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Fishing has significant trophodynamic impacts on marine communities,
including reductions in the mean trophic position (TP) of the ecosystem
resulting from a decrease in the abundance and size of species and
individuals with high TPs. This study demonstrates the erosion of fish TP,
an additional process that results in lower TP of individuals of a given
size, which may exacerbate the effects of fishing on the food web. A stable
isotope approach based on the tRophicPosition Bayesian method was used
to quantify the TP of 12 target marine species at a given length, and
compare their TP between fishery-restricted areas and trawled areas. The
results show a difference in the TP of six benthic and apical nekto-benthic
predators, which feed in the median at about 0.5 TP lower in trawled
areas. It appears that current ‘fishing down marine food webs’ analyses
may underestimate the trophic effects of fishing. Accounting for changes
in trophodynamics of individuals at a given size is important to detect
indirect effects through food web interactions. The application of a trawling
ban may lead to the restoration of lost trophic structure; however, trophic
changes may occur more slowly than changes in biomass.

This article is part of the theme issue ‘Connected interactions: enriching
food web research by spatial and social interactions’.

1. Introduction
Fisheries have consistently targeted large individuals and high trophic
position (TP) species for human consumption resulting in their systematic
depletion [1–3]. In some cases, the reduction of high TP species has led to
an associated reduction in the mean TP of the entire marine community,
a process referred to as the ‘fishing down the food web’ (FDFW) [4]. The
FDFW has been questioned because of the use of fixed species-specific TPs
[5], for being an apparent result of the serial addition of low TP species
in fisheries targets [6], and for the non-ubiquitous declines in mean TP of
fishery catches [7]. Nevertheless, there is increasing recognition of long-term
trophodynamic changes in marine food webs induced by fisheries, especially
those determined by biomass distribution across such fixed TP [3,8–11].

Fishing induces also disproportionate mortality on larger individuals,
leading to a reduction in mean fish size within a population and thus in
mean TP for a given species [12]. Therefore, not only the FDFW has been
highlighted in several areas worldwide, but incorporating mean fish size

© 2024 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.

Research

Cite this article: Agnetta D, Badalamenti F,
Sweeting CJ, D'Anna G, Libralato S, Pipitone C.
2024 Erosion of fish trophic position: an indirect
effect of fishing on food webs elucidated by stable
isotopes. Phil. Trans. R. Soc. B 379: 20230167.
https://doi.org/10.1098/rstb.2023.0167

Received: 29 August 2023
Accepted: 23 January 2024

One contribution of 19 to a theme issue
'Connected interactions: enriching food web
research by spatial and social interactions'.

Subject Areas:
ecology

Keywords:
fishery-restricted areas, Mediterranean, stable
isotopes, trawl ban, trophic position

Author for correspondence:
Davide Agnetta
e-mail: dagnetta@ogs.it

†These authors contributed equally to the study.

Electronic supplementary material is available
online at https://doi.org/10.6084/
m9.figshare.c.7295170.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

22
 J

ul
y 

20
24

 

http://orcid.org/
http://orcid.org/0000-0002-3019-9095
http://orcid.org/0000-0002-2395-454X
http://orcid.org/0000-0002-8644-8222
http://orcid.org/0000-0001-8112-1274
http://orcid.org/0000-0002-7632-1228
http://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2023.0167&domain=pdf&date_stamp=2024-07-17
https://doi.org/10.1098/rstb.2023.0167
https://doi.org/10.6084/m9.figshare.c.7295170
https://doi.org/10.6084/m9.figshare.c.7295170


reductions into analyses increases the rate at which trophic changes occur owing to fishing [13].
Fish size determines many aspects of predation behaviour, and larger individuals within a population commonly feed at a

higher TP [14,15]. While incorporating size-specific feeding behaviour was a significant step forward, TP at a given size is still
assumed to remain constant through time or in space, an assumption that is not necessarily true [16].

Spatial analyses of feeding behaviour emphasize significant plasticity within species that reflect the local availability of
resources [17–19]. Such feeding plasticity has also been observed in freshwater and terrestrial systems where the TP of top
predators increases with ecosystem size [20], where trophic roles change as a result of the introduction of new species [21] or of
habitat fragmentation [18]. This suggests that for a given body size, feeding behaviour may vary based on the surrounding food
resources and would be reflected in the TP of a consumer [22].

The exploitation of fishery resources has a wide range of impacts on marine ecosystems other than the reduction of
mean fish body size, and this is particularly true for bottom trawling. These include changes in species richness [23,24],
alteration of source production in supporting food webs [25,26], physical habitat degradation leading to structurally
simpler bottom habitats [27,28], and impoverished benthic communities with subsequent reshuffle of trophic cascade
processes [4,29,30].

Fishery-restricted areas (FRAs) can mitigate the direct and indirect impacts of fishery exploitation [31,32] and have proved
useful as large field experiments for studying the ecosystem impacts of fishing on the abundance and size of organisms [29].
Moreover, FRAs have the potential for communities to recover from FDFW and to re-establish trophic interactions and TPs [33].
An example of FRAs in the Mediterranean is two trawl exclusion areas off the northern coast of Sicily, where many trawlable
resources on the continental shelf have recovered significantly since the trawl ban [34,35].

Bottom-up and indirect effects of fishing on trophodynamics, such as those induced by changes in prey availability, have
been shown in the entire food web of a central Mediterranean fishing area [36]. This suggests that another mechanism of TP
reduction by fishing may occur, i.e. when the TP of predators of a given species and size is reduced indirectly as a result
of changes in the traits of organisms lower in the food web (hereafter, TP erosion; figure 1). Nevertheless, few field studies
have focused on such trophodynamic cascading changes at the species level of a given size, especially in large Mediterranean
FRAs [33,37]. Understanding such changes is critical for predicting responses of food web components to exploitation and their
potential recovery also for the vast use of the indicators based on TP [38].

Fish trophodynamics can be described using 12C/13C and 14N/15N stable isotope ratios. Such analyses rely on the relatively
predictable enrichment in the heavy isotopes, which determines changes in isotopic ratio (δ) at each trophic step. Changes in
δ15N are large and thus δ15N provides time-integrated estimates of TP. By contrast, changes in δ13C are relatively small but vary
substantially among the different primary production sources that support food chains [39]. Moreover, using appropriate δ13C
and δ15N values from food sources (baselines) is relevant for calculating the TP of specific consumers [16,40].

This study derives and compares isotope-based estimates of TP for demersal fish species at a given size caught in areas with
different levels of fishing pressure. Assuming altered and unstable bottom conditions in trawled areas, we predict larger TP
differences between FRAs and trawled areas in benthic fish feeders than in other feeding groups.

2. Material and methods
(a) Sampling areas
Two FRAs and two trawled areas were surveyed in the southern Tyrrhenian Sea off the northern Sicily coast. The FRAs were
the Gulfs of Castellammare (GC) and Patti (GP), while the trawled areas were the Gulfs of Termini Imerese (GT) and Sant’Agata
(GS; figure 2). All four gulfs are characterized by the presence of river mouths, with a wide, gently sloping sandy bottom in the
centre and by cliffs with vegetated rocky bottoms on the outer edges. Muddy bottoms dominate below 30 m depth. The four
gulfs are subject to predominantly eastward currents following the general water mass circulation of the southern Tyrrhenian
Sea. Satellite-derived annual mean chlorophyll a, sea surface temperature, and organic matter also show little variation among
gulfs [41]. About 200 km2 of the continental shelf in GC and GP have been subject to a ban on commercial bottom trawling since
1990, allowing recovery of groundfish biomass and size and an average 8-fold biomass increase in GC [33,35,42]. Conversely,
both GT and GS are exploited by large trawl fleets and are overfished [33,42]. In addition, they are characterized by lower
diversity and lower biomass/abundance ratios of the macrobenthic assemblage compared to GC and GP [43].

(b) Sampling of fishes and baseline for stable isotopes
Sampling was conducted in 2004–2005 and involved 12 fish species known as benthic, nekto-benthic and pelagic feeders,
common to the four areas and targeted by fishermen (electronic supplementary material, table S1). These species represent
about 40–50% of the total biomass in each gulf (unpublished data; Agnetta D., Pipitone C., 2005). Samples were taken from
trawl-survey catches [44] or from local fishermen in the case of Seriola dumerili and Dicentrarchus labrax, stored in ice, and then
returned to the laboratory within the same day. Total length was measured to collect similarly sized individuals at 50–60% of the
maximum length as derived from Fishbase [45] (electronic supplementary material, figure S1).

Zooplankton and bottom-deposit feeding crustaceans are generally consumed by demersal fishes and have been used as
relevant isotopic baselines in the previous studies conducted in the same areas [19,46,47]. Therefore, to assess the potential
contribution of pelagic and benthic isotopic baselines to the TP estimates of fishes, mesozooplankton and suprabenthic
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crustaceans were collected in each gulf. Zooplankton (mainly copepods) were collected using a WP2 plankton net, while three
benthic crustaceans (two decapods, Alpheus glaber and Goneplax rhomboides and one tanaid, Apseudes spinosus) were collected
using a Van Veen grab. At least three individuals were collected for each fish species at a given size from each gulf, alongside
three specimens for the baseline species. White dorsal muscle and the whole body were sampled for isotopic analysis from
fishes and baseline invertebrates, respectively. Hydrochloric acid (HCl) was used to remove carbonates from baseline samples
prior to isotope analysis. Because acid treatment may alter δ15N values [48], a half sample was washed with 2 N HCl and
analysed for δ13C, the other half (untreated) was used to determine δ15N. All samples were rinsed with distilled water and oven
dried at 60°C for approximately 48 h before being ground to a fine powder with a mortar and pestle. One-milligram samples
of powdered tissue were then weighed into tin capsules for the determination of δ13C and δ15N using a PDZ Europa 20-20
elemental analyser with combustion and continuous flow isotope ratio mass spectrometer connected to an automated nitro-
gen–carbon analysis module for solid–liquid preparation (PDZ Europa Ltd, Northwich, UK). Two internal reference materials
were analysed every six samples to compensate for instrument drift and to perform quality control. Isotopic signatures were
expressed in conventional delta (δ) notation, referenced to the Atmospheric Air and PeeDee Belemnite international standards.
Based on the s.d. of the internal standard, the precision of both δ13C and δ15N was ±0.2‰.

(a)

(b)

(c)

Prey Prey

Fishing Pressure
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Figure 1. Representation of the three main mechanisms that lead to a reduction in the mean TP of marine food webs as some function of fishing pressure (i.e. fishing
down marine food webs). (a) Change in species composition [4], (b) change in size structure of populations [13], and (c) change in TP of prey and/or prey composition
for a given size of predator (this study: TP erosion).

Figure 2. Map showing the four areas investigated: the no-trawl area in the Gulf of Castellammare (GC) and Patti (GP) and the two trawled areas of Gulf of Termini (GT)
and Sant’Agata (GS).
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(c) Bayesian trophic position calculation and baseline setting
TP of each of 12 fish species was calculated with a Bayesian model of the ‘tRophicPosition’ package [49] developed in R (v.
4.1.3 [50]). Briefly, the tRophicPosition package includes three different basic models depending on the number of baselines (i.e.
benthic, pelagic, full) and the inclusion of a trophic discrimination factor (TDF) for carbon in addition to that for nitrogen. It
works with stable isotope data (δ13C and δ15N values) for a robust estimation of consumer TP.

In order to develop the appropriate Bayesian model, we selected the relevant baseline and TDF [39]. The selection of
baselines was performed in three steps. First, the variability of the isotopic signature (δ13C and δ15N) for pelagic and benthic taxa
was compared using a two-way PERMANOVA based on the Bray–Curtis index to assess their use as a baseline. A symmetrical
design with three factors: trawl with two levels (yes, no), area with two levels nested in trawl (GC, GP for level no and GS, GT
for level yes of factor trawl) and taxon with four levels (meso-zooplankton and the three benthic species). The model obtained
using 999 permutations and significance set at p = 0.05, showed a significant effect of the interaction trawl × area × taxon on
δ13C and δ15N (F6,81 = 4.79, p<0.001), although the contribution to the total variance was greater for zooplankton than for the
benthic organisms. Therefore, the analysis suggested to use separate species for each area (electronic supplementary material,
figure S2). Second, we evaluated the inclusion of pelagic and benthic baselines in the model based on the distribution of fish
isotopic signatures in relation to the four baselines using biplot graphs (electronic supplementary material, figure S2) as in [49].
Third, several tests were conducted to assess the best-fitting model (among the three alternatives), especially for more pelagic
species (electronic supplementary material, figure S3). Based on the analysis of variance and biplots, a pelagic baseline (i.e.
zooplankton) was not included in the model because (i) it was isotopically different from the other basal organisms so that it
did not group together; (ii) the consumers never positioned between pelagic and benthic baselines. In fact, zooplankton was
too depleted in δ13C (about 5‰) compared to the mean of fish isotopic signatures; and (iii) its contribution in the two-baseline
models was not significant (electronic supplementary material, figure S3). Therefore, we calculated 5000 posterior Bayesian TPs
(number of adaptation, burning and iteration 104 with five chains) for each species in each gulf using the basic ‘one baseline’
model, as in equation (2.1), with the three benthic species from the same gulf as baseline:

(2.1)TP =
δ15Nc − δ15Nb

Δ15N
+  λ .

TP is the trophic position of a consumer, δ15Nc and δ15Nb are the nitrogen isotopic values of the consumer and the baseline
respectively and, λ is the TP of the baseline.

We used the common TDF proposed by Post [39] with a mean Δ15n = 3.4 ± 0.98‰. The TP of the baseline, λ, is fixed and was
set as default (λ = 2), because we used primary consumers. It is worth noting that, since the model is additive with respect to
λ, other choices for λ would affect absolute TP estimates for consumers but not their relative differences that are compared in
this work. Based on the species-specific values reported by Fishbase for the selected species and preliminary model checks, prior
distribution of fish TP was set to a mean of 4 with a s.d. of 0.5.

(d) Trawling effect assessment on trophic positions
In order to test differences in TP for each species and for each pair of areas, the posterior TP Bayesian distributions (n = 5000 for
each species and area) were used. To verify the difference in location parameters of the distribution (e.g. median) between areas
with different trawling effort (i.e. FRAs versus trawled areas), a Kruskal–Wallis rank sum test was performed for each species.
Shapiro–Wilk normality tests were carried out a priori for each dataset, and Wilcoxon pairwise tests (also called Mann–Whitney
tests) were performed a posteriori for each combination of areas in pairs per species.

Moreover, quantile tests (‘snpar’ library) were performed to test for differences in the 95th percentile. Basic ranking of TP
maxima for each species across area was used instead to assess the effects of trawling. All statistical analyses were performed
using libraries available in the R environment [50].

3. Results
Pairwise comparisons of TPs between FRAs (GC, GP) and trawled areas (GS, GT) showed significant differences in TP distribu-
tions for six species out of 12 (table 1; figure 3). Out of the species investigated, TPs of red mullet (MUT) and sand steenbras
(SSB) were significantly higher in median, 95th percentile and maximum in FRAs compared to the trawled areas, although a
significant difference resulted also between FRAs for SSB.

Greater amberjack (AMB), white grouper (GPW), pandora (PAC) and stargazer (UUC) had higher median and 95th
percentile TP values in GC and GP; however, the maximum was not higher in each untrawled area.

TPs of sea bass (BSS) and John Dory (JOD) were lower in trawled areas but only in maximum and median values, respec-
tively. All other species did not show a consistent pattern between trawled areas and FRAs in any of the metrics (table 1; figure
3).

Overall, the difference between trawled and untrawled areas was about 0.5 in median TP for five species and 0.2 for UUC.
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4. Discussion
Differences in TP between trawled and FRAs for species at given size revealed indirect effects that could exacerbate fishing
effects.

TP was approximately 0.5 higher in FRAs than in trawled areas, and differences were larger in selective benthic predators
such as MUT, SSB, and PAC. At the size here investigated, these species scour the soft bottom in search of burrowing organisms,
targeting their diet primarily on macrobenthic species such as crustaceans, polychaetes and bivalves [37,47].

Given the rapid response of macrobenthos to anthropogenic stressors such as bottom trawling [28], it is plausible that
in disturbed areas, altered prey availability and organic matter depletion [43,51] indirectly led to changes in diet or feeding
behaviour of benthic predators, which in turn were reflected in their lower TP.

The detritus and sediment in FRAs are probably different from those in areas open to trawling. In fact, mechanical disturb-
ance and trawling in particular probably affect suspended particulate matter and seafloor biogeochemical processes [52], and
in turn bacterial [53], macrozoobenthic [26,43] and fish [54] assemblages. In one of the investigated FRAs (i.e. GC), sediments
are not subject to frequent resuspension and are probably richer in bacteria [51]. This would imply that food availability, as
well as the production of primary food sources (i.e. algal versus bacterial) for benthic species, would differ between FRAs and
trawled areas, perhaps contributing to the observed TP differences in predatory fishes. Hence, a process like niche compression
with a reduction of the vertical dimension in isotopic space, occurring through multiple mechanisms as described for flowing
agricultural streams [55], could also have occurred in the two Sicilian FRAs.

Higher TP in FRAs were also detected in nekto-benthic predators, such as GPW, greater AMB and UUC. The diet of these
species is characterized by a high proportion of demersal fishes [33,56], the biomass of which has strongly increased in the FRAs
investigated in this work [33,35]. This finding suggests a spread of the trawl effect to nekto-benthic feeders higher in the food
web, mediated by a combination of changes in the availability of resources in the environment, which in turn have incorporated
a TP change (in MUT for instance).

The TP of striped red mullet (MUR and of one of the main potential predators of MUT, black-bellied anglerfish (ANK) [33],
did not show consistent differences in response to fishery impacts in the study areas (FRAs versus trawled areas). Although
MUR is a benthic feeder anatomically very similar to MUT, it feeds on a mixture of habitats, including rocky substrates that
are not hit (hence not importantly affected) by trawlers. The reason why ANK did not show any difference between untrawled
and trawled areas is less clear. In fact, ANK probably fed on higher TP in GP compared to trawled areas, but not in GC. The
species’ diet consists of decapod crustaceans and cephalopods in addition to fishes [57]; however, suprabenthic communities
do not seem to be affected by trawling [41,58]. Authors [46] also found differences in the diets of suprabenthic-feeding juvenile
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scaldfish Arnoglossus laterna in three of our study areas (i.e. GC, GS and GT), but these differences could not be attributed to
fishing pressure. In addition, few data are available on the diet of anglerfish but specimens in the 26–60 cm range (similar to the
size studied here) are known to feed mainly on gadoids such as hake (HAK) [19,57,59], which showed no changes in TP in our
gulfs. This supports our finding that there is no difference between trawled and untrawled areas for ANK.

A number of factors may explain why trawling did not impact the TP of species more involved in the pelagic food web. BSS,
HAK, horse mackerel (HOM) and JOD feed also on pelagic fishes, which did not benefit from reduction in fishing mortality
to the same extent as benthic prey [43], and on zooplankton that is less affected by trawling [58]. This could also depend on
the capacity of larger-scale movements and a higher degree of omnivory by pelagic predators. Not only are these species less
susceptible to the effects of trawling, but their isotopic signature may be the result of a mixed diet from different areas. By
contrast, bottom trawl generally impacts benthic communities [28] and more sedentary species, making a TP change in the
benthic food web more likely.

Our results suggest that significant trophodynamic changes have occurred in FRAs as a result of the trawl ban. Limited
trophodynamic changes associated with fishery impacts were observed in MUT 9 years after the trawl ban [60]. The fact that
similar or greater differences were observed for the same species in this study 15 years after the trawl ban suggests that it
may take several years for trophic changes to occur as a consequence of reduced fishing impact. Analysis of gut contents also
showed differences in adult Ar. laterna between GC and trawled areas [46]. Although trophodynamic effects of protection have
not been observed in coastal Mediterranean marine protected areas (MPAs) [61,62], many factors such as their dimension and
enforcement, the direct use of δ15N instead of the TP, and other confounding effects may have masked the expected result as
already evidenced by the same authors.

We suggest that the TP erosion here observed in fish species at a given size may occur through a direct change in prey
availability and size or through the incorporation of food web components (prey) that have in turn changed their TP as a result
of bottom trawling. The same result could also potentially be induced by other mechanisms, such as when trophic fractionation
differs among protection regimes. It was chosen as a widely accepted TDF for the investigated species and a change with other
TDFs suggested for fishes could mainly determine variations in absolute TP values, while the analyses carried out here explore
the relative differences.

This study assumes the same TDF in all areas. Lower quality food and ration size are associated with increased TDFs [63,64];
however, protein content and ration size are predicted to be higher in FRAs owing to higher availability of fish prey [33,42,65],
thus, the changes in TP derived from the common TDF are in the opposed direction and potentially conservative for explaining
the observed TP differences between FRAs and trawled areas in demersal species with a strong link to benthic prey.

TP erosion owing to trawl fishing, therefore, appears the most plausible process for explaining the observed patterns of TP
changes for demersal species with strong benthic trophic relationships, although the mechanism by which the process occurs
could not be identified from our data. Several additional mechanisms are likely in trawled areas including (i) reduced piscivory,
(ii) the addition or loss of species lower in the food web, and (iii) changes in omnivory [55,66]. None of these are mutually
exclusive and there is support for each. The relative magnitude of piscivory has been identified as one driver of TP change
in relation to fishing [67]. Untrawled areas have been shown to have steeper abundance-size spectra and proportionally more
abundant small fishes compared with trawled areas [42]. FRAs in general also exhibit greater species richness than fished areas
and so the addition of new species to the food web is also a possible mechanism of extended food web length. Unfortunately,
while stable isotopes can provide time-integrated estimates of diets that incorporate effects from variations in prey composition
and size, they do not always represent a feasible solution to assess changes in the consumption of all prey species, especially
from limited sample size. This could have detrimental effects in determining omnivory patterns of consumers, but a promising
approach should come from the combination with DNA metabarcoding applied to gut contents [68].

Both stable isotope and gut content analyses are valuable tools in the assessment of marine trophodynamics, each with their
own strengths and weaknesses. However, it is unlikely that TP erosion would be easily detected with gut content analyses only,
mainly because the effort required to obtain gut content data across multiple locations, several species and their prey would
be huge. The value of gut content analysis however, would be in refining the understanding of the mechanisms driving the
TDF, testing for example increased piscivory or changes in prey size distribution. A further positive contribution in revealing
TP erosion could come from compound-specific isotopic analysis, which overcomes issues related to limited sample size and
selection of baselines [69].

Our findings have a number of implications for management that highlight the potential of MPAs, such as FRAs for fisheries
management and ecosystem rehabilitation, and suggest that successful MPAs may be built on the elimination of fishing gear
that impact benthic habitats rather than just a blanket no-take approach. Such a fisheries management tool has wide potential,
especially in subtropical areas like the Mediterranean, where fishing bans like those generally implemented in MPAs are
deemed a highly promising management approach in multispecies fisheries [35,70] and for a practical assessment of the status
of marine ecosystems as required by regulations such as the Marine Strategy Framework Directive [38].

Although our findings have to be confirmed by studies at larger scale, we provide evidence of an additional process by
which fishing may indirectly impact trophic structure and functional diversity and suggest that fishing effects may be more
severe and complex than previously thought.
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