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Abstract 

The identification of seismic clusters is essential for many applications of statistical analysis and seismicity forecasting: 
uncertainties in cluster identification leads to uncertainties in results. However, there are several methods to iden-
tify clusters, and their results are not always compatible. We tested different approaches to analyze the clustering: 
a traditional window-based approach, a complex network-based technique (nearest neighbor—NN), and a novel 
approach based on fractal analysis. The case study is the increase in seismicity observed in Molise, Southern Italy, 
from April to November 2018. To analyze the seismicity in detail with the above-mentioned methods, an improved 
template-matching catalog was created. A stochastic declustering method based on the Epidemic Type Aftershock 
Sequence (ETAS) model was also applied to add probabilistic information. We explored how the significant discrepan-
cies in these methods’ results affect the result of NExt STrOng Related Earthquake (NESTORE) algorithm—a method 
to forecast strong aftershocks during an ongoing cluster—previously successfully applied to the whole Italian 
territory. We performed a further analysis of the spatio-temporal pattern of seismicity in Molise, using the Principal 
Component Analysis (PCA), the ETAS algorithm, as well as other analyses, aimed at detecting possible migration 
and diffusion signals. We found a relative quiescence of several months between the main events of April and August, 
the tendency of the events to propagate upwards, and a migration of the seismicity consistent with a fluid-
driven mechanism. We hypothesize that these features indicate the presence of fluids, which are also responsible 
for the long duration of the sequence and the discrepancies in cluster identification methods’ results. Such results 
add to the other pieces of evidence of the importance of the fluid presence in controlling the seismicity in the Apen-
nines. Moreover, this study highlights the importance of refined methods to identify clusters and encourages further 
detailed analyses when different methods supply very different results.
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Graphical Abstract

1 Introduction
Human observation typically categorizes the seismic 
events based on their relative magnitudes and positions 
in the space–time sequence, identifying sequences and 
the so-called swarms. Earthquake sequences are asso-
ciated with a mainshock, which is followed by smaller 
events nearby (Omori 1894; Gutenberg and Richter 1941; 
Kagan 1994; Turcotte 1997; Scholz 2002; Bak et al. 2002). 
Occasionally, the mainshock is preceded by small precur-
sory events (Brodsky and Lay 2014; Mignan 2014; Seif 
et  al. 2019; Petrillo and Lippiello 2021, 2023). However, 
seismic events can also form clusters known as swarms, 
where seismic activity is not distinctly tied to a main-
shock, significantly larger than the others (Mogi 1963; 
1989). A quantitative definition of swarm can be found 
in Mogi (1963). However, in recent times different quan-
titative definitions have been proposed (e.g., Hainzl and 
Fischer 2002). The identification of the seismic clus-
ters is of paramount importance for statistical seismol-
ogy. In fact, various statistical tests concerning relevant 
aspects of seismology, such as seismic hazard analysis 
and earthquake forecasting are carried out, assuming a 
good knowledge of the clusters in the data (van Stiphout 
et  al. 2012). Moreover, many forecasting techniques, as 

e.g., Short Term Aftershock forecasting (STAI), are also 
based on learning seismicity patterns (Lippiello et  al. 
2019b; Gentili and Di Giovambattista 2017, 2020, 2022; 
Gentili et al. 2023; Anyfadi et al. 2023; Brondi et al. 2024. 
Therefore, the better the cluster knowledge, the better 
the learning and the forecasting performance.

Unfortunately, clusters are not precisely defined in seis-
mology. Earthquakes that belong to a cluster occur close 
in time and space to the mainshock, but how close in 
time and space they should be to belong to a cluster is 
controversial. In the literature, there are several methods 
for defining clusters. While earthquakes that are close in 
time and space are often easily recognized by all methods 
as belonging to the same cluster, for others the distance 
in time or space makes the attribution more challenging. 
This can lead to different segmentations of each cluster 
into smaller subclusters that can be different when differ-
ent cluster analysis techniques are used.

In this paper, we focus on an increase in seismic activ-
ity in Molise region (Southern Italy) from April to 
November 2018. The increased activity started with an 
event of magnitude Mw 4.3 on 25 April 2018, a series of 
aftershocks until 9 May, and continued with an extremely 
low seismicity until 11 August, when an intense activity 
restarted, culminating with the event of Mw 5.1 on 16 
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August. We firstly detected an atypical behavior in space, 
time and energy evolution of this cluster during the appli-
cation of the NESTOREv1.0 program (Gentili et al. 2023) 
to the whole Italian territory (Brondi et  al. 2023, 2024). 
The software uses the Next STrOng Related Earthquake 
(NESTORE) algorithm (Gentili et  al. 2023), a machine-
learning algorithm for cluster classification, whose aim 
is to forecast the probability of a strong aftershock with 
a magnitude (Ma) greater or equal to the magnitude 
of the mainshock (Mm) minus 1. While the testing of 
NESTOREv1.0 generally provided reliable results (86% 
of correct classifications), showing the coherence of the 
seismic behavior of the Italian clusters, the retrospec-
tive test of NESTOREv1.0 led to a failure in forecasting a 
strong aftershock for the 2018 Molise sequence. In order 
to understand the differences in the features of seismic-
ity between the 2018 Molise cluster and the other Italian 
ones, we analyzed in more detail the seismicity, by devel-
oping an enhanced template-matching catalog of the area 
with a low completeness magnitude and applying dif-
ferent methods to identify and characterize clusters in a 
catalog.

Depending on the method used to identify clusters, one 
or more clusters resulted, which significantly changed the 
evaluation of the performances of the forecasting pro-
vided by NESTORE. In fact, applying NESTOREv1.0 to 
the enhanced catalog and assuming that all the Molise 
seismicity from April to the end of August 2018 belongs 
to the same cluster, NESTORE classification turns cor-
rect (see Sect.  4). However, the main question is if this 
seismicity belongs to a single cluster or to more than one, 
generating a discussion on how to select the clusters in 
such a case. In an ideal scenario with a clear temporal 
separation, one could distinguish phases more defini-
tively (Lippiello et  al. 2019a, 2021; Petrillo et  al. 2020). 
Yet, due to the probabilistic nature of phase overlap, this 
classification remains inherently uncertain. Molise seis-
micity can represent, therefore, an ideal case on which 
to test different analysis techniques of common use as 
well as less used for cluster analysis (Sect. 5) and others 
aimed to characterize the geometry and the modalities 
of the earthquake space–time distribution (Sects.  5 and 
6). The analysis with different cluster-identification meth-
ods provides different answers on the number of clusters 
involved. Section 7 is focused on understanding whether 
the incoherence in results can be due to the presence of 
fluids.

2  The 2018 Molise increased seismic activity
The study area is located in the Molise region (Southern 
Italy), at the western boundary of the Adria microplate. 
It is a complex area, where the extension observed along 
the Apennine chain is substituted by NW–SE oriented 

compression, activating strike-slip mechanisms. The seis-
micity of the analyzed sequence occurred slightly to the 
north of the area interested by the Mw 6.0 San Giuliano 
di Puglia earthquake on 31  October 2002. This major 
event caused severe damages and casualties and involved 
right-lateral strike-slip motion, probably due to the reac-
tivation of pre-existing roughly E–W oriented faults (Di 
Luccio et al. 2005; Chiarabba et al. 2005).

According with the INGV reports and databases 
(Moretti et al. 2018, 2020) and the reference national cat-
alog ISIDe (ISIDe Working Group 2007), the increased 
activity of 2018 started with an event of magnitude Mw 
4.3  (ML 4.2) on 25 April 2018, in Montecilfone, close to 
the town of Campobasso, followed by 34 aftershocks with 
a Richter  ML magnitude between 0.9 and 2.7 until 9 May. 
An extremely low seismicity was recorded until August 
11. Subsequently, there was a resumption of seismicity 
with four small events of magnitude  ML between 1.5 and 
1.9 between 11 and 14 August, up to the shock of magni-
tude Mw 4.6  (ML 4.7) on 14 August, very close in space 
(less than 2  km) to the event of April 25. This was the 
strongest event that preceded the Mw 5.1  (ML 5.2) mag-
nitude earthquake on August 16th. In the time interval 
between the  ML 4.7 magnitude earthquake and the  ML 
5.2 magnitude earthquake, 14 events occurred with  ML 
between 1.1 and 2.3. In the hours following the strongest 
shock and up to August 25th, 10 earthquakes with a  ML 
magnitude greater than 3.0 were recorded, one of which, 
of magnitude Mw 4.4  (ML = 4.5), was on the same day as 
the main event. Table 1 shows the main events occurred, 
together with their focal mechanism (Moretti et al. 2018, 
2020). After the cluster, according to ISIDe catalog (ISIDe 
Working Group 2007), the seismic activity in the area 
remained low, with maximum magnitude 3.7 on May 18, 
2022, close to Macchia Valfortore village (about 11 km to 
SSE of the 2002 event and about 30  km to the S of the 
2018 cluster), and reactivated some years later on March 
28, 2023 close to Montagano village with a moderate 
earthquake  (ML = 4.6) (about 22 km to the west of 2002 
earthquake and 28 km to the SW of 2018 cluster).

Figures 1 and 2 show the evolution in space and time 
and magnitude of the events in the area obtained by 
ISIDe catalog. A general SSW migration can be detected 
(earlier earthquakes—blue dots—are at  NNE respect 
to the  later ones—red dots) in Fig.  1a, together  with a 
decrease of depth inside the red rectangle correspond-
ing to the study area (Fig. 1b). Figure 2 shows a marked 
decrease of seismicity between June and August 2018 
(see Fig. 2a between events #1 and #2 of Table 1); a lack of 
seismicity of magnitude ≥ 2 can be detected also between 
event #2 and #3 of Table 1 (see Fig. 2b). 

In Sect. 3, we present an enhanced template-matching 
catalog specifically designed for this study. This refined 
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catalog was developed to better address the unique 
characteristics of the area under investigation, thereby 
improving the accuracy and reliability of our analysis.

3  The template‑matching catalog
Template-matching seeks earthquakes that strongly 
resemble well-located events called templates. In this 
work, template matching is applied to eight months 
(April–November 2018) of continuous data evaluat-
ing 807 earthquakes (the original catalog is from ISIDe 
(ISIDe Working Group 2007) as templates. We use the 
template codes (Campanella 2022) rewritten from Vuan 
et  al. (2018) to improve performance and scalability, 
and to analyze the clustering of the Molise 2018 seis-
mic sequence. The method has been applied to investi-
gate different seismicity patterns in Italy (Sugan et  al. 
2019, 2023; Vuan et al. 2017, 2020) and in remote regions 
(Cesca et al. 2022).

The code was applied to daily continuous three-com-
ponent waveforms covering the time window 1/4/2018–
30/11/2018. Seismic data were collected from 29 stations 
(see Fig. 3), of which 19 were permanent seismic stations 
of the INGV seismic network (INGV Seismological Data 
Center 2006), 5 were temporary stations progressively 
installed by Istituto Nazionale di Geofisica e Vulcanolo-
gia (INGV) after the main earthquake of August 16, 2018 
(Moretti et  al. 2018, 2020), while 5 were accelerometric 
seismic stations of the Italian Department of the Civil 
Defense (DPC) (Presidency of Council of Ministers 1972) 
progressively acquiring in continuous mode since August 
20, 2018. We resampled the waveform data to 50 Hz and 
applied a 3–8  Hz bandpass filter. The templates were 
trimmed using a 9-s data window starting 4 s before the 
theoretical S-wave arrival travel time, computed using 
the ObsPy port (Krischer et  al. 2015) of the Java TauP 
Toolkit routines (Crotwell et al. 1999) and a suitable 1D 
model (Trionfera et  al. 2020). The signal length used in 
the analysis was determined after a visual inspection of 

the complex seismic waveforms that characterized the 
sequence. We used Kurtosis-based tests to evaluate the 
signal-to-noise ratio of templates (Baillard et al. 2014) to 
avoid unwanted signals in the matching technique (Vuan 
et al. 2018, 2020). A match or detection is a peak above a 
certain threshold, set at 0.35, in the average of the stacked 
correlograms. In post-processing, some detections were 
removed based on the ratio between the average cross-
correlation and the noise baseline level, estimated using 
the daily Median Absolute Deviation (MAD) of the cor-
relograms. It proved to be a robust method for excluding 
artifacts and false detections. The threshold for this ratio, 
set after visual inspection of a few examples of detected 
events, was set at 15 times the MAD. Time windows of 
9  s were chosen. Within each window, the template for 
which the normalized correlation coefficient was the 
largest used to determine the location and magnitude of 
the event. In summary, we used restrictive criteria when 
declaring a positive detection: (a) the average cross-cor-
relation must be greater than or equal to 0.35, (b) it must 
also be greater than or equal to 15 times MAD, and (c) 
at least 2 channels must have a cross-correlation greater 
than or equal to 0.7. Alternatively, we retained as posi-
tive detections those with a mean cross-correlation value 
greater than 0.65 and a threshold ≥ 15. To improve the 
robustness of the magnitude assessment, we removed 
the outliers from the pool of channels used. In the time 
period analyzed, template-matching helped to detect 
approximately 4,247 events (Catalog_TM in Electronic 
Supplement). Figure 4a shows the magnitude distribution 
of the expanded catalog compared to the original one. 

Figure  4b shows the magnitude distribution and the 
number of events over time. The ability of the templates 
to find new events varies significantly over time and 
depends on the availability of stations (stations in the epi-
central area are only available after August 16, 2018).

We investigated the completeness magnitude of the 
catalog by the method of Godano et al. (2024), that is a 

Table 1 The four main events of the seismicity of Molise in 2018 (close to the village of Montecilfone), and their focal mechanisms 
(https:// terre moti. ingv. it/) (see text for details)

# Date Time Lat [deg] Lon [deg] Depth [km] ML Mw Strike [deg] Dip [deg] Rake [deg]

1 2018/04/25 09:48:41 41.88 14.86 29 4.2 4.3 256° 88° 170°

347° 80° 2°

2 2018/08/14 21:48:31 41.89 14.84 19 4.7 4.6 104° 88° − 173°

14° 83° − 2°

3 2018/08/16 18:19:05 41.87 14.86 20 5.2 5.1 100° 88° − 176°

10° 86° − 2°

4 2018/08/16 20:22:34 41.87 14.87 22 4.5 4.4 245° 82° 164°

337° 75° 9°

https://terremoti.ingv.it/
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Fig. 1 a Evolution in space and time of the events. Black line: coastline. Colored dots: events from April to November 2018. Blue: April–July; green: 
August–September; red: October–November. White dot: 2022 event. Stars events with magnitude >4: yellow: Montecilfone events of Table 1; 
gray: San Giuliano di Puglia 2002; white: Montagano 2023. The red square indicates the Montecilfone cluster position in space. Insert: the position 
of the study area in Italy. The focal mechanisms (beachballs) of the earthquakes listed in Table 1 are shown; the size of the beachballs is proportional 
to the magnitude. b Depth–time plot for the earthquakes inside the red square of (a); orange rectangle shows data on 14–19 August
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generalization of the b-stabilization method from Cao 
and Gao (2002) (for further results see  the Electronic 
Supplement). The completeness magnitude Mc of the 
catalog is 1.5 to be compared with that of the original 
ISIDe catalog for the whole Italy of 2.5 (Gentili and Di 
Giovambattista 2017; Brondi et al. 2024).

4  Results—NESTORE analysis
The NESTORE algorithm (Gentili and Di Giovambat-
tista 2020) is a machine-learning method that aims to 
forecast the probability of strong events in a seismicity 
cluster after a moderate-strong magnitude earthquake 
(the operative mainshock or o-mainshock). In particular, 
the algorithm is designed to be applied in the first hours/
days after the o-mainshock of magnitude Mm (for Italy 
Mm ≥ 4) and forecasts the probability of occurrence of 
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Fig. 2 Magnitude evolution in time for ISIDe catalog: a plot of magnitude vs time from April 2018 to December 2018, b details on 14–19 
August seismicity
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an event of magnitude ≥ Mm-1. The latest version of the 
NESTORE algorithm has been implemented in the free 
software NESTOREv1.0, available on GitHub (Gentili 
et al. 2023). The software is divided into several independ-
ent modules. The default module for identifying clusters 
is the window-based module, but since the software is 
modular, other methods for identifying clusters can also 
be used and replace the window-based module without 
affecting the rest of the code. NESTORE uses some seis-
micity features such as the number of earthquakes within 
the cluster, their energy and their spatial, temporal and 
magnitude distribution to distinguish between Cluster A 
(cluster with an aftershock magnitude ≥ Mm-1) and Clus-
ter B (the others). Specifically, in the training phase, a 
1-node decision tree is trained for each feature to distin-
guish between the two classes. A threshold is set for each 
relevant feature, so that most class A training clusters 
have a feature value above the threshold and most class 
B clusters have a feature value below the threshold. The 
procedure is repeated for increasingly longer time inter-
vals after the o-mainshock. After the training procedure, 
the threshold values are used in the test phase to obtain 
the classification of the decision trees on an independent 
dataset. The results obtained from the different features 
are combined to obtain a final classification based on 
Bayes’ theorem.

Brondi et al. (2023, 2024) applied NESTOREv1.0 to the 
Italian seismicity (Lolli and Gasperini 2006 and ISIDe 
catalogs) using the cluster identification method based 
on predefined windows. They trained it with the seismic-
ity from 1980 to 2009 and tested it with the seismicity 
from 2010 to 2020. Using this approach, the seismicity 
of Molise in 2018 was divided into two different clusters, 
one containing the seismicity from April 2018 (Mm = 4.2, 
corresponding to event #1 in Table  1) to July 2018 and 
the other containing the seismicity from August onwards 
(Mm = 4.7, corresponding to event #2). The magnitude 
of completeness in the study area was set at 2.5 for the 
entire Italian catalog (Gentili and Di Giovambattista 
2017). This completeness magnitude is too high to allow 
an analysis of the first cluster, as NESTORE requires at 
least a completeness magnitude of Mm-2, i.e., 2.2. There-
fore, NESTORE automatically analyzed only the second 
cluster. For this cluster, it provided erroneous results 
(Brondi et al. 2023, 2024), as it did not classify it as Type-
A (see Table 1).

In this work, the template-matching catalog we 
developed has a smaller completeness-magnitude. 
Therefore, we were able to analyze the April seismic-
ity, which yielded some interesting results. Figure  5 
shows as circles the values of some seismicity features 
used by NESTOREv1.0 for all the clusters detected by 
NESTOREv1.0 on the national territory between 1980 

Fig. 3 Map showing the seismic stations used in this study (green triangles: permanent stations active on April 2018; blue triangles: epicentral 
seismic stations progressively activated in continuous mode from 16 August 2018) and the earthquakes of the ISIDe catalog (807 events in the time 
window 1/4/2018–31/11/2018), gray dots
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and 2020, except for Molise, together with the thresh-
old resulting from the training with the whole available 
dataset (Brondi et  al. 2023). In particular, the N2, Q, S, 
and Z features shown in the figure depend on the num-
ber, cumulative energy, cumulative source area and spa-
tial distribution of earthquakes in the cluster in the first 
six hours after the o-mainshock (for more details see 
Electronic supplement and Gentili et al. 2023). We show 
Italian Type-A clusters as red circles and Type-B clusters 
as blue circles. The green star corresponds to the feature 
values of the April 2018 Molise cluster considered in this 
work. For all the four features analyzed, the value for the 
2018 cluster in Molise is well above the threshold, indi-
cating that the seismicity in Molise for these features 
is consistent with a type A cluster already 6  h after the 
o-mainshock. Considering the magnitude 4.2 event that 
occurred on April 25, 2018 (event # 1 in Table 1) as the 
o-mainshock, NESTOREv1.0 forecasted the occurrence 
of the next strong event of magnitude greater than or 
equal to 3.2 (Type A cluster).

However, there are no events with magnitude greater 
than or equal to 3.2 in the cluster area between event #1 
and July 2018, while in August there are the events #2, 
#3 and #4, all with a magnitude ≥ 4.5. The behavior of 
the 2018 Molise cluster is therefore consistent with the 
other Italian clusters only if the April and August seis-
micity belongs to the same cluster or, in other words, the 
duration of the April cluster is longer than expected by 
the window-based cluster identification method that suc-
cessfully identified the other Italian clusters.

5  Results—cluster analysis
In this section, we compare different methods for identi-
fying clusters of seismicity. The first two are the window-
based and nearest neighbor methods, the last one is an 
unconventional method based on fractal dimension. The 
stochastic declustering method is used to evaluate the 
probability that the events #1 and #2 belong to the same 
cluster. Section 5.5 compares different methods results.

Fig. 4 a Histograms showing the magnitude distribution of the augmented catalog (red) compared to the original one (gray). b Magnitude 
distribution over time, colors as in a 
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5.1  Window‑based method
One of the simplest methods for defining clusters is to 
use predefined space- and time-windows. Usually, the 
area is approximated as a circular area whose radius 
is a function of the magnitude of the mainshock (van 
Stiphout et  al. 2012). This method has the advantage 
that it can be quickly applied and does not require 
information after the mainshock to define the charac-
teristics of the cluster. However, it has the disadvan-
tage that it is only a rough approximation of the extent 
of the clusters. For example, it is known that clusters 
characterized by a strike-slip mechanism have an elon-
gated and not circular shape, and selecting a larger 
circular one would include independent background 
seismicity into the cluster. Furthermore, the cluster 
identification process does not recognize the clustered 
portion of seismicity from the background seismicity 
within the space and time window. This mainly affects 
declustered catalogs where "holes" without seismicity 
are artificially added when this method is used (Gentili 

et al. 2017; Peresan and Gentili 2020). In this paper, for 
the window-based method, in accordance with Gentili 
and Di Giovambattista (2017), we used the radius R (in 
km) equation proposed by Uhrhammer (1986) while for 
T (in days), we adopted the empirical equation of Lolli 
and Gasperini (2003). By using this method, two clus-
ters are identified, events #1 and #2 belong to different 
clusters, while events #2, #3 and #4 belong to the same 
cluster.

5.2  Nearest neighbor method
Among the cluster identification/declustering methods 
proposed in recent years, the nearest neighbor (NN) 
approach proved to be successful (Zaliapin et  al. 2008; 
Zaliapin and Ben-Zion 2013; Gentili et  al. 2017). This 
method, based on nearest neighbor distance η of events 
in the space–time–energy domain (Baiesi and Paczuski 
2004), maps the temporal and spatial difference between 
events in a modified space and time coordinate system. In 
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particular, the nearest neighbor j of an event i is defined 
by the metric ηij = tijr

D
ij 10

−b(mi) , where tij is the time dif-
ference between event i and a following event j, rij is their 
epicentral distance, D is the fractal dimension of epicent-
ers, b is the exponent of the Gutenberg–Richter (GR) law 
and mi is the magnitude of the first event. Two events 
form a cluster if the distance ηij < ηc , where ηc is a certain 
threshold. The distance ηij between any pair of events 
can be decomposed into a rescaled time, τij , and space, sij 
for any pair of events. In particular, τij = tij10

−bmi/2 and 
sij = rDij 10

−bmi/2.
The main advantages of the NN method are that it does 

not assume a predefined circular space or an end time 
for the cluster, and does not cause artifacts such as holes 
in the declustered catalog. However, the disadvantage of 
this method is that it requires the parameters b, and D as 
input and it assumes that they are homogeneous within 
the catalog. Furthermore, clusters that are very close in 
time and far away in space, or vice versa, may be incor-
rectly merged because space and time are combined into 
a single parameter.

In order to estimate the cluster extension, we needed 
a larger area characterized by background seismicity. 
Therefore, we analyzed the ISIDe catalog for all earth-
quakes with longitude > 14° until November 31, 2018 
(the date of the end of the Catalog_TM); Mc was set to 
2.5 (Gentili and Di Giovambattista 2017). To calculate 
the fractal dimension D of the spatial distribution of the 
hypocenters, we used the fixed-size Correlation Integral 
approach (Mandelbrot 1977; Grassberger 1983), as it is 
less sensitive to the number of data and shape of the spa-
tial point distribution than other methods (e.g., Bressan 

et al. 2016) (see Electronic Supplement), and obtained a 
value of D of 1.1; b was set to 1 accordingly to Godano 
and Petrillo (2023) and Godano et  al. (2024). Figure  6a, 
b shows the normalized counts (τ ij , sij) in a contour plot 
and the 1D density distribution of   ηcrespectively. Two 
different populations can be recognized: the foreshock 
and aftershock clustering, when τijsij < ηc , and the back-
ground Poissonian seismicity when τijsij > ηc.

By mapping this two-dimensional space into a 1D space 
(η space), it is possible to determine a threshold to distin-
guish the clustered from the background seismicity (see 
Fig. 6a). The value of the threshold can be extracted from 
the intersection of the fitting curves of the two different 
populations. According to the procedure, we estimated 
ηc = 10−3.97 . This method identifies one single cluster to 
which all the events of Table 1 belong.

5.3  Fractal dimension analysis
To recognize different subclusters, we performed an 
analysis of the variation with time of the fractal dimen-
sion of the spatial shock distribution, by calculating the 
Correlation Integral on temporal sliding windows of a 
fixed number of events (see Electronic Supplement).

The analysis was done by using the Catalog_TM in the 
area (14.75–14.93° E 41.80–41.93° N) indicated by a red 
rectangle in Fig. 1. We examined several sliding-window 
widths to analyze the order of magnitude of the separa-
tions between pairs of events, as done by Bressan et  al. 
(2017). We used a time window of 10 events, with the 
shift of 1 event, since it ensures at least four order of 
magnitudes of the distances.
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Fig. 6 a Bimodal distribution of the normalized time and space coordinates for the 2018 Molise seismicity. The color bar represents the distribution 
of the density of event pairs. b η distribution employed to extract the threshold ηc from the intersection between the fitting curves
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In Fig. 7, the time variation of the fractal dimension so 
obtained is shown.

The two seismic “crises” of April and August 2018, 
which followed events # 1 and # 2, are recognizable, 
marked by high oscillations and reaching the maximum 
values of D. The values of the fractal dimension decrease 
after the main shock in April, indicating the end of the 
first sequence in May. From May to the end of July, an 
apparent quiescence phase can be recognized, with few 
earthquakes, and a fractal dimension around 1, indicat-
ing a linear propagation. Then, with the events of August, 
mainly located to the SE of the April ones, the fractal 
dimension values show clear oscillations, with values 
oscillating around 1.2 and reaching values close to 2 (pla-
nar distribution) three times and 2.2 in one case, indicat-
ing the tendency to fill the volume. Values of 1.2 indicate 
a linear propagation, possibly in depth, being the shocks 
distributed in this phase along the whole depth interval, 
from 25 to 8 km. The three main events of August 14 and 
16 fall within the same phase, which ended in the first 

half of October. The slight increase of the fractal dimen-
sion from the mid of October could mark the beginning 
of a new phase, with the shocks distributed in the same 
area, but in a depth interval slightly shallower than the 
preceding phase.

5.4  Stochastic declustering method
Since the choice of parameters in the above decluster-
ing models may be subject to biases, it is tempting to ask 
whether a probabilistic approach is useful in reconstruct-
ing the generation tree of the events under consideration. 
The stochastic declustering proposed by Zhuang et  al. 
(2002) seems to be a suitable candidate for this task.

In order to apply the method, we need to know the 
conditional intensity function of the ETAS model, which 
is the summation of contributions from the background 
seismicity rate and from each of all the  previous events 
(triggering part). Namely, the occurrence rate λ as a func-
tion of the history of earthquake occurrence times  Ht is:

Fig. 7 Fractal dimension of the spatial distribution of the hypocenters obtained by sliding a window of 10 events, with 1 event shift 
along the augmented catalog, within the area indicated by a red rectangle in Fig. 1
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where µ(x, y) is the time-independent space-dependent 
background rate, s(m) is the probability density func-
tion (pdf) of the Gutenberg–Richter law, k(mi) is the 
expected number of offsprings from an ancestor of size 
mi , g(t − ti) and f (mi) are the pdf of the occurrence time 
and location from an ancestor with magnitude mi . Since 
in our study we employ the temporal ETAS model, we 
neglect the spatial part. In practice, we consider

where {α, c, p,K ,µ} is the set of parameters to be opti-
mized by means of Maximum Likelihood Estimation 
(MLE) (Ogata and Zhuang 2006).

Then, it is possible to define two separate subsets of 
events: background and triggered events. The probability 
that an event j is a background event is given by:

Conversely, the probability that an event j is triggered by 
a previous event i is given by:

(1)
�(Ht) = s(m)

[

µ
(

x, y
)

+
∑

i:ti<t
k(mi)g(t − ti)f (mi)

]

,

(2)
�(t) = µ+

∑

i:ti<t
k(mi)g(t − ti) = µ+ K

∑

i:ti<t
eα(mi−m0)(t − ti + c)−p

,

(3)ψj =
µ

µ+ K
∑

i:ti<tj
eα(mi−m0)

(

tj − ti + c
)−p .

After the matrices ρij and ψj are obtained, a family 
tree in the catalog is realized, and it is possible to define 
the clusters. We would like to underline that the ETAS 
model employed for the stochastic declustering does not 
contain clustering magnitude dependence (Petrillo and 
Zhuang 2022, 2023).

Fitting the ETAS model in the time period 
24-04-2018 to 16-08-2018, we obtain {α, c, p,K ,µ}

= {0.5120761, 0.0507983, 1.5737003, 0.0581101,0.3497437}.

With these parameters, the probability that the  ML 
4.7 event, which occurred on 14-08-2018, is a direct 
offspring of the  ML4.2 event on 24-04-2018 is  ρ12 = 
0.0284912 , much lower than its  background prob-
ability ρb = 0.653713497. The probabilities that this  ML 
4.7 event is directly triggered by the  ML 2.0 and  ML 2.2 
events, which occurred between the  ML 4.2 and  ML 4.7 
events, are 0.00889 and 0.20928, respectively.

The probability that the  ML 4.7 event is triggered by the 
 ML 2.2 event might be relatively high. However, since the 
probability that the  ML 2.2 event is triggered by the  ML 
4.2 event is of 0.01125, the probability that the  ML4.2 

(4)ρij =
Keα(mi−m0)

(

tj − ti + c
)−p

µ+ K
∑

i:ti<tj
eα(mi−m0)

(

tj − ti + c
)−p .

Fig. 8 Comparison among different methods of cluster identification
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event indirectly triggers the  ML 4.7 event via the  ML 2.2 
event is even lower. Given this probabilistic analysis, and 
acknowledging the sensitivity of the declustering process 
to the thresholds values, the  ML 4.7 event is more likely 
to belong to a different cluster than the  ML 4.2 event. 
While our results suggest that at least two clusters should 
be considered, this interpretation depends on the chosen 
model parameters and thresholds, introducing an ele-
ment of uncertainty inherent in the stochastic decluster-
ing process.

5.5  Cluster methods comparison
Figure 8 shows the temporal comparison of clusters that 
were determined using different methods. Two methods 
(window-based and fractal) separate the August seismic-
ity from the April seismicity. This result is probabilisti-
cally confirmed by stochastic declustering. In addition, 
two methods (NN and fractal) further subdivide the mid-
October seismicity by separating the August seismicity 
from the later seismicity.

Due to the ambiguous results, we decided to further 
analyze the seismic activity.

6  Results—further detailed analysis
In the following session, we further analyze the 2018 
Molise seismicity in deeper detail, using the principal 
component analysis (PCA) and the ETAS algorithm, with 
the aim to investigate the spatial and temporal features.

6.1  The Principal Component Analysis
Principal Component Analysis (PCA) is a dimension-
reduction method that uses the first (centroid) and sec-
ond moments (variance) of the measured data. The 
method is used in various fields, as it can find common 
features from different observations by singular value 
decomposition of the correlation matrix. As a result, we 
obtain a concise description of an n-dimensional original 
data set in the form of m orthogonal functions (m < n), 
accounting for the variance of the data set.

PCA analysis of seismic events can in particular help 
to reveal certain patterns in the distribution of seismic-
ity and the propagation of ruptures. In particular, we 
used the multidimensional approach introduced by Rossi 
and Ebblin (1990) and improved by Bressan et al. (2021). 
In the construction of the 4D correlation matrix, which 
can be interpreted as a hyperellipsoid, time is added to 
the spatial coordinates to also detect temporal changes. 
All the quantities are normalized, so to have an a-dimen-
sional matrix. The minimum axis of the hyperellipsoid is 
perpendicular to the plane that best corresponds to the 
spatial distribution of the hypocenters (Pearson 1901), 
while the other two spatial axes indicate the extent of 

the volume occupied by the aftershocks. The fourth 
time axis, projected onto space, indicates the direction 
of propagation of the shocks. We distinguish three main 
cases:

– The events are mainly contained within the fractur-
ing planes (F);

– The events’ distribution indicates the activation of 
planes, parallel to the first/main one (P);

– The seismic activity tends to migrate, in the direction 
indicated by the dots (M).

For more details see Bressan et al. (2021).
To be sure to follow the time evolution of the seismic 

activity, we used sliding windows over which the PCA 
analysis was performed. We calculated the mean square 
residual (SR) of the best-fitting plane as a function of the 
window size, measured in terms of the number of events, 
to choose the optimal window size (100 events), with the 
shift of one event.

Figure  9 shows the lower hemisphere stereographic 
projection of the 4D PCA axes for the Catalog_TM in the 
region (latitude 41.8–41.93°N; longitude 14.75–14.93°E). 
The different plots relate to successive periods from April 
11, 2018, to November, 23, 2018: in the figures the bar-
ycenter of the first and last window used. We can see 
how the first phase (Fig. 9a), with vertical NE–SW trend-
ing planes is followed by the progressive activation of 
roughly EW-oriented subvertical planes (Fig. 9b, c and e). 
Until the end of August, in fact, the planes best fitting the 
shock distribution have NW–SE oriented poles, whereas 
since September, they rotate to about NS-trending sub-
horizontal poles. As said before, the time-axis projections 
onto space enable to follow the propagation direction 
of the seismic events. In the first phase (Fig. 9a) we find 
three main trends: the first is along the fracturing planes 
(F), indicating mainly the extension in the vertical direc-
tion; the second is in a N–S, NNE–SSW direction, indi-
cating a migration of the seismicity in this direction (M). 
The last is the cluster of points (P) in the plane containing 
the major and minimum spatial axis, indicating the acti-
vation of planes parallel to the main one, upwards. Dur-
ing the sequence (Fig. 9b) containing the main shocks of 
August 16, the time axis is mainly contained in the frac-
turing planes, with a prevalence of the vertical direction 
(F). The other characteristic of this phase is a propaga-
tion in E–W direction (M), and again the activation of 
planes, parallel to the main one (P), that continues also in 
the time period shown by Fig. 9c (P). This migration is at 
the origin of the rotation of the planes to E–W subverti-
cal planes (Fig. 9c, e), still alternated to the ENE–WSW 
trending planes in Fig. 9d, in which the diffusion of the 
shocks in the fracturing plane (F), and on planes parallel 
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to it (P), is accompanied by a migration in a direction 
from NE–SW to N–S, upwards (M). Such migration con-
tinues in the last phases of the sequence (Fig. 9e, M).

These results, therefore, would support the hypothesis 
that the event of April represents the start of a phase of 
activity, that at the beginning extended mainly in the 
vertical direction, and then activated with the two main 
shocks of August, a sheaf of subparallel planes, about 
EW-oriented. The slight rotation of the plane shown in 
Fig. 9e could support the hypothesis of the fractal analy-
sis of a new cluster or phase toward the end of the con-
sidered time period.

6.2  Relative seismic quiescence detected by the temporal 
ETAS model

Matsu’ura (1986, 1991) showed that before the onset of a 
large aftershock, the time series of the transformed time 
sequence obtained based on the Omori–Utsu formula 
show lower occurrence rate than the expected standard 
Poisson process. Such a phenomenon is called "relative" 
quiescence. This concept has been naturally generalized to 
the case using this ETAS model as a reference, and is widely 
used (e.g., Ogata 1988, 1992).

In this section, we only consider the temporal ETAS 
model with conditional intensity:

(5)�(t) = µ+
∑

i:ti<t
Keα(mi−mc)/(t − ti + c)p.

Fig. 9 The lower hemisphere stereographic projection of the 4D PCA axes for the Catalog_TM in the region (latitude 41.8–41.93°N; longitude 
14.75–14.93°E) from 11-04-2018 to 23-11-2018. At the bottom of each figure, the time barycenter of the first and last ellipsoid considered. Details 
on the symbols used in the legend and in the text
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Given a realization N = {ti : i = 1, 2, · · · , n} of the above 
point process, the transformation

transforms N into a stationary Poisson process with a unit 
rate (called standard Poisson process). The resulted pro-
cess N ′ = {τi : i = 1, 2, · · · , n} is called the transformed 
time sequence. If we replace �(t) by one of its estimates 
from fitting, ̂�(t) , which is a reasonable approximation of 
the true �(t) , then the yielded transformed time sequence 

(6)τi =

∫ ti

0

�(u)du

should form up approximately a standard Poisson pro-
cess. If the transformed time sequence deviates from 
the standard Poisson model, then we can say that the 
model does not fit the data well. To see whether there are 
changes in the seismicity patterns, we usually firstly fit 
the ETAS model to the earthquake data in a certain time 
interval and then extrapolate the time sequence transfor-
mation to earthquake events in other time intervals.

Since the completeness magnitude of the Catalog_
TM was assessed to be 1.5, in order to be more con-
servative, we chose 2.0 as the completeness magnitude 

Fig. 10 Fitting results of temporal ETAS model to the 2018 Molise earthquake sequence (time in days) and transformed time sequence analysis. 
a Fitting period: 2018-4-3 to 2018-4-23, test period: 2018-4-23 to 2018-12-1. b Fitting period: 2018-8-16.83 to 2018-9-4 test period: 2018-8-23 
to 2018–12-1. c Fitting period and test period are the same as b, but for magnitude  ML = 2.1 and above
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to ensure that the catalog is complete. We first fitted 
the ETAS to the M2.0+ earthquake data in the time 
interval from 3/4/2018 to 28/4/2018 (Fig. 10a) and then 
extended the transformed time sequence to 1/12/2018 
(parameter values: μ = 0.0448621, K = 0.0631663, 
α = 0.0000000, c = 0.0557077, p = 1.8955658). Here, 
α = 0 means that this cluster is more like a swarm than 
a mainshock–aftershock sequence. The reason for this 
is: by the definition of the ETAS model, the number of 
events directly triggered by an earthquake of magni-
tude m is Poisson distributed with a mean proportional 
to exp[α(m−m0)] , and if α = 0 , all the earthquakes 
have the same number of direct offspring in expecta-
tion regardless of their magnitudes. The results show 
that quiescence occurred between the occurrence 
times of events #1 and #2 of Table 1 and at the end of 
the sequence. To confirm the second appearance of 
the quiescence, we fitted the ETAS model to the time 
period from the occurrence time of event #3 of Table 1 
on 16/8/2018 to 4/9/2018 (Fig.  10b) and extended to 
calculation of transformed time sequence to 1/12/2018 
(parameter values: μ = 0.3497219, K = 0.0577392, 
α = 0.5313785, c = 0.0306123, p = 1.3547957). The 
results show that quiescence is clear. The same con-
clusion can be obtained if we use 2.1 as the mag-
nitude threshold, as shown in Fig.  10c (parameter 
values: μ = 0.0000000, K = 0.0525826, α = 0.8779779, 
c = 0.0137322, p = 1.0051774).

In the calculation, we found that the ETAS model 
with constant background rate is quite unstable, indi-
cating that complicated changes in the stress field might 
occur during the burst of this earthquake sequence. In 
some cases, the inadequacy of assuming a stationary 
background rate in fitting the seismicity has been dem-
onstrated. This could be caused by seismic deviations 
from ETAS clustering such as fluid up-flow in the fault 
(Kumazawa and Ogata 2014; Petrillo et al. 2024).

6.3  Fluid diffusion
Like induced seismicity, spontaneous natural seismicity, 
such as earthquake swarms, sometimes exhibits diffu-
sion-like signatures (e.g., Shapiro and Dinske 2009, and 
references therein). As a result of fluid intrusion, activity 
begins at depth and propagates upward over time, giv-
ing rise to hypocenters that are distributed over vertical 
planes and expand over time (Vidale and Shearer 2006).

Most seismic swarms exhibit spatio-temporal migra-
tion, whose velocity is used to distinguish between 
different triggering mechanisms (Vidale and Shearer 
2006). Fluid-assisted swarms have typical migration 
velocities of the order of m/day, whereas aseismic slip-
driven swarms generally migrate at faster velocities of 

km/h (De Barros et  al. 2020, and references therein). 
The classical method to infer the possible fluid footprint 
is to analyze the pattern of events’ distance in time (t) 
and space (R) from the known (or hypothesized) fluid 
origin. In an R-t diagram, the events are distributed 
on a cloud bounded by a curve that approximates the 
extent of the rupture zone and describes the distance 
 Rt of the pressure front from the fluid source. The curve 
has the formula (Shapiro et al. 2002):

where t is the time from the start of fluid diffusion and 
 Dh is the hydraulic diffusivity. If the diffusion of the fluid 
stops at a time  tx, the events gradually cease, starting 
from the zone closest to the origin. A new curve can be 
defined that separates the two domains “still seismically 
active” and “already seismically quiet” (Parotidis et  al. 
2004; Shapiro and Dinske 2009):

where d is 2 if we consider the epicenter position (bidi-
mensional case), and 3 if the vertical information is taken 
into account and we work in three dimensions.

In addition, fluid injection has recently shown an inter-
play between fluid pressure and aseismic deformation in 
triggering and driving seismic activity (De Barros et  al. 
2020). Various experiments indicated that fluid pressure 
mainly induces aseismic deformation that triggers seis-
micity through stress perturbations on fault asperities 
with appropriate background stresses and frictional insta-
bility conditions (De Barros et al. 2020). The alternating 
bursts of seismicity and quiescence observed in some 
swarms can be explained by the fault-valve model (Sib-
son 1992; Rossi et al. 2021). According to Hainzl (2004), 
at smaller  Dh the intervals between subclusters become 
longer and the total duration of activity increases.

In contrast, the rupture will begin when the fault 
reaches its critical state (De Barros et  al. 2020). Danré 
et al. (2022), after analyzing several natural and anthro-
pogenic seismic swarms, identified a common driving 
process: fluid-induced aseismic slip. They also proposed 
a diagram of velocity versus time duration to distinguish 
between swarms directly driven by fluid-induced aseis-
mic slip and swarms driven by slow slip (Danré et  al. 
2022).

We tested the hypothesis that the two activity bursts 
of April and August 2018 are bound to the same mech-
anism: a process of fluid diffusion that started with the 
April event and ended with the seismicity associated with 
the August shocks and aftershocks. The dominant verti-
cal distribution of events confirmed by the PCA analysis, 

(7)Rt =
√

4πDht,

(8)Rbf =

√

2dDht

(

t

tx
− 1

)

ln

(

t

t − tx

)

,
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and the quiescence identified by ETAS suggest fluid dif-
fusion as a possible mechanism.

Therefore, we calculated the distance versus time dia-
grams for the epicenters of the original catalog and the 
one augmented by template matching from the main 
shock of April 25, 2018, and compared the results with 
the theoretical curves of the triggering front and back-
front (Shapiro and Dinske 2009). Figure  11 summarizes 
the results.

It can be seen that in the first few hours there is a rapid 
spread of events, reaching a distance of about 3 km within 
a few hours. Such behavior can be explained with known 
mechanisms of stress transfer (Toda et  al. 2005). In the 
following month, however, a slower spreading of events 
(less than 200 m/day) can be observed, which is shown in 
a curved trajectory in Fig. 11. This becomes even clearer 
when looking at the data of the catalog_TM. Still, some 
events of the original catalog also fit into the curves. We 
calculated different trigger fronts using Eq.  (7) of Shap-
iro et  al. (2002) for different values of hydraulic diffu-
sivity, from 5  m2/s to 0.001  m2/s. The pattern of events 
in the diagram of Fig. 11 in the days following the April 
event is limited in number but fits well with the diffu-
sion hypothesis. In the following days, the activity in the 

epicentral area slows down overall, so that we can draw 
a backfront with Dh = 0.08  m2/s as a possible value. The 
activity in August is consistent with a diffusion process, 
with a triggering front that could have a Dh = 0.4  m2/s. 
In November, the epicentral area is quiet again, with a 
backfront with Dh = 0.3  m2/s, showing that permeability 
has increased as expected during the August–September 
activity compared to the April activity.

A further analysis was carried out using the approach 
of Danré et al. (2022). The analysis is based on the mean 
migration speed. The spatial center of the swarm is iden-
tified as the median of the hypocenter coordinates of 
the first 10 events. The time of the onset is given by the 
occurrence of the first event, and the seismicity front is 
determined by evaluating the 90th percentile of the dis-
tances of the events from the center of the swarm within 
a moving window of 50 events. The migration duration is 
described as the period during which the distance of the 
front increases steadily (Fig. 12).

In order to obtain a sufficiently large amount of data to 
calculate the migration velocity, we focused on the seis-
micity following the event #3. We determined an esti-
mated average migration velocity of 260 ± 10 m/day with 
a duration of 8  days. Figure  13 shows the comparison 

Fig. 11 Distance versus time for the events of the original catalog (red circles) and the Catalog_TM (brown squares). The distances are calculated 
from the event of April 25, 2018,  ML = 4.2. Dashed lines: triggering front for different values of the hydraulic diffusivity  Dh (see legend). Fair blue solid 
and line-dot lines: backfronts (see legend for the diffusivity values)
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between the data in Danré et al. (2022) and the results of 
this sequence. The data include both the data obtained 
directly by Danré et al. (2022) and the data they retrieved 
from the literature. The results of the 2018 Molise 
sequence are represented by a green star and is compati-
ble with swarms directly driven by fluid-induced aseismic 
slip (blue symbols).

7  Discussion and conclusions
In this study, we performed a detailed statistical analysis 
of the seismicity increase in the Molise region in 2018, 
focusing on the main seismic events in April and August. 
The sequence was marked by four main earthquakes: the 
first in April 2018  (ML = 4.2) and three additional larger 
events in August  (ML = 4.7,  ML = 5.2,  ML = 4.5). By apply-
ing the NESTORE algorithm, we identified an unusual 
behavior in the August sequence, where the observed 
magnitudes exceeded the expected values. This led us to 
question whether the April and August events were part 
of the same cluster, a hypothesis that was further investi-
gated using multiple clustering techniques.

Our findings revealed contrasting results depending 
on the method used. According to the window-based 
method, the fractal-based approach, and the stochastic 

declustering method, the April and August events 
appeared to belong to different clusters. However, the 
nearest neighbor method suggested that these events 
could be part of a single cluster. Additionally, our ETAS 
model analysis identified two distinct periods of relative 
quiescence between the main events in April and August, 
suggesting a potential role of fluid overpressure. These 
periods of reduced activity could serve as precursors to 
the subsequent larger earthquakes, including the events 
of August 14 and 16, and perhaps even the more recent 
earthquake of March 28, 2023  (ML = 4.6).

The results of the principal component analysis sug-
gest that the April event marks the beginning of an active 
phase, initially manifesting predominantly in a vertical 
direction, followed by the activation of a series of subpar-
allel planes with the occurrence of the primary shocks in 
August, oriented roughly east–west. The vertical exten-
sion could possibly indicate the presence of fluids (Vidale 
and Shearer 2006).

Further support for the fluid diffusion hypothesis 
comes from our distance–time plot analysis, follow-
ing the methodology of Shapiro and Dinske (2009). 
We observed a migration of seismicity consistent 
with fluid-driven processes, with different diffusivity 
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values characterizing the April and August sequences. 
In particular, the higher diffusivity during the August 
events suggests an increase in permeability, likely due 
to the stronger seismic activity in that period. The 
role of fluids has already been studied in various Ital-
ian sequences, demonstrating their role in earthquake 
migration, source parameters and attenuation of the 
medium (Di Luccio et  al. 2010; Ventura and Giovam-
battista 2013; Gentili and Gentile 2015; Malagnini et al. 
2022; Calderoni et al. 2023). The fact that the diffusiv-
ity values we estimated are lower than those reported 
in other studies (e.g., Di Luccio et  al. 2010; Malagnini 
et  al. 2022), but still within the expected range for 
crustal rocks (Simpson et  al. 1988), further supports 
the role of fluids in this seismic sequence. In particu-
lar, they are in agreement with previous observations 
(Shapiro et  al. 2002; Rossi et  al. 2018; 2021) and with 
the values reported by Roeloffs (1996, and references 
therein) for the kind of rocks that are interested by the 
sequence (Di Luccio et al. 2005; Patacca and Scandone, 
2007; Martino et al. 2020).

Additionally, by employing the methodology of Danré 
et  al. (2022), which distinguishes between swarms 
driven by fluid-induced aseismic slip and slow slip, we 

confirmed fluid migration as a significant factor in the 
seismicity following the August events.

We also acknowledge the importance of static Cou-
lomb stress transfer as a triggering mechanism for after-
shocks (Toda et al. 2005; Console et al. 2006). However, 
our focus in this study was on exploring whether part of 
the aftershock sequence could be explained by fluid dif-
fusion. As Wang (2000) pointed out, the Coulomb failure 
function is influenced by changes in pore fluid pressures, 
suggesting that fluid migration could complement stress 
transfer in influencing aftershock behavior. This is fur-
ther supported by studies such as Piombo et  al. (2005), 
who studied how coseismic stress fields can induce fluid 
flow, altering Coulomb stress changes and influencing 
further seismicity.

The periods of relative inactivity observed between 
the major events in 2018, which we term a "fluid-delayed 
sequence", could be due to a fault-valve behavior (Sibson 
1992; Rossi et al. 2021), with the values of hydraulic dif-
fusivity influencing the intervals between the subclusters 
and the total duration of the activity (Hainzl 2004),

The deviations we observed from standard statisti-
cal models like ETAS, also confirmed by Spassiani et al. 
(2024) for the part of the cluster starting in August, 

Fig. 13 Velocity versus duration of seismic events migration. Circles: data from Danré et al. (2022). Green star: Molise seismicity migration 
after event #3



Page 20 of 23Gentili et al. Earth, Planets and Space          (2024) 76:157 

indicate that additional physical processes, such as fluid 
migration, may influence seismicity. These deviations do 
not necessarily imply that the sequence is anomalous, but 
rather that it differs from expected statistical norms. Due 
to the stochastic nature of the ETAS model, the proba-
bility that the observed seismicity will occur is low, but 
not zero. Nevertheless, such different results from cluster 
identification methods are statistically a rare outcome. 
Importantly, such deviations have been observed in other 
contexts, such as in regions with high heat flow (Man-
ganiello et al. 2023), during increased foreshock activity 
(Petrillo & Lippiello 2021; 2023), fluid triggered seismic 
activity (Hainzl & Ogata 2005; Kumazawa & Ogata 2014; 
Petrillo et  al. 2024), and so on. Our study reflects the 
complexity of seismicity and highlights the need for fur-
ther investigation into such "fluid-delayed sequences" to 
better understand their role in earthquake triggering.

This work is intended as interesting case study, in 
which one only cluster is analyzed in deep detail. Such 
level of detail should not be possible on a large dataset 
also because for this level of detection accuracy a dedi-
cated template-matching catalog is necessary; not all 
cluster identification methods proposed here are fully 
automated and a physical interpretation is necessary. 
The analyzed seismicity space time distribution, with a 
long lasting ETAS-detected quiescence between April 
and August seismicity is not very frequent in Italian seis-
micity: the results of NESTORE with the window-based 
method described in Sect. 4 can be a cue to estimate the 
frequencies of such seismicity in accordance with Brondi 
et  al. (2024). In fact, while the application to the whole 
of Italy gives good results in 86% of cases, this sequence 
is among the 14% of cases of misclassification. Changing 
the cluster definition, the classification is correct.

We would like to discuss why we obtained different 
results depending on the method chosen to identify clus-
ters. If, as we hypothesize, fluid diffusion is the cause of 
this behavior, it should be noted that the methods win-
dow-based, fractal dimension, NN used in this work only 
take into account the spatial and temporal evolution of 
the earthquake location, but not this important physical 
property. We tested other well-known temporal windows 
of the window-based methods (van Stiphout et al 2012) 
to check if the two clusters can be merged by using differ-
ent laws. In particular, we used the laws by Gardner and 
Knopoff (1974), the Gruenthal law used in Zmap code 
(Wiemer 2001), and the time equation proposed by Uhr-
hammer (1986) but the time distance between events #1 
and #2 is too long to merge the clusters. The NN method 
combines the April and August seismicity into one clus-
ter, probably because in the η-analysis the very small dis-
tance between the epicenters of event #1 and #2, which 
compensates for the large temporal distance. Another 

remarkable difference between the methods shown in 
Fig. 8 is that the end of the August cluster, which is well 
defined by the NN and fractal analysis that analyze the 
spatio-temporal distribution of the aftershock data, is 
missed by the window-based method because in this 
case the cluster duration is evaluated based on the main-
shock magnitude only. Principal component analysis and 
earthquake migration analysis vice versa can be used to 
explain this physical behavior.

In conclusion, this study highlights the possible out-
comes of model limitation in cluster identification and 
stresses the necessity for ongoing research into charac-
terizing complex seismic sequences. By improving our 
capacity to identify and characterize seismic clusters, we 
can deepen our understanding of seismic activity and 
enhance our ability to mitigate seismic risk.
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