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Abstract A coherence-based earthquake detection
technique was applied to continuous (1 year) waveform
data recorded along the Irpinia fault system (Southern
Italy). The earthquake detection was performed using
coherent P- and S-wave arrivals recorded by the dense
seismic network operating in Irpinia and assuming a
local velocity model. We applied a strategy to simulta-
neously detect and locate earthquakes and to discrimi-
nate among true and false detections using an automated
and fast procedure, able to process 1 year of data in ~
1.75 days. The final catalogue of automatically retrieved
earthquakes shows a performance improvement with
respect to the standard monitoring practices, with an
increase in the number of detected small events of about
a factor three with respect to the automatic Earth-worm
Binder implemented in ISNet and decreases in com-
pleteness magnitude of almost half unit magnitude.
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1 Introduction

Automated, fast and accurate methods for detection and
location of microseismicity are nowadays increasingly in
demand. Seismic hazard management and industrial ap-
plications related to underground operations, such as
hydrocarbon exploitation or geothermal stimulation, re-
quire accurate and rapid earthquake monitoring with
detection of small events and the creation of earthquake
catalogues complete to low magnitudes (Mc < 0;
Wassermann 1997; Ekstrom 2006; McMechan 1982;
Gajewski and Tessmer 2005; Krüger and Ohrnberger
2005; Kao and Shan 2007; Rubinstein and Beroza
2007; Gharti et al. 2010; Maercklin et al. 2012). In recent
years, different techniques capable of rapidly and auto-
matically processing large datasets and/or continuous
waveforms have been designed (see Cesca and Grigoli
2015 for a review). Among these, coherence-based
methods have undergone a considerable development
(Grigoli et al. 2018; Matos et al. 2016; Lopez-Comino
et al. 2017). These methods (also called migration-based)
consist in migration techniques, extensively adopted in
applied geophysics, which use the full waveform infor-
mation to detect and locate seismic events at the same
time. Coherence-based approaches, hence, perform a
time-shifting and stacking of characteristic functions
computed on seismic traces recorded at different stations
to identify and locate earthquakes inside a pre-defined
spatial grid of potential source locations (Withers et al.
1999; Gharti et al. 2010; Grigoli et al. 2013; Zeng et al.
2014). The characteristic functions of selected wave
packets recorded at different stations are delayed and
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stacked to maximize images of signal coherence (called
Global Image Function, GIF). Then, these GIF are used
to detect earthquakes and provide estimates of their lo-
cation. These methods offer several advantages: (1) no
manual phase identification and picking is required, (2)
high reliability using noisy data, (3) full automated and
fast processing and 4) high detection rate.

It is worth mentioning that the discrimination be-
tween real and false earthquake detections represents a
critical aspect in seismic monitoring applications, which
obviously becomes particularly problematic when oper-
ating seismic networks are not dense enough with re-
spect to small magnitude targets.

In coherence-based methods, the event detection per-
formance is influenced by the selection of coherence
thresholds above which events are detected. Lopez-
Comino et al. (2017) have shown that decreasing the
coherence threshold increases the number of detections
and the chance to detect weaker events, but at the cost of
increasing the false detection rate. It became, thus, a
priority to design and to implement strategies facilitating
the discrimination between real and false detections, so
as to improve the performances of seismic monitoring
(Adinolfi et al. 2019; Grigoli et al. 2013, 2018).

In this work, we present the application of a
coherence-based detection and location method to 1-
year of seismic data recorded at the near-fault observa-
tory operating along the Irpinia fault zone in Southern
Apennines (Italy), (i.e., the Irpinia Seismic Network,
ISNet, Fig. 1). In particular, we have tested a multistep
procedure for discriminating real against false detec-
tions, including implicit information about the detect-
ability of the seismic network, and for locating earth-
quakes using the P- and S-wave contributions. We have
evaluated the performance of the earthquake detector by
comparing our results with the earthquake catalogue
obtained by the automatic Earth-worm Binder imple-
mented in ISNet and the manual catalogue.

2 Area of study and data

The Irpinia fault system is a complex, extensional fault
structure area, characterized by high seismic potential and
past destructive earthquakes (Fig. 1; DISS, version 3.2.1).
On 23 November 1980, a Ms. 6.9 earthquake occurred
along NW-SE striking faults with a complex rupture char-
acterized by three main episodes occurred within seconds
that caused about 3000 fatalities and severe damage

(Bernard and Zollo 1989). Recently, a ML 4.9 earthquake,
the largest one since 1980, occurred on the April 3rd,
1996, within the epicentral area of the 1980 earthquake
and showed a normal faultmechanism (Cocco et al. 1999).

The instrumentally recorded seismicity in the Irpinia
region (Southern Italy) is distributed uniformly in the
uppermost 15 km of the crust, with normal to normal-
strike focal mechanisms, evidencing a NE-SW exten-
sion consistent with the regional stress field in the
Southern Apennines (De Matteis et al. 2012; De
Landro et al. 2015; Amoroso et al. 2017; Adinolfi
et al. 2015). Seismicity frequently occurs in the form
of microseismic sequences or swarms that last typically
a few days with weak events characterized by low
maximum magnitudes (M < 3.3).

The seismicity in this area has been monitored since
2005 by a near-fault seismic observatory, the Irpinia Seis-
mic Network (ISNet, Fig. 1; Weber et al. 2007; Picozzi
et al. 2019). ISNet is a dense seismic network composed
of 32 stations, each equipped with a three-component
ground acceleration and three-component velocity (short
period or broadband) sensors. ISNet covers an area of
about 100 km × 70 km, focused on the Campania-
Lucania Apennines portion where the Ms 6.9, 1980 earth-
quake enucleated, and is operated by the Department of
Physics of the University of Naples “Federico II”.

This work focuses on continuous waveforms record-
ed during the year 2018, the last available complete year
when this study has started, by three-component velocity
meter sensors (1 Hz short-periods and 40s broad-bands
sensors) with a sampling frequency of 125 Hz. Due to
variations in operating condition of the seismic network
during the year, the dataset is complete for a maximum
number of operating seismic stations equal to 19.

Seismic monitoring at ISNet combines automatic
and manual operations that are performed by the
RISSCLab team (i.e., the University research unit in
experimental and computational seismology,
http://www.rissclab.unina.it/it/). Earthquakes are
first automatically detected by the Earth-worm binder
(Dietz 2002) and later manually revised. Moreover,
daily continuous waveforms are visually inspected by
the team to find potentially missed events. After the
P- and S- wave manual picking, earthquakes are
located by using a local velocity model (Matrullo
et al. 2013) and HYPOINVERSE2000 arrival time
inversion program (Klein 2003). The hypocentre pa-
rameters and (moment and local) magnitudes for the
earthquakes inside the network are reported on the
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ISNet Bulletin web-page (http://isnet-bulletin.fisica.
unina.it/cgi-bin/isnet-events/isnet.cgi). Since 2008,
an average of about 260 earthquakes per year have
been detected, with magnitudes (ML) spanning the
range between 0.1 and 3.3, and located within the
area covered by the seismic network (173
earthquakes during the 2018), resulting in a seismic
catalogue complete down to ML 1–1.5, varying with
time as the network evolved (Stabile et al. 2013).

For our analysis, we focus on an area of 3600 km2

with the highest seismicity rate (Stabile et al. 2012),
which corresponds to the epicentral zone of the Ms

6.9, 1980 Irpinia earthquake. For this area of study and
the year 2018, a catalogue of 115 events with magnitude
of completeness, Mc equal to 1, is available.

3 Method

We adopted a migration-based approach for detecting
and locating earthquakes that exploits coherent (P- and
S-wave) arrivals at different stations for an assumed 3D
grid of potential source locations (Matos et al. 2016;
Lopez-Comino et al. 2017; Adinolfi et al. 2019). To this
goal, we used a recently developed detection and loca-
tion algorithm (Lassie, https://gitext.gfz-potsdam.
de/heimann/lassie, Heimann et al. 2017).

The processing includes the following steps (shown
also in Fig. 2):

1) Pre-processing. Continuous waveforms are filtered in
the frequency band of 1–15Hz and cut in 20min long

Fig. 1 Epicentral map of the earthquakes analysed in this study.
Green circles refer to microseismicity recorded by Irpinia Seismic
Network (ISNet, red triangles) during the year 2018 that falls
within the explored area. This area, indicated by the black square,
corresponds to the location of volumetric grid of potential hypo-
centers investigated in this work. Earthquake locations are derived
from ISNet catalogue. Yellow star refers to the epicentral location

of the November 23rd, 1980, Ms 6.9, Irpinia earthquake; while the
orange star refers to the epicentral location of April 3rd, 1996, ML

4.9 earthquake. Seismogenic sources related to Irpinia fault system
are indicated in orange; potential sources for earthquakes larger
than M 5.5 of surrounding areas are indicated in grey (Database of
Individual Seismogenic Sources, DISS, Version 3.2.1 2018)
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time windows with 20% of overlap, which in turn are
used to compute characteristic functions (CFs). These
latter are derived from the three-component recordings
that are squared and combined by summation into a
single trace, which is proportional to the seismic en-
ergy and it is smoothed by a convolution with a Hann
window (i.e., we used a length of 10 s). To detect
different seismic patterns and/or seismic phases (P-
and S- waves) from the waveforms, in this study we
worked with two CFs pre-processing schemes. In
particular, we used two different CFs and travel time
corrections for their shifting and stacking (described at
step 2) for P- and S- wave packets, which results in
two distinct Image Function Contributions (IFCs). For
the P-IFC, a short-time average over long-time aver-
age (STA/LTA) trace, sensitive to sharp onsets of the
seismic signal, is calculated using a short-time win-
dow length of 0.7 s and a long one of 1.0 s, as in
Grigoli et al. (2013). For the S-IFC, the signal is
normalized by its moving average of length 50 s. This
processing results in a smooth positive CF for each
station, which is sensitive to transient increases of
seismic energy. The P-IFC and S-IFC images can be
used individually (S-IFC in the step 2) or together
(step 3) combined using summation, so as to form a
final Global Image Function (GIF) that is effectively
used for earthquakes detection. This pre-processing
results in CFs used for calculating the IFCs in the next
steps (2 and 3).

2) Earthquake detection with S-wave. The earthquake
detection is performed defining a 3D grid of poten-
tial source locations with a size of 60 × 60 × 20 km
(2 km grid spacing). Then, for each grid-node, the S-
waves travel times were computed for all the seismic
stations using a local 1D velocity model (Matrullo
et al. 2013) using the CAKE tool (Heimann et al.
2017). For all the nodes of the 3D grid, the CFs are
shifted in time according to their travel-times and
stacked to form a so-called image function contribu-
tion (S-IFC). Therefore, the resultant S-IFC corre-
sponds to a GIF that can be considered an indirect
measure of signals coherence. Next, a novel time
series of GIF is built by considering for each time
step the highest coherence value in the spatial grid.
Hence, the earthquake detection is performed by
searching for local maxima in the GIF, whereas an
event is declared whenever the GIF is greater than a
selected threshold value. Adinolfi et al. (2019) ob-
served that using only the S-waves to build the GIF

images, with respect to using only the P-wave IFC or
combining P- and S- wave IFCs, provided more
robust results for the earthquake detection, but at
the expense of a more uncertain location.

3) Earthquakes’ location with P- and S-waves. Once
the seismic events are declared, aiming to improve
the event location estimates, steps 1 and 2 are
repeated considering both P- and S-waves. Clearly,
the P- and S-IFCs are derived by shifting in time the
CFs according to the travel-times of the seismic
waves for which are computed. Therefore, the IFCs
proportional to P- and S-wave packet energies are
equally weighted and stacked. Finally, the GIF is
used to refine the earthquakes location.

4) Discrimination between real and false detections.
High IFC values (hereinafter, we will use also ‘high
coherence values’ for the sake of using a term
familiar for seismologists) can be potentially attrib-
uted to both the arrival of coherent seismic energy at
more seismic stations and a high signal-to-noise
ratio. Several factors, as for instance network ge-
ometry, number of stations, noise conditions and
earthquakes depth as well as magnitude, can influ-
ence the range of coherence values associated to the
events. For this reason, the coherence value used as
detection threshold for discriminating between real
and false detections is generally manually defined.

In this study, we tuned the Lassie code to
optimize both the real versus false events dis-
crimination and the location, with the aim to
improve its performance with respect to cases
when a simple threshold criterion is adopted. In
particular, we defined as ‘triggered’ seismic sta-
tions having an S-wave CF amplitude greater or
equal than the average CF value computed for all
stations. Indeed, triggered stations correspond to
those mostly contributing to the stack of CFs and
in determining the final coherence value associ-
ated to a seismic event. As expected, in case of
the earthquake detection task, we observed that
seismic stations located close to the epicentre are
associated to larger S-wave CF amplitudes than
those at greater distance (Fig. 2b and f). There-
fore, the information concerning the ‘triggered’
stations allowed us to set a proximity criterion
(as described further in more detail) for the real
versus false event classification, which is based
on inspecting if triggered stations correspond to
those located closer to the estimated epicentre.
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5) Magnitude estimation. Once an earthquake detec-
tion is classified as real, the local magnitude is
estimated following Bobbio et al. (2009).

Two examples of high- and low-coherence detections
are reported in Fig. 3. These examples refer to a ML 3.3
earthquake occurred on the 2018-04-06 at 01:22:38.00
(UTC) nearby theMuro Lucano village and to aML − 0.8
earthquake occurred on the 2018-12-28 at 18:45:10.00
(UTC) nearby the Caposele village (Fig. 1).

In order to assess the performance of the coherence-
based method with respect to the standard monitoring
procedures applied at ISNet, we have followed the de-
scribed multistep procedure, and we have adopted two
different criteria for the selection of real and false events.

The first criterion is based on a classic threshold
approach (thrc), for which a detection is considered as a
real event by simply checking if its associated coherence
exceeds the selected threshold. Aiming to recover the
lowest possible magnitude events and to reduce the com-
pleteness magnitude of the catalogue, we have set the
coherence threshold equal to 350, which corresponds to a

coherence value (empirically evaluated) compatible with
the ratio real/false detections observed at ISNet.

The second tested criterion combines the classic co-
herency threshold approach with a proximity rule based
on the triggered stations (tapc) and a measure of coher-
ency among the signal envelopes of triggered stations.
Therefore, a detection is considered real when one of
these two conditions is fulfilled: (1) when the detection
is associated to a coherence value greater than 400,
which is associated to larger magnitude events; (2) for
detections associated to smaller coherence values than
400, we analyse the spatial distribution of triggered
stations with respect to the not-triggered ones. There-
fore, the detection is classified as real if among the three
stations closest to the epicentre two are classified as
triggered. After that, a set of detections according to
the triggered stations’ criterion is defined; a further
analysis is performed to check the similarity of the
signal envelopes. We performed this similarity check
by implementing a cluster analysis where all the trig-
gered seismic stations are considered. The aim of this
final step is to identify, within the whole set of

Fig. 2 Workflow of the multistep procedure for earthquake detection applied in this study
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detections, those with highly coherent signals. The sim-
ilarity between envelopes is evaluated by cross-correla-
tion, whose value is used to build the hierarchical cluster
tree with the ‘single linkage algorithm’ (Johnson 1967).
This agglomerative (iterative merging) method adopts
for calculating the distance between two clusters the
shortest distance between all pairs of the clusters. The
hierarchical clustering is performed using a small dis-
tance threshold (equal to 1.25) in order to be more
selective and robust in discriminating similar signals.

In conclusion, detections associated to clustered
stations with highly similar envelopes are accepted
as real events, while those generated by isolated
stations or not belonging to any cluster are
discharged. The tuning of the parameters (i.e., co-
herence threshold, number of stations for the prox-
imity rule, and for the cluster analysis) selected for
the thrc and tapc criteria has been carried out con-
sidering 2 months of data (May–June 2018), which
have been used as training dataset. The tuning has
been performed considering the earthquake detec-
tions classified as real or false by the visual inspec-
tion of waveforms. The coherence values set as
threshold for thrc and tapc have been defined con-
sidering the data in the ISNet catalogue. In particu-
lar, a threshold equal to 400 corresponds to a high
real/false detection ratio consistent with the occur-
rence of larger magnitude events, while the value of
350 allows to detect smaller magnitude events but
can fail to discriminate real from false detections.

4 Results

Applying the detection criteria thrc and tapc results in an
increased number of detected events (i.e., 322 events and
198, respectively) in comparisonwith themanually revised
events in the ISNet earthquake catalogue (115 events).

To carry out a preliminary performance analysis of
the two criteria, we used the 2 months training set of
data (May–June 2018), and for both the criteria, all the
detections were visually inspected. During these
2 months, we found 69 detections with 41 real events
considering thrc and 51 detections with 39 real events
using tapc. Hence, using thrc, we observe a little im-
provement (two events) with respect to applying tapc,
but at the cost of an increase in false detections (i.e.,
equal to 16). Using the tapc criteria results in a percent-
age of success (number of real detections divided by the
number of total detections) equal to 76.5%, while using
thrc, the percentage of success is 59.4%. We observe
that the detection of weak signals is achieved at the cost
of increasing the number of false detections, which have
been generated by seismic noise sources related to en-
vironment conditions or human activities. The tapc
criterion allows obtaining low number of false detec-
tions assuring a high rate of success, and thus, in our
opinion, it can be very useful for detecting small mag-
nitude earthquakes associated to low-coherence values.

We used the tapc criteria for analysing the 1-year
long dataset. To assess the performance of the detector
algorithm, we visually inspected the waveforms of all
the detections, and we found 152 real earthquakes and
46 false detections. In contrast, the ISNet catalogue for
the same period consists of 115 manually detected and
located events. Therefore, the automatic tapc criterion
allowed us to identify 37 new earthquakes with respect
to the manual ISNet catalogue. It is worth noting that
doing a comparison with the automatic Earth-worm
Binder (Dietz 2002) implemented in ISNet, the better
performance of the tapc detector is even more evident.
The number of automatically detected by Earth-worm
Binder events at ISNet are 44 with respect to the 152
found by tapc (See Supplementary Material).

Our results confirm that an event-discrimination
strategy based only on a coherence threshold is not
optimal for discriminating real and false events. In fact,
it would force the operators to find a difficult compro-
mise between the need of detecting earthquakes with the
lowest possible magnitude and the need of avoiding the
corruption of earthquake catalogues with false

�Fig. 3 Examples of high-coherence (a–d) and low-coherence (e–
h) detections. a–d refer to the ML 3.3 earthquake occurred on the
2018-04-06 at 01:22:38.00 (UTC) nearby the Muro Lucano vil-
lage. e–h refer to the ML − 0.8 earthquake occurred on the 2018-
12-28 at 18:45:10.00 (UTC) nearby the Caposele village. a, e
Waveforms used for detections are sorted by hypocentral distance.
b–f Characteristic functions (normalized amplitude) calculated for
each station. They are corrected according to the P-wave velocity
(red lines) and S-wave velocity (blue lines) for the travel time and
stacked to obtain the final global image function (d–h). The
markers indicate the best fit of synthetic arrival time for P- and
S- phases. Black markers indicate the time window over which the
CF amplitude is considered for the definition of triggered or not-
triggered stations. c–g Stack of the coherence map for the search
region with available (red triangles), not-available seismic stations
(blank triangles) and event detected (white star). The colour bar
shows coherence values. d–h Global image functions correspond-
ing to the best fit of source position along a processing time
window centred on the origin time of the detected earthquake.
The white star indicates the detected event above a fixed threshold
value (black line)
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detections. Our strategy (i.e., the tapc criterion), which
combines coherence information, event locations, and
signal characteristics of the triggered stations, allows
improving by 245.4% and 32.2% the performance of
the event detection in comparison to the automatic and
manual proceedings used for building the ISNet cata-
logue, respectively. The frequency-magnitude distribu-
tions (Gutenberg and Richter 1942; Aki 1965; Wiemer
2001) obtained considering the tapc detection is shown
in Fig. 4 in comparison with the one from the manual
catalogue of ISNet for the same area and period. The
tapc catalogue shows an increase of earthquake detec-
tions and a decrease in the completeness magnitude Mc

to ML equal to 0.5, but without adding a significant
number of false events. In comparison, the ISNet cata-
logue is complete for magnitude ML around 1 (Fig. 4).

Despite the good detection performance, it is worth
noting that the automatic detections algorithm missed 46
earthquakes, withmagnitude ranging betweenML 0.4 and
ML 3 (i.e., among them only one hasML 3) which instead
were found in the ISNet catalogue (See Supplementary
Material). Of these missed events, 19 earthquakes have
ML ≥ 1, while 27 have ML ≤ 1. However, we found that
only 4 earthquakes have ML ≥ 1.5 and, most important,
they are located near the border of the explored area
(Supplementary Material, Fig. S1 and S2). Furthermore,
of these missed earthquakes, the two events with ML 2.8
and ML 3 show a difference in origin time of about 4 s

only. The concurrence of these two earthquakes resulted
in an anomalous, broad double-peaks in the CF, which
were in turn incorrectly stacked into a biased GIF not
exceeding the chosen threshold (Supplementary Material,
Fig. S3). We note, however, that also in this peculiar case
setting a lower value of coherence (200), the ML 3 earth-
quake can be detected. Concerning the 27 earthquakes
with ML ≤ 1, 10 events occurred at a depth larger than
10 km, 8 events had hypocentral depth between 5 and
10 km, while the other 9 events occurred at depth smaller
than 5 km. Also, we observed that by lowering the
coherence value to 180, these events can be detected.

We therefore found different reasons why these 46
earthquakes could have been missed: (1) Low magni-
tude events (ML < 1) have not been detected because
their coherence values are smaller than the selected

Fig. 4 Frequency-magnitude distribution for the ISNet catalogue
(red bars, and completeness magnitude Mc as red dashed line) and
for the earthquakes catalogue derived in this study using the tapc
criterion (green bars, and Mc as green dashed line)

Fig. 5 Histograms of the distance between epicentres (a) and of
the difference in depth (b) for the earthquake locations calculated
in this study and those derived by the ISNet catalogue
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threshold. Clearly, these events could eventually be
identified selecting a lower threshold for the coherence,
but at the cost of increasing the number of false detec-
tions. (2) Similarly, deep earthquakes, that is to say
events with hypocentral depth larger than 10 km, have
beenmissed likely because they are characterized by too
small S-wave amplitudes, which led the final GIF to not
exceed the selected coherency threshold. Since shallow
seismicity is our main objective, we will investigate the
best set of parameters for the detection of deep earth-
quakes in the future work. (3)We observed that changes
in the operating conditions of the local seismic network,
especially changes in the number of functioning seismic
stations, have a strong impact on the detector perfor-
mance. Indeed, once a threshold of coherence is fixed,
decreasing the number of stations results in a decrease of
the number of detected seismic events and the increase
of missed events. (4) The seismicity occurring at the

borders of the explored area is not correctly identified
due to the location errors. In fact, events located near the
borders are likely to be mislocated outside of the ex-
plored grid, and consequently, are not correctly detect-
ed. Enlarging the explored area and using a more dense
grid spacing could be sufficient to reduce the location
errors and to solve this kind of problem, but at the cost of
longer computational times.

We achieved reliable earthquake locations, as shown
by the comparison of our results with the locations of
ISNet manually revised catalogue (http://isnet-bulletin.
fisica.unina.it/cgi-bin/isnet-events/isnet.cgi; Fig. 5). For
the common events at the two datasets, most locations
differ by less than 2 km both in terms of epicentre and
depth (i.e., a value in agreement with the adopted 2 km
grid spacing). As shown in Fig. 6, the retrieved
earthquake locations show a clustering near the
epicentral area of the Ms 6.9, 1980 Irpinia earthquake

0.21 - 0.31
0.31 - 0.41

0.52 - 0.62
0.41 - 0.52

0.10 - 0.21

No. eqs per km2

Fig. 6 Map showing the density of the earthquake locations
calculated in this study using both P- and S-wave contributions.
The earthquake detections are selected automatically using both

threshold and proximity criteria. Contouring of the earthquakes
per unit area (1 km2) is indicated in blue. For more information,
see Fig. 1
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and a preferential NW-SE trend, in agreement with the
orientation of active fault structures.

The automatic detection procedure resulted to be
very fast. Indeed, 1 year of data recorded at 19 three-
component seismic stations and the scanning of a vol-
ume grid made by 9000 nodes were processed within
about 1.75 days using a multiprocessor personal com-
puter (Intel® Core™ i5–7500 CPU @ 3.40GHz × 4, 8
GiB RAM, Ubuntu 17.10 64-bit).

5 Conclusions

One-year of seismic data recorded at a near-fault obser-
vatory along the Irpinia fault zone were analysed with a
coherence-based method for earthquake detection. An
automated, fast, multistep procedure was applied as new
strategy to discriminate real/false detections and to locate
earthquakes. An increase in the number of automatic
earthquake detections compared to the ISNet catalogues
was obtained, showing a decrease in completeness mag-
nitude of about 0.5 units. The earthquakes catalogue
retrieved by the multistep procedure is complete down
to ML 0.5. Although special attention must be paid for
identifying earthquakes that could occur at larger depths
or at border of the explored area, our strategy resulted to
be able to improve approximately by 245% and 32% the
automatically and manually detected events in the refer-
ence catalogue, respectively. Our results show that fast
and automated methods for the detection and location of
microseismicity, as the coherence-based applied in this
study, represent a valid tool to process large dataset, to
monitor natural/induced seismicity and to achieve a more
complete seismic catalogue.
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