inverse probability for fake
images, the generator aims to minimize the log of the inverse probability predicted
by the discriminator for fake images. Therefore, the generator tries to minimize
the following function while the discriminator tries to maximize it:

min
C

max
D

E[logD(x,Md) + log(1−D(C(x,Mc),Mc))] (2)

where Mc is the input mask, Md is a random mask, D(x,Md) is the discrimina-
tor’s estimate of the probability for the real input x with mask Md to be real,
D(C(x,Mc)) is the discriminator’s estimate of the probability for the fake input
x to be real, and E indicate the average over the training input. Finally, taking
in account both Equation 1 and Equation 2, the resulting loss function is:

min
C

max
D

E[L(x,Mc) + logD(x,Md) + αlog(1−D(C(x,Mc),Mc))] (3)

where α is a fixed hyperparameter. The training of the algorithm, which is
schematized in Algorithm 1, consists into three main phases: during phase 1
the completion network is trained among all the features of the training set
for TC epochs; then, during phase 2, the completion network is fixed and the
discriminator network is trained for TD epochs; finally, during phase 3 both the
completion network and the discriminators are trained at the same time for TCD

epochs.

2.2 EmuMed

The EmuMed is the first model that we present in this paper, named after the
fact that it behaves as an emulator (meaning that it is learning information from)
of the deterministic model MedBFM [15,5]. The architecture underlying EmuMed
is the one presented in Section 2.1: a generative convolutional neural network
trained through adversarial loss. The input (tensors) employed for the training
are obtained from a discretization of data generated through a simulation of
the deterministic model. These tensors represent 2-dimensional maps of a fixed
region of the Mediterranean Sea (here, with the term map we denote a horizontal
section of the region at a fixed depth). The role that pixels accomplished for the
image completion task is carried out by rectangles that represent a discretization
area of the Mediterranean Sea, while the standard RGB channels are substituted
with channels that contain values representing the oceanographic physical and
the biogeochemical variables that we aim to reproduce. Thus, EmuMed consists
of a generative model capable of reconstructing the biological and chemical
interactions for the whole Mediterranean Sea domain considered.

2.3 InpMed

InpMed is the second model presented in this paper, obtained starting from
EmuMed and then performing a further training phase adding both in-situ
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Algorithm 1 Pseudocode of the training steps for the deep learning architecture
underlying EmuMed, and, consequently InpMed.

1: for t = 0 . . . TC do ▷ phase 1
2: for all x in the training set do
3: Generate masks Mc with random holes.
4: Compute C(x,Mc).
5: Update completion network weights through Equation 1.
6: end for
7: end for
8: for t = 0 . . . TD do ▷ phase 2
9: for all x in the training set do
10: Generate masks Mc with random holes.
11: Compute D(x,Md) and D(C(x,Mc),Mc).
12: Update discriminator network weights through binary cross entropy loss
13: end for
14: end for
15: for t = 0 . . . TCD do ▷ phase 3
16: for all x in the training set do
17: Generate masks Mc with random holes.
18: Generate masks Md with random holes.
19: Compute D(x,Md) and D(C(x,Mc),Mc).
20: Update discriminator network weights through binary cross entropy loss.
21: Update completion network weights through Equation 3.
22: end for
23: end for

measurements collected by the float devices and by satellite observations. This
additional training phase is performed according, again, to phase 1 of the Al-
gorithm 1 described in Section 2.1. The weights of EmuMed are updated to
fit these new data, producing a more reliable prediction that is closer to the
real marine ecosystem conformation. InpMed ensures an improvement in the
simulating capability of the model, as the convolutional structure guarantees
a local distribution of information provided by observation also in neighboring
areas of these measurements. Another crucial point is that there are certain
marine indicators that are not measured either through in-situ devices or via
satellite information, such as the primary production, which prediction can be
improved anyway by taking advantage of a combination of the ML architecture
and of the observed data. In fact, relations between variables are learned through
the training of EmuMed ; subsequently, InpMed exploits the information provided
by the measured variables and the relations learned from the deterministic model
to improve the prediction for both the measured variables and the ones that
cannot be measured.

3 Experimental Setting

The geographical area considered in this work is the western Mediterranean
portion, specifically, the one with latitude ranging between 36 and 44 and
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Table 1. Experimental settings values. The table on the left describes the parameters
concerning the deep learning architecture. Horizontal lines separate: common parameters,
EmuMed parameters and InpMed parameters. The table on the right represents the
parameters referring to the definition of the input structure.

Parameter Value

Comp. input size 30× 65× 75
Loc. Disc. input size 20× 50× 50

lrc 0.01
lrd 0.01
Tc 5000
Td 200
Tcd 1000
α 4× 10−4

lrfloat 0.001
Tfloat 200

Parameter Value

time interval weekly
latitude interval 36◦ − 44◦

longitude interval 2◦ − 9◦

depth interval 0− 600 m
time resolution weekly
latitude resolution 12 km
longitude resolution 12 km
depth resolution 20 m

longitude varying between 2 and 9 and the vertical dimension covers a depth
ranging from 0 to 600 meters. It consists of the portion between southern France
and northern Africa, delimited on the east limit by Corsica and Sardinia and
on the west limit by Balearic islands. The spatial resolution is 12 km in both
latitude and longitude axes and 20 meters in the vertical one. The time period
covers the year 2015 which is discretized on a weekly basis. Therefore, the 4-
dimensional input tensor consists of a horizontal map, of the central-western
Mediterranean Sea area, whose dimensions are: length, height, width, and channel.
Each channel of the tensor, in turn, collects one marine ecosystem variable.
Namely, the variable considered are temperature, salinity, oxygen, chlorophyll-a,
and primary production. All the variables can be obtained via the deterministic
model MedBFM, while only the first four are collected via float measurement
(as it is not possible to measure primary production via any sensor), and only
chlorophyll-a can be inferred through satellite. Each location in the 3D field
has 5 variables associated and a time resolution one week is used (thus, 52
weekly observations are available). Due to their nature, each float provides a 1D
profile, where latitude and longitude are fixed and only the depth can change.
Finally, since satellites can observe only the surface of the water, they provide
2D data (with holes due to cloud covers). For the training of EmuMed, we
used the following hyper-parameters (summarized in Table 1): the completion
network is trained for 5000 epochs, the discriminator network is trained for 200
epochs, and finally the two networks are trained simultaneously for 1000 epochs.
These hyperparameters have been fixed after an appropriate preliminary study.
The optimizer chosen is ADADELTA [16], which set the learning rate for each
weight in the network automatically. The learning rate initial value for both the
completion and the discriminator is set to 0.01. Subsequently, InpMed is trained
for 200 epochs with a learning rate value set initially to 0.01.
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4 Experimental Results

(a) (b)

Fig. 2. Map of surface chlorophyll produced by (a) MedBFM and reconstructed using
(b) EmuMed.

The Mediterranean case study aims at demonstrating the reliability of ML
reconstruction for marine ecosystem variables and at showing how the different
components of the ML architecture contribute to the reconstruction quality.
To assess the goodness of the proposed reconstruction, the analysis focus on
some statistical properties (averages and variances) of the simulated fields. In
particular, Figure 2 reports maps of one of the variables (i.e., surface chlorophyll)
demonstrating InpMed capability to emulate the intense spatial variability of
surface marine fields. Figure 3 shows the vertical profiles of the spatial averages
among two given weeks of the year (e.g., one in winter and one in summer),
assessing the capability of the technique to simulate different seasonal periods
for all modeled variables. These plots compare the original deterministic model
MedBFM profile with the EmuMed and InpMed reconstructions, showing the
benefits provided by the different architectural components. Finally, Figure 4
compares, via box-plot, the distributions of the standard deviation of the spatial
variability of MedBFM and InpMed. Four weeks of the year are displayed in
order to study how the spatial heterogeneity of the marine proprieties varies
throughout the year and how it is handled by the different models.

Results show that the EmuMed has learned well to reproduce the typical
mean vertical profiles, simulated by MedBFM, for all variables but salinity
(Figure 3). Deviations of InpMed from EmuMed profiles (e.g., orange and green
lines in oxygen, chlorophyll, and primary production in Figure 3) highlight how
the inclusion of the observations in the ML architecture introduced possible
corrections (i.e., new information) to the MedBFM simulated fields. Temperature
shows that the inclusion of observations had a marginal effect while salinity shows
that observations bring InpMed profiles closer to MedBFM highlighting a possible
inaccurate reconstruction of EmuMed, that anyway is corrected in the second
phase of the training, confirming the added values of the two-step architecture
implemented in InpMed. Regarding the spatial variability of horizontal fields of
marine variables, maps of Figure 2 show qualitatively the good performance of
the ML reconstruction. From a quantitative point of view, the comparison of
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Week 2

(a) (b) (c)

(d) (e)

Week 35

(a) (b) (c)

(d) (e)

Fig. 3. Vertical profile of the spatial averages, varying with depth, over the consid-
ered domain. Variables represented are: (a) temperature, (b) salinity, (c) oxygen, (d)
chlorophyll, (e) primary production. The gray line represents the deterministic vertical
profile MedBFM, the orange line represents the one inferred by EmuMed, and the green
represents the vertical profile predicted by InpMed. Above are reported results relative
to week 2 (winter), on the right relative to week 35 (summer), in order to demonstrate
the capability of introduced models to predict different seasonal periods.
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Fig. 4. Box-plots showing the distributions of the standard deviation of the marine
variables computed from the spatial maps at different depths. From top to bottom are
shown, respectively, temperature, salinity, oxygen, chlorophyll (only layers between 0
and 200m), primary production (only layers between 0 and 200m). The box-plot with
the median gray line represents deterministic model MedBFM, while the box-plot with
the green median line represents InpMed. From left to right are shown, respectively,
week 1, week 10, week 20 and week 30

10



the standard deviation boxplots (Figure 4) shows that the spatial variability of
InpMed is generally higher than MedBFM for all variables in all selected weeks.
This highlights that, when observations are included in the reconstruction, the
ML model InpMed simulates horizontal fields characterized by more complicated
gradients and spatial structures w.r.t. a possibly too smooth output of the
deterministic model.

A separate comment can be done for primary production (i.e., a variable that
is not observed). Despite the mean vertical profiles are not substantially changed
by ML architecture (Figure 3), it is possible to notice that the InpMed model
differs from the EmuMed even if, during the training, no observed data have
been provided for primary production. The fact that the variability introduced
by the observed variable is clearly propagated by InpMed can be also observed
in Figure 4. This evidence confirms that information provided by observed data
improves the InpMed capability to simulate the unobserved variable, thanks to
the relations among variables learned from the output of the deterministic model
by the deep learning architecture exploited.

5 Conclusion

We investigated the integration of an existing ecosystem deterministic model with
in-situ and satellite information through a convolutional generative deep learning
architecture. Merging these two different kinds of information allows us to combine
their strengths and exploit them to lessen each other’s limits. We remark that a
deep learning model can also be less computationally expensive, once trained, with
respect to a deterministic one, as it does not require an entire simulation in order
to get specific variable estimations (e.g., primary production). Such a comparison
will be one of the aspects that will be investigated in future works. Moreover,
exploiting the intrinsic structure of the architecture, the learning framework
makes possible the spread of information provided from the observed variables
(temperature, salinity, oxygen, chlorophyll) also to variables that are not possible
to directly collect via in-situ or satellite measurements (e.g., primary production).
Experimental results on both EmuMed and ImpMed have confirmed the validity
of the proposed approach, showing that our models can infer correctly information
from the deterministic model and, in the case of ImpMed, also from observations.
This work represents the first step to exploiting deep learning architecture aimed
at merging large deterministic model output with observations to reconstruct
the marine ecosystem’s temporal and spatial variability. Our main goal will be
to extend this architecture by inserting a larger number of channels so that
it became able to reproduce the whole set of marine ecosystem variables, in
particular exploiting this architecture to model unobserved variables (as we did
for primary production) also with the information provided by observed data. The
extension of the present ML model to the entire Mediterranean Sea represents
another important computational challenge given the significant increase in data
volume to handle.
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