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A B S T R A C T   

Advanced modeling techniques, including Random Forest (RF) and Cubist model (CB), were used to assess the 
relationship between environmental factors and European eels (Anguilla anguilla) abundance and to provide 
insights into the lake’s ecological status while considering climate change and anthropogenic influences. A 
comprehensive dataset, attained through extensive environmental and biological monitoring for the period 
2010–2020, was employed. The performance of the models is carried out using key metrics including the root 
mean square error (RMSE), coefficient of determination (R2), and mean estimation error (MAE). In addition, a 
sensitivity analysis was conducted to ascertain the relative significance of the thirteen input variables in shaping 
the predictions of the models. The precision of the CB and RF models in predicting eel landings surpassed that of 
Multiple Regression. In the training dataset, the CB model achieved R2=0.55, RMSE=7.68 tons, and MSE=6.20 
tons, and the RF model achieved R2=0.56, RMSE=7.20 tons, and MSE=5.56 tons. High accuracy was maintained 
on the testing dataset, with CB achieving R2

=0.73, RMSE=5.13 tons, and MSE=5.89 tons, and RF achieving 
R2=0.73, RMSE=5.81 tons, and MSE=4.67 tons. The scatter plot between predicted and measured eel landings 
indicated that the RF model tends to overestimate lower values and underestimate higher values of eel landings, 
while the CB model gave better performance in this context. Further, the carried sensitivity analysis using the CB 
model unequivocally identified three pivotal factors – water level, salinity, and turbidity level – as the most 
influential determinants governing the landing of eels in this ecosystem. Thus, the CB model is considered to be 
more promising for interpreting the relationship between environmental parameters and eel landings, which 
could be used by managers for an effective lake management strategy.   

1. Introduction 

Coastal wetlands are renowned for their wealth of biodiversity and 
biogeochemical processes, making them among the world’s most 
ecologically rich environments (Galewski et al., 2012; Newton et al., 
2018). These areas provide a plethora of invaluable services that 
contribute significantly to human well-being (Galewski et al., 2012; 

Newton et al., 2018). Nevertheless, the rapid growth of human activities 
poses a severe threat to these fragile ecosystems, making human impact 
the most significant challenge to ecological quality in these areas 
(Newton et al. 2018.). 

Even though Mediterranean ecosystems are being recognized as one 
of the world’s primary biodiversity hotspots (Derneği, 2010), they are, 
regrettably, not exempt from the concerning trend of declining 
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biological diversity (Newton et al., 2018). Among the coastal wetlands 
in the arid and semi-arid Mediterranean region, with a particular focus 
on North Africa, Ichkeul Lake remains an example of a jeopardized 
ecosystem due to the combined effects of climate change and human 
activities. This lake has been included in national and international 
conventions including RAMSAR and UNESCO conventions (ANPE, 
2008), and it serves as a vital winter refuge for Palearctic waterfowl 
(Sahbani et al., 2022). 

However, the construction of dams along the main rivers has led to a 
substantial reduction in the inflow of fresh water into the lake. Addi-
tionally, the installation of sluice gates at the lake’s outlet, situated at 
the Tinja River, has severely restricted the exchange of water and sed-
iments within the complex Lake Ichkeul-Bizerte Lagoon system. 

Previous studies (Aouissi et al., 2014; Madyouni et al., 2023) have 
highlighted the absence of adequate wastewater treatment systems in 
rural communities within the Ichkeul catchment area. Additionally, the 
lake is surrounded by intensive agricultural activities such as cereal and 
sunflower cultivation, which involve heavy use of chemical fertilizers. 
The extensive hydrographic system surrounding the lake exacerbates the 
issue by allowing untreated wastewater and chemical components to be 
discharged into the environment. 

Recent research has underscored the vulnerability of the Ichkeul 
ecosystem to climate change. Previous studies, such as those by Béjaoui 

et al., (2022) and Sahbani et al., (2022), have pointed out the warming 
of the lake’s water and the imbalance between cumulative evaporation 
and precipitation in the region, exacerbating the effects of anthropo-
genic pressures and further disrupting the lake’s hydrological cycle. 

These alterations profoundly affect the migration of various fauna 
species, particularly diadromous fish such as European eels. These fish 
species are renowned as exceptional bioindicators that serve as a 
barometer of the biological health of ecosystems, bridging the vital link 
between the sea (for reproduction) and freshwater (for growth) 
(Galewski et al., 2012). 

The European eel (Anguilla anguilla, Linnaeus, 1758), referred to as 
’eel’ hereafter, holds a position of immense importance in the Medi-
terranean ecosystem, especially within the Ichkeul wetland (Derouiche, 
2016). However, there has been a concerning decline in eel biomass 
since the 1970s, leading to its inclusion in Annex II of the Convention on 
International Trade in Endangered Species in 2007 (Rehof, 2021) and its 
classification as critically threatened in the International Union for 
Conservation of Nature Red List of threatened species in 2010 (Jacoby 
et al., 2015). 

Various challenges during migration and movements are faced by 
eels including predation, habitat loss, and scarcity of food which 
contributed to this decline (Lagarde et al., 2021). 

Eels begin their life cycle in the Sargasso Sea, hatching as 

Fig. 1. Geographic localization of Ichkeul Lake and location of sampling stations.  
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leptocephali larvae. They then undertake a challenging journey to the 
coasts of Europe and Northern Africa, where they transition into glass 
eels in their continental growth habitats. After completing their growth 
phase, they migrate back to the Sargasso Sea as silver eels (Lagarde et al. 
2021). Throughout their lifecycle, eels spend years moving within 
freshwater, brackish, and marine environments. Despite extensive 
research on migratory eel movements, there is limited understanding of 
eel movements within habitats and how environmental factors affect 
non-migratory eel stocks (Lagarde et al. 2021). 

For ecosystems under significant pressure, it can be challenging to 
distinguish between the climate-related factors driven impacts and those 
resulting from human activities (Leoni et al., 2021). Nonetheless, 
numerous studies have used variables such as precipitation, tempera-
ture, evaporation, solar energy, and wind intensity to delineate the re-
percussions of climate change (Cutforth, 2000; Bardossy and Van 
Mierlo, 2000; Dai et al., 2018). 

Further, predicting the diverse impacts of environmental variables is 
complex due to their interactions (Béjaoui et al. 2016). Over the past 
decade, machine learning algorithms, particularly CB and RF models, 
have emerged as powerful tools. They have demonstrated their effec-
tiveness in delineating non-linear relationships between predictor vari-
ables and response features by minimizing the loss function, primarily 
through an iterative training process (Zhang et al. 2021). These models 
are increasingly recognized as promising methods in the fields of envi-
ronmental sciences (Motarjemi et al. 2020; Zhang et al. 2021). 

The global objective of this study is twofold: firstly, to assess the 
interaction between environmental factors and the abundance of Euro-
pean eels under the impact of climate change and anthropogenic pres-
sures; and secondly, to gain a deeper understanding of the ecological 
state of Ichkeul Lake. 

Making use of a comprehensive dataset that combines historical re-
cords with collected sampling data, this research endeavors to accom-
plish the following key objectives: (i) characterizing the seasonal and 
annual variations of the environmental parameters within Ichkeul Lake, 
elucidating the stark contrasts that define its overall condition and 
health, thereby revealing its ecological state, (ii) developing two distinct 
machine learning models RF and CB regression techniques to estimate 
the impact of climatic and anthropogenic pressures on eel landing, and 
(iii) assessing the models’ performance through a comparative analysis 
of their results. This evaluation aims to identify the most suitable model 
for our database characteristics. 

2. Material and methods 

2.1. Study area 

Ichkeul Lake is an ecologically significant ecosystem situated in the 
northeastern region of Tunisia (Fig. 1). This remarkable environment 
encompasses approximately 30 km2 of temporary swamps and is 
bounded on its southern edge by a mountain (1366 ha). The climate in 
the Ichkeul region is characterized as sub-humid Mediterranean, marked 
by distinct seasonal periods, including both hot and rainy periods 
(Aouissi et al., 2014). 

Ichkeul Wetland is positioned at the confluence of six rivers: Doui-
mis, Sejnane, Melah, Ghezela, Joumine, and Tine. These rivers, origi-
nating from a catchment area spanning 2600 km2, serve as a source of 
freshwater inflow into the lake. Furthermore, the lake is connected to 
Bizerte Lagoon, which in turn links to the Mediterranean Sea via the 
Tinja River. 

One of the distinctive features of this lake is its cyclical hydrological 
system dynamics. During the wet season, it receives an influx of fresh-
water from both its catchment area and rainfall. Consequently, this leads 
to an increase in water levels and a decrease in salinity. In contrast, 
during the dry season, the prevailing inflow of seawater, coupled with 
increased evaporation, results in a decline in water levels, and higher 
water salinity (Sahbani et al., 2022; Aouissi et al. 2014). 

Concerning eel landing in the lake, they represent a significant 
portion of the fish biomass, contributing approximately 38% of the total 
production during the period 1973–2020. The average total production 
amounted to 131.73 tons, including 50.80 tons attributed to European 
eels (Fig.10). 

2.2. Data collection 

The data set comprised 14 variables collected from 15 stations in the 
lake (T1 to T15) during the period 2010–2020 (Fig. 1). The sampling 
stations were selected at the mouths of the tributary rivers and according 
to the environmental and ecological conditions of the lake. 

Eel production data was obtained from the General Directorate of 
Fisheries and Aquaculture of Tunisia (DGPA, 2020), which controls 
“Société Tunisie Lagune STL”, the only private operator in the Ichkeul 
ecosystem. STL employs various fishing gears, including trammel nets 
(with a mesh size of 30/40 mm), creels, and capetchades (mesh size 
6 mm), as well as fixed nets (eel weirs) and fixed fisheries (weir 
deployed near the lock at Tinja River). STL nets are deployed in the 
afternoon before sunset and recovered the following day in the morning 
(Derouiche, 2016). The daily quantities of eels caught are recorded and 
then transmitted to the DGPA every month. The biotic data integrated 
into the models (in tons) are linked to the date of the available envi-
ronmental parameters, to build up a comprehensive dataset. 

The period factor (Pr) represents the temporal aspect, characterized 
by distinct wet and dry periods. The wet period spans from September to 
February, encompassing winter and autumn seasons, while the dry 
period spans from March to August, constituting the spring and summer 
seasons. 

Meteorological parameters, including precipitation P (mm) and wind 
intensity W (m.s-1), were obtained from the National Oceanic and At-
mospheric Administration NOAA (http://www.meteomanz.com/index? 
l=1). The data specifically pertains to the Sidi Ahmed station located in 
the eastern part of the Ichkeul region. 

The physico-chemical, chemical parameters, and chlorophyll-a were 
derived from the BASSIANA database, a part of the IMAS-Ichkeul proj-
ect, and from a dedicated sampling campaign conducted in the summer 
of 2020. The BASSIANA database incorporates diverse data derived from 
various studies conducted on Ichkeul Lake, including contributions from 
Abdallah (2017); ANPE, (2017); Shaiek, (2017); Béjaoui et al., (2022); 
and Brik et al., (2022). 

Sampling campaigns were conducted during the dry period, on 
August 24th and 25th, 2020, at 15 stations in the lake (Fig. 1). This 
campaign serves a dual purpose. Firstly, it aims to provide an overview 
of the current state of the lake by collecting data at 15 stations where 
monitoring was conducted between 2010 and 2017. Secondly, it seeks to 
assess the lake’s condition following the significant rainfall events that 
occurred between 2017 and 2019 (IUCN, 2020). 

The geographical coordinates of the sampling stations were recorded 
using a GPS device. Physico-chemical parameters such as water tem-
perature T (◦C), salinity S (psu), dissolved oxygen DO (mg. l-1), and 
Turbidity Tur (NTU) were measured in the field using a WTW multi-
parameter (Multi 340i). Water level WL (m.s-1) was assessed using a 
sonar-based sounder. Water samples were analyzed for ammonium 
(NH4+), nitrate (NO3

- ), nitrite (NO2
- ), and phosphorous (PO4

3-) using an 
Auto-analyser. The concentrations of these components (µM) were 
determined calorimetrically using a UV–visible (6400/6405) spectro-
photometer (Tréguer and Le Corre, 1975; APHA, 1992). Total nitrogen 
TN (µM) and total phosphorus TP (µM) were determined after miner-
alization into ammonia and orthophosphate, respectively (Rodier et al., 
1996). The chlorophyll-a concentrations Chl.a (µg. l-1) were measured 
using the spectrophotometric method of Lorenzen (1967), after 24-hour 
extractions in 90% acetone at 4◦C in the dark following the procedure 
given by Parsons et al. (1984). For the present paper, inorganic nutrients 
were classified into dissolved inorganic nitrogen (DIN = NO3

- + NO2
- +

NH4
+) (µM) and dissolved inorganic phosphorus (DIP = PO4

3-) (µM). 

S. Sahbani et al.                                                                                                                                                                                                                                 

http://www.meteomanz.com/index?l=1
http://www.meteomanz.com/index?l=1


Regional Studies in Marine Science 77 (2024) 103587

4

In this study, climate parameters were represented by precipitation, 
wind intensity, and temperature, while human-induced activities are 
reflected in parameters such as water level, salinity, turbidity, dissolved 
oxygen, total phosphorus, total nitrogen, DIN, DIP, and chlorophyll-a. 

2.3. Data analysis 

The original dataset constructed in this study comprises 173 obser-
vations, capturing data on 5 factors (date, Pr, station name, longitude, 
latitude) and 13 parameters (P, W, T, WL, S, DO, Tur, DIN, DIP, TN, TP, 
Chl.a, and Eels) spanning the period from 2010 to 2020. 

Data were collected from a variety of sources, such as the BASSIANA 
Platform, NOAA’s website, DGPA, and a sampling campaign. Due to the 
diverse origins of the data, the sampling frequency varied, occurring at 
intervals including weekly, monthly, or seasonally, across different 
stations in the lake. In Table 1, we provide details on the year and month 
of sampling, the stations sampled, and the corresponding number of 
observations. 

Furthermore, this dataset contains data gaps with approximately 
20% of values missing. To mitigate the impact of these missing data on 
model accuracy (Umar et al. 2021), two steps were taken. Firstly, the 
spatial information (i.e., station name, longitude, and latitude columns) 
was removed, and rows sharing the same date were averaged, thereby 
reducing the proportion of missing data to 18%. Additionally, the date 
factor was disregarded, treating the period as the sole temporal factor. 
Secondly, a machine learning algorithm called "missForest" was applied 
to statistically impute the missing value. This approach was applied to a 
dataset comprising 101 observations for 14 parameters (Pr, P, W, T, WL, 
S, DO, Tur, DIN, DIP, TN, TP, Chl.a, and Eels) for the period 2010–2020. 

The missForest algorithm is known for its capability to handle 
various types of missing data, adapt to interactions and nonlinearity, 
and perform well with large datasets (Tang and Ishwaran, 2017). 
Additional information concerning this algorithm is given in the studies 
of Stekhoven & Bühlmann, (2012). 

The performance of this imputation process is evaluated using the 
normalized root mean squared error (NRMSE) (Oba et al., 2003). A 
lower NRMSE indicates a more accurate estimation. In the present study, 
the missForest algorithm was performed using the R package “mis-
sForest” (Stekhoven and Bühlmann, 2012). 

Additionally, the response variable undertook a Box-Cox trans-
formation to meet the assumptions of normality and homogenous vari-
ances required for regression models. Normality was assessed using the 
Shapiro–Wilk test. The Box-Cox transformation was constructed using 
the bcPower function of the R package “car” version 3.1–0 (Fox et al., 
2022). 

To address multicollinearity issues and enhance the stability in co-
efficient estimates, Spearman’s rank correlation matrix and Variance 
Inflation Factor (VIF) were examined. Spearman correlation and VIF 
were constructed using the R package “gplots” version 3.1.3 (Warnes 
et al., 2022) and “car” version 3.1–0 (Fox et al., 2022) respectively. In 
multiple regression analysis, multicollinearity is considered problematic 
when the correlation coefficient between variables exceeds the absolute 
value of 0.7 (Fois et al., 2018) and when VIF values are above 5 (Mar-
coulides and Raykov, 2019). In this study, variables that exceeded these 
thresholds were excluded from the dataset. 

To facilitate the visualization of the data distribution, box and violin 
plots were performed using the R package “vioplot” version 0.3.7 (Adler 
et al., 2021). Finally, two machine learning algorithms were applied. 
The workflow of the methodology is summarized in Fig. 2. 

2.4. Machine learning algorithms: Random Forest (RF) and Cubist models 
(CB) 

The RF model, introduced by Breiman in 2001, is a statistical tech-
nique widely successful across various fields such as classification, 
regression, and clustering. It uses Out-of-Bag (OOB) data for model 

Table 1 
Description of the original dataset:173 observations with 5 factors (Date, Period, 
Station name, Longitude, Latitude) and 13 parameters at different sampling 
stations in Ichkeul Lake.  

Year Period Month Number 
of stations 

Stations name Number of 
observations  

2010 Dry July 3 T13/T16/T1  3 
Wet January 1 T13  1 

November 3 T13/T16/T1 3  
2011 Dry March 7 T10/T12/T6/ 

T7/T8/T9/T10  
8 

April 8 T13/T1/T10/ 
T6/T7/T8/T9/ 
T13  

8 

June 1 T13  4 
Wet September 1 T13  3 

October 8 T1/T10/T12/ 
T14/T6/T7/ 
T8/T9 

8 

December 3 T13/T8/T9 5  
2012 Dry March 2 T13/T1  2 

July 1 T13  2 
Wet Junuary 2 T13/T8  5 

February 1 T13 1 
December 4 T3/T4/T13/ 

T11 
4  

2013 Dry June 3 T13/T14/T15  3 
July 2 T13/T5  2 

Wet January 5 T13/T3/T4/ 
T5/T6  

5 

November 2 T5/T6 2 
December 2 T5/T6 2  

2014 Dry March 3 T13/T1/T2  3 
April 1 T13  2 
June 2 T12/T13  2 

Wet January 2 T11/T13  2 
December 3 T11/T12/T13 3  

2015 Dry March 2 T10/T13  2 
July 4 T10/T11/T12/ 

T13  
4 

Wet January 2 T8/T10  2 
November 5 T7/T10/T11/ 

T12/T13 
5  

2016 Dry May 3 T10/T11/T13  3 
June 4 T10/T11/T13/ 

T15  
4 

Wet October 8 T6/T7/T8/T9/ 
T10/T11/T12/ 
T13  

10 

November 8 T6/T7/T8/T9/ 
T10/T11/T12/ 
T13 

9  

2017 Dry March 6 T6/T7/T8/T9/ 
T10/T12  

6 

April 6 T6/T7/T8/T9/ 
T10/T12  

6 

May 6 T6/T7/T8/T9/ 
T10/T12  

6 

August 6 T6/T7/T8/T9/ 
T10/T12  

6 

Wet October 6 T6/T7/T8/T9/ 
T10/T12  

6 

December 6 T6/T7/T8/T9/ 
T10/T12 

6  

2020 Dry August 15 T1/T2/T3/T4/ 
T5/T6/T7/T8/ 
T9/T10/T11/ 
T12/T13/T14/ 
T15  

15 

13 parameters are Precipitation, Wind intensity, Temperature, Water level, 
Salinity, Dissolved oxygen, Turbidity, DIN, DIP, Total nitrogen, Total phos-
phorus, Chlorophyll-a, and Eels landing. 
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evaluation, providing a valuable metric of performance (Breiman, 
2001). 

The CB model, an extension of Quinlan’s M5 tree model (John et al., 
2020), operates as a regression tree-based model and offers increased 
interpretability by granting access to the expressions defining rule sets 
and regression equations (Kumar et al. 2021). 

Further details concerning the RF model can be found in Cutler et al. 
(2007), and in Zhou et al., (2019) concerning the CB approach. 

In supervised regression, the dataset is typically split into a training 
set (80%) and a test set (20%), with the former used for building the 
prediction model and the latter for evaluating its performance. In this 
study, a dataset of 101 observations was randomly divided into a 
training set (81 observations) and a testing set (20 observations) using 
the R package "Caret" (Kuhn et al. 2022). 

2.5. Optimizing the hyperparameters of RF and CB models 

To enhance the predictive performance of both RF and CB models, 
we employed hyperparameter tuning and five-fold cross-validation. For 
RF, hyperparameter optimization focused on adjusting the minnode size 
and mtry parameters to mitigate overfitting, enhance model diversity, 
and potentially improve the performance of trees (Breiman, 2001). In 
contrast, CB tuning involved optimizing the number of rule sets or 
committees and the number of neighbors to balance model complexity and 
predictive performance while avoiding overfitting (John et al., 2020). 
Five-fold cross-validation was applied to determine optimal 

hyperparameters by iteratively training the models on different subsets 
of the dataset and assessing their predictive accuracy (John et al., 2020). 

The RF model was performed using the R package “Caret” (Kuhn al., 
2022) with the "ranger" method, then it underwent cross-validation 
using the OOB procedure. The CB model was also executed using the 
R package "Caret" (Kuhn al., 2022) selecting the "cubist" method, then it 
underwent cross-validation using the "repeated-cv" method of the 
"trcontrol" function. 

2.6. Performance metrics 

The RF and CB models undertook evaluation using both the training 
and test datasets. We computed metric errors for both the training and 
test datasets for each model to assess their performance in an out-of- 
sample context, as opposed to merely in-sample evaluation. 

The assessment of the models’ performance hinged upon three 
fundamental metrics: the mean absolute error (MAE), root-mean-square 
error (RMSE), and coefficient of determination (R2), all of which served 
as robust indicators for predictive accuracy (Culter et al., 2007). An 
effective model prediction would yield low MAE and RMSE values, 
approximating 0, and an R2 value approaching 1 (Culter et al., 2007). 

MAE, as the mean of all absolute errors, stood out as a widely 
employed measure for evaluating model performance (Zhou et al., 
2019). On the other hand, RMSE provided a quantitative gauge of the 
model’s predictive error (Culter et al., 2007). As for R2, it served as an 
indicator of the alignment between observed and predicted values (Zhou 

Fig. 2. Detailed illustration of the study methodology.  
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et al. 2019). Additionally, actual versus predicted regression plots were 
employed to visually represent the model’s performance in capturing eel 
landings. 

Further, features importance ranking is used to measure the degree 
of contribution of each variable to the estimation based on the R package 
“VIP” (Greenwell et al., 2020). 

3. Results 

3.1. Data pre-processing 

The missForest algorithm produced low NRMSE (0.22), indicating a 
good model performance. 

The Box-Cox transformation (Fox et al. 2022) of the target variable 
ensured that the indicator was centered and scaled. The Spearman 
correlation revealed a strong correlation among various predictors: DIP 
and total phosphorus (TP), chlorophyll-a (Ch.a) and temperature (T), 
salinity (S) and period (Pr), turbidity (Tur) and water level (WL), and 
between precipitation (P) and period (Pr) (Fig. 3). The VIF analysis 
confirmed the strong correlation only between DIP and TP. 

Consequently, we excluded TP with higher VIF (Table 2), resulting in 13 
variables to construct the prediction models. 

Furthermore, the Spearman test revealed significant correlations 
between eel landings and various factors. There was a negative 

Fig. 3. Heatmap of Spearman correlation between variables for the period 2010–2020 in Ichkeul Lake. The colors represent the correlation, with red being more 
positive and bluer more negative. The variables included period Pr (dry or wet), precipitation P (mm), wind intensity W (m.s-1), water temperature T (◦C), water level 
WL (m.s-1), salinity S (psu), dissolved oxygen DO (mg. l-1), turbidity Tur (NTU), dissolved inorganic nitrogen DIN (µM), dissolved inorganic phosphorus DIP (µM), 
total nitrogen TN (µM), total phosphorus TP (µM), chlorophyll-a Chl.a (µg. l-1), and European eels landing Eels (tons). 

Table 2 
Values of the Variance Inflation Factor (VIF) for predictors variables.  

Parameter VIF values 

Precipitation  1.6 
Wind Intensity  1.3 
Temperature  1.4 
Water Level  1.8 
Salinity  2.1 
Dissolved Oxygen  1.7 
Turbidity  2.1 
Total Nitrogen  2.7 
Dissolved Inorganic Nitrogen  1.8 
Dissolved Inorganic Phosphorus  3.4 
Total Phosphorus  4.6 
Chlorophyll-a  1.9  
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Table 3 
Summary of the dataset post-transformation (removal of spatial information and imputation of missing values): 101 observations with 14 parameters for the period 2010–2020. The temporal factor corresponds to the 
period (Pr).    

2010 2011 2012 2013 2014 2015 2016 2017 Summer 2020 2010–2020 

P(mm) Min-Max 0.00–107.42 0.00–182.62 0.00–182.89 0.00–249.93 0.00–113.03 1.27–172.20 0.00–149.09 0.00–119.12 0.00–7.37 0.00–249.39 
Mean 61.49 77.63 53.34 90.73 51.46 63.04 42.76 50.01 2.56 54.78 
SD 23.20 55.02 60.57 77.26 43.22 49.83 50.92 48.80 4.17 45.89 

W (m.s-1) Min-Max 3.50–7.97 2.41–8.00 3.48–7.52 2.95–8.15 3.35–8.15 3.69–8.81 2.99–8.90 2.66–7.14 3.64–6.22 2.41–8.81 
Mean 5.93 4.91 5.69 5.39 5.71 5.74 5.53 5.49 5.33 5.52 
SD 1.63 1.44 1.34 1.64 1.50 1.42 1.69 1.44 1.47 1.51 

T (◦C) Min-Max 12.03–15.97 10.00–27.30 10.40–25.73 10.60–40.36 11.40–26.96 12.35–62.75 10.3–26.20 11.7–28.40 23.70–28.6 10.00–62.75 
Mean 14.06 16.47 18.94 16.55 15.53 19.03 17.37 17.04 25.93 17.88 
SD 1.80 5.14 5.85 8.74 5.30 13.78 5.80 5.63 2.48 6.06 

WL (cm) Min-Max 31.80–73.00 10.00–156.00 3.00–151.00 16.14–142.11 15.32–113.00 25.21–140.00 32.98–78.00 47.89–122.00 35.45–58.61 3.00–156.00 
Mean 50.25 50.38 63.71 58.01 64.35 65.33 53.58 76.87 46.52 58.78 
SD 20.53 51.37 59.44 37.95 46.59 39.16 16.18 22.28 11.61 33.90 

S (psu) Min-Max 13.07–59.59 3.43–56.01 6.60–67.10 3.79–70.14 5.031–46.34 7.45–41.11 7.58–71.00 8.45–56.4 53.57–65.50 3.43–71.00 
Mean 31.89 30.07 29.30 24.54 29.47 21.41 29.40 31.33 59.72 31.90 
SD 15.37 16.86 20.92 19.56 12.49 11.16 20.76 15.44 5.97 15.39 

DO (mg. l-1) Min-Max 5.20–11.40 4.20–14.00 4.30–9.08 3.20–13.35 4.67–13.00 4.50–8.54 3.60–10.10 3.70–11.00 7.20–8.22 3.20–14.00 
Mean 8.13 7.915 6.73 7.11 8.58 6.27 7.18 7.26 7.88 7.45 
SD 3.04 2.80 1.83 2.48 2.68 1.29 1.81 2.31 0.59 2.10 

Tur (NTU) Min-Max 16.01–33.00 11.17–45.00 11.00–40.00 11.10–46.00 12.30–33.90 16.77–44.00 17.00–32.00 10.14–40.00 11.00–11.20 10.14–45.00 
Mean 25.53 24.26 25.62 24.75 22.39 26.56 25.21 21.41 11.11 22.98 
SD 7.49 10.43 10.74 11.57 7.10 9.99 5.26 9.55 0.60 8.08 

DIN (µM) Min-Max 10.00–17.30 15.00–22.84 18.69–18.69 32.00–32.58 18.43–21.00 12.30–20.32 12.00–23.56 13.20–28.41 14.15–15.02 10.00–32.58 
Mean 13.67 18.43 18.69 32.28 20.02 16.72 18.98 20.51 14.58 19.32 
SD 0.90 3.18 1.20 0.60 1.17 3.16 4.63 4.15 1.34 2.26 

TN (µM) Min-Max 11.20–24.10 6.45–50.03 11.01–39.89 11.20–56.60 15.30–47.70 8.34–45.50 11.73–73.51 6.21–40.04 14.80–19.01 6.21–73.51 
Mean 16.73 24.20 19.47 34.86 26.93 23.86 30.93 20.66 16.94 23.84 
SD 5.21 13.37 8.98 13.68 12.64 11.16 20.33 10.65 2.11 10.90 

DIP (µM) Min-Max 0.76–2.03 0.23–7.40 0.26–3.24 0.28–1.02 0.44–2.45 0.25–6.43 0.10–7.62 0.32–2.22 2.00–6.30 0.28–7.62 
Mean 1.39 1.95 1.21 0.72 0.95 1.40 1.98 0.74 4.90 1.69 
SD 0.90 2.41 1.18 0.39 0.62 1.92 2.79 0.59 8.80 2.18 

TP (µM) Min-Max 2.22–5.34 3.65–30.1 2.10–4.29 3.00–3.56 1.32–5.76 2.12–21.3 4.54–36.42 3.43–20.30 3.00–6.50 1.32–36.4 
Mean 3.67 9.68 4.00 3.45 3.71 8.88 11.89 7.22 5.00 6.38 
SD 1.2 9.51 1.1 1.2 1.83 7.27 13.76 5.43 6.30 5.29 

Chl.a (µg. l-1) Min-Max 1.21–8.60 1.23–7.50 2.12–9.08 1.32–8.76 2.03–8.01 1.24–8.67 2.56–9.14 1.87–9.80 8.49–8.70 1.24–9.80 
Mean 3.69 4.13 5.75 3.29 3.94 4.27 6.84 5.15 8.59 5.07 
SD 3.16 1.92 2.89 1.96 2.04 2.54 2.93 2.49 0.50 2.27 

Eels (tons) Min-Max 4.69–20.02 0.02–45.00 0.01–29.56 0.08–22.05 0.01–21.80 0.08–44.30 0.50–14.26 0.24–13.03 0.00–0.49 0.01–45.00 
Mean 12.37 7.20 7.09 6.97 7.84 6.18 5.77 4.61 0.29 6.48 
SD 7.27 11.73 11.06 6.29 6.58 11.67 4.75 4.39 3.00 7.41 

Number of observations (n) 6 19 10 14 11 13 12 13 3 101 

Notes: SD: standard deviation, P: precipitation, W: wind intensity, T: water temperature, WL: water level, S: salinity, DO: dissolved oxygen, Tur: turbidity, DIN: dissolved inorganic nitrogen, DIP: dissolved inorganic 
phosphorus, TN: total nitrogen, TP: total phosphorus, Chl.a: chlorophyll-a, and Eels: european eels landing. 
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correlation observed between eel landings and both salinity (r=-0.50) 
and period (r=-0.70), indicating that eel landings decreased as salinity 
and in the dry period. Conversely, there was a positive correlation be-
tween eel landings and water level (r=0.50) as well as turbidity 
(r=0.45), suggesting that eel landings tended to increase with higher 
water level and turbidity level. 

3.2. Parameter’s properties 

Table 3 provides a comprehensive summary of the dataset post- 
transformation, which includes the removal of spatial information and 
imputation of missing values, but before the exclusion of the TP 
parameter. It provides insights into the yearly variations in the envi-
ronmental parameters of Ichkeul Lake, reflecting changes observed from 
2010 to 2020. Notably, the data for 2020 covers the dry period, thus 
presenting mean and standard deviation (SD) values tailored to this 
timeframe. In contrast, Fig. 4 delves into seasonal fluctuations, 
providing a detailed examination of the variations experienced 
throughout the dry and wet periods. 

From meteorological parameters, the wet period exhibits higher 
rainfall (90.57% between 0 and 250 mm) and wind intensity (4–6 m/s) 
compared to the drier period (9.42% rainfall, 5.22 m/s wind). 

Concerning physicochemical parameters, the mean annual water 
temperature stood at approximately 17.90◦C. The averages for water 
level (WL), dissolved oxygen (DO), and turbidity (Tur) exhibited a sig-
nificant increase during the wet period compared to the dry period, 
primarily attributed to the influx of freshwater from the rivers. 
Conversely, the average salinity (S) demonstrated an inverse trend, 
showing an increase during the dry period (40–70 psu) owing to the sea 

water inflow from Bizerte lagoon. 
In terms of chemical parameters, dissolved inorganic nitrogen (DIN), 

dissolved inorganic phosphorus (DIP), and total nitrogen (TN) exhibited 
distinct seasonal patterns, with two prominent episodes annually. 
Elevated levels during the dry period can be attributed to the extensive 
use of chemical fertilizers nearby. Peak values for DIN, TN, and DIP 
reached 18, 55, and 1 µM, respectively, during the wet season. 
Conversely, during the dry period they reached 30, 20, and 1.5 µM, 
respectively. 

The chlorophyll-a concentration (Chl.a), indicating phytoplankton 
biomass, ranged from 0 µg. l-1 to 10 µg. l-1, a value characteristic of 
eutrophic ecosystems (Vollenweider et al., 1998). 

As regards the eel landings, substantial catches were observed during 
the wet period, reaching up to 45 tons. In contrast, during the dry 
period, eel catches were lower, due to eel migration to the Sargasso Sea 
for reproduction. 

3.3. Results of hyper-parameters tuning 

In both the RF and CB models, the input parameters, including 
meteorological (P and W), physicochemical (T, WL, S, DO, and Tur), 
chemical variables (DIN, DIP, and TN) and Chl.a play a significant role in 
predicting the target variable, which is eel landings. 

The RF model’s optimal tuning values were mtry = 9 and min node 
size = 9, whereas the final values for the CB model were committees = 5 
and neighbors = 9 (Fig. 5). 

Fig. 4. Data visualization with box and violin plots VIP. The shaded area indicates quartiles and data densities. The third quartile and first quartile are indicated as 
the lower and upper boundaries of the thick line at the center of the VIP. A broader VIP indicates a higher data density. Within the VIP, the top and bottom extremes 
represent the maximum and minimum values, respectively. The white dot positioned in the center of the plot corresponds to the median. Box and whisker plots 
show outliers. 
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3.4. Results of performance metrics 

Table 4 displays the performance metrics for the training dataset of 
the RF and CB models, and for comparative purposes, a Multiple 
Regression (MR) model was included in the analysis. The MR model 
demonstrates the highest R2 values and the lowest RMSE (tons), and 
MAE (tons), values, while the RF and CB models exhibit similar per-
formance metrics. 

Table 5 presents the performance metrics values for the test dataset 
for the RF, CB, and MR models. We note that the MR model’s predictions 
are influenced by training data, resulting in instability with the test 
dataset variation, while RF and CB models consistently offer more stable 
predictions. 

Fig. 6 indicates significant disparities between the predicted values 
and the actual observations of eel landings for the training dataset. 
Specifically, for the RF model, a systematic tendency emerges with a 

Fig. 5. Five-fold cross-validated RMSE profiles for determining the optimal tuning parameters for the Random forest (mtry and minimal node size) and the Cubist 
models (committees and instances). 

Table 4 
Performance Metrics of Random Forest, Cubist, and Multiple Regression Models 
for Predicting Training Dataset. Averaging Eel Landing at 24.16 tons over the 
Period 2010–2020.  

Effectiveness metrics Random Forest Cubist Multiple regression 
(for comparison) 

RMSE (tons)  7.20  7.68  6.24 
R2  0.56  0.55  0.64 
MAE (tons)  5.65  6.20  5.20  

Table 5 
Performance Metrics of Random Forest, Cubist, and Multiple Regression Models 
for Predicting Testing Dataset. Averaging Eel Landing at 24.16 tons over the 
Period 2010–2020.  

Effectiveness metrics Random Forest Cubist Multiple regression 
(for comparison) 

RMSE (tons)  5.81  5.13  7.99 
R2  0.73  0.73  0.41 
MAE (tons)  4.97  5.89  6.55  
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trend to overestimate lower values and underestimate higher values of 
eel landings. Remarkably, this pattern persists even though the biotic 
data were scaled and centered. This observation suggests that the 
model’s residuals are not randomly distributed but rather exhibit a 
correlation with the magnitude of the data, as shown in Fig. 7. In stark 
contrast, the actual vs. predicted regression plot for the CB model 
showcases markedly improved prediction performance. This leads us to 
conclude that the CB model surpasses both the RF and MR models in 
predictive accuracy. 

3.5. Determining variables’ importance and forecasting eel landing 

Given the better performance of the CB model, we applied it to 
determine the variable’s importance, which emphasized that water 
level, salinity, and turbidity are the most influential predictors followed 
closely by nitrogen and temperature as illustrated in Fig. 8. However, 
wind intensity and dissolved inorganic phosphorus (DIP) did not 
significantly contribute to the model’s predictive performance. 

In a practical application of this approach, we leveraged an envi-
ronmental dataset (15 observations with 12 parameters) gathered on 
January 24 and 25, 2022 in 15 stations in the lake. Faced with a lack of 
eel landing data, we chose to use the CB model developed for eel landing 

forecasting. According to this model, eel landings were anticipated to 
range between 22 and 47 tons during the period from January 24–25, 
2022. Fig. 9 shows the forecasted eel landings relative to the water level. 

4. Discussion 

4.1. Ecological relevance of the study 

In this survey, we explored variations in environmental parameters 
in Ichkeul Lake. Temperature trends aligned with the typical patterns in 
the Mediterranean coastal marine climate (Béjaoui et al., 2016; Ben 
Hadid, 2021; Dhib et al. 2016). Our findings unveiled a decline in water 
levels compared to prior studies (Hollis et al., 1986; ANPE, 2008), 
coupled with a notable increase in salinity, as demonstrated in Sahbani 
et al. (2022). These shifts are linked to anthropogenic disturbances, 
including dam construction on main rivers and the installation of sluice 
gates at the Tinja River outlet. 

Field observations also indicated increased nitrogen and phosphorus 
levels during the study period (2010–2020) compared to the pre-dam 
era in both 1977 and 1992–1993 (Dridi, 1977, Ben Rejeb-Jenhani, 
1992, Chaouachi et al., 2001). This could be attributed to pollutant in-
puts and untreated wastewater from watershed rivers (Madyouni et al., 

Fig. 6. Scatter plot comparing the observed and the predicted eel landing using Random Forest, Cubist, and Multiple regression models, with R-squared values of 
56%, 55%, and 64%, respectively. The black points represent the model training dataset. 
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2023). Additionally, our study highlighted seasonal fluctuations in these 
components, with higher levels during the dry season, attributed to the 
intensive use of agricultural fertilizers during this period (Aouissi et al., 
2014). 

The DIN/DIP ratio, which varies from 2.83 to 182 and from 2.47 to 
223 during wet and dry periods respectively, underscores an imbalance 
in the lake’s ecosystem. This higlights the primary limitation of phyto-
plankton growth by phosphorus availability. Concerning the eutrophi-
cation indicator (expressed as chlorophyll-a) and juxtaposed with the 
threshold determined by Vollenweider et al., (1998), the observed Chl.a 
values suggest eutrophic conditions in Ichkeul Lake. 

Changes in lake conditions affected the ecosystem’s flora and fauna, 
notably influencing eels in their continental-rearing habitats. These 
changes can influence eel movements directly by limiting energy 
expenditure or indirectly by affecting factors like food availability (Riley 
et al., 2011). To shed light on these impacts on the eel population in 
Ichkeul Lake, the results of the Random Forest and Cubist models are of 
particular interest. 

4.2. Evaluation of the model’s performance 

In our analysis, we noted the Multiple Regression (MR) model’s 

limited adaptability to variations in the test dataset, and for the RF 
model, non-random correlations between residuals and data magnitude 
were observed. These outcomes highlighted the outstanding perfor-
mance of the CB model, attributed to its unique ability to demonstrate a 
delicate balance between predictive accuracy and interpretability (Zhou 
et al. 2019). Its versatility makes it highly advantageous in diverse 
practical applications, as it excels in capturing relationships between 
variables and the target property (Zhou et al. 2019). 

Developing a predictive model customized for the Ichkeul ecosystem, 
capable of pinpointing the key factors driving eel landings and offering 
forecasts of future eel populations based on environmental variables, 
stands as the optimal approach for preserving the lake’s environmental 
integrity over the long haul. 

Machine learning techniques also offer a powerful means to forecast 
future eel landings by incorporating forthcoming environmental pa-
rameters as inputs. By envisioning various hypothetical scenarios of 
environmental change, these techniques can anticipate environmental 
parameters and generate response predictions for each scenario, 
yielding a probability distribution of future landings. In our case, a po-
tential limitation arises when the model is trained on a limited range of 
observed environmental values over 10 years, compromising prediction 
accuracy when future observations significantly differ from the training 

Fig. 7. Random Forest model residual plots. The top right is a standard Residuals vs Fitted plot of the training data, accompanied by a LOWESS (Locally Weighted 
Scatterplot Smoothing) smooth represented by the red line. Cases 46, 47, and 63 have the largest residuals with corresponding fitted values of 22, 14, and 17. The QQ 
plot (bottom left) reveals that these residuals deviate somewhat from expected norms. Given their status as the largest absolute residuals, they determine the right 
bound of the Cumulative Distribution Plot (top left). 
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range. In recent years, a growing number of studies have sought to 
synergize traditional forecasting models with the power of machine 
learning to improve the accuracy and efficiency of predicting response 
variables. This fusion of methodologies has given rise to a burgeoning 
field known as "physics-informed machine learning (PILM)". PILM rep-
resents a crucial frontier in the field of predictive modeling, focusing on 
the incorporation of domain-specific physical principles into data-driven 
forecasting approaches (Truong et al., 2023). 

The results obtained from the CB model in this study outperformed 
the RF model outcomes observed in Bizerte Lagoon (R2= 0.51) (Béjaoui 
et al., 2016). This difference in performance can be attributed to several 
factors, including the specific dataset used, the unique hydrological 
processes of each ecosystem, and the distinct environmental stressors 
that each ecosystem faces. 

4.3. Effect of environmental factors on the eel population 

The findings derived from the CB model shed light on the most 
influential factors affecting the presence of eels among all variables. 
These key factors include water level, salinity, turbidity, and nutrient 
concentrations. 

Eel movement is primarily driven by water levels, with their entry 
into the lake occurring between September and May when water levels 
rise and flow toward the Bizerte lagoon (Derouiche, 2016). Therefore, as 
a fundamental step in management, it is advisable to refrain from 
dredging activities during this timeframe, as these are the conditions in 
which non-migratory eels become most active and exhibit increased 
mobility. 

In Ichkeul Lake, the eel intensity was low when the salinity 
increased. Several studies, such as those of Tosi et al. (1990) and Edeline 

Fig. 8. Variable importance scores for the predictors in the Cubist Model for eels landing using a dataset composed of 101 observations. The 12 predictors are Pr 
(Period), P (precipitation), W (wind intensity), T (water temperature), WL (water level), S (salinity), DO (dissolved oxygen), Tur (turbidity), DIN (dissolved inorganic 
nitrogen), DIP (dissolved inorganic phosphorus), TN (total nitrogen), and Chl.a (chlorophyll-a). W and DIP did not significantly contribute to the model’s predictive 
performance. 
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et al., (2005) have consistently emphasized the eel’s preference for 
either high or low-salinity environments. Upon arrival from the sea, eels 
show a flexible pattern of colonization of continental habitats, either 
migrating upstream (freshwater) or settling in marine and estuarine 
habitats, due to endocrine controls and genetic factors. Indeed, high 
thyroid hormone (TH) and low allozygous heterozygosity promote a 
preference for freshwater (Edeline et al., 2005). These conditions foster 
the production of large female eels (Oliveira et al. 2001), which is 
illustrated in the Ichkeul Lake by the study of Derouiche (2016). At the 
same time, low TH and high allozygous heterozygosity favored marine 
preference (Tosi et al., 1990). 

Regarding the period factor (the distinction between dry and wet 
periods), it is important to highlight its minimal impact on eel landings. 
This is primarily because eel species are predominantly caught during 
wet periods; however, they also inhabit the lake during dry periods to 
complete their growth phase. 

The significant abundance of eels found in the lake with heightened 
turbidity and nutrient levels can be attributed to their foraging behavior 
and the avoidance of predators (Lagarde et al., 2021). However, it’s 
important to recognize that fish activities, including swimming and 
searching for food within sediments, also play a substantial role in 
sediment resuspension. Moreover, these activities can contribute to the 
regulation of phytoplankton biomass and community structure in 
shallow lakes (Havens, 1991). 

Eel species display an impressive degree of trophic plasticity and 
adaptability in response to changing ecosystem conditions. For instance, 
in eutrophic conditions, they undergo a transition in their trophic stra-
tegies. Instead of primarily preying on fish as piscivorous and pelagic 
predators, they shift towards an omnivorous and benthic predator mode, 
targeting invertebrates as their primary prey. This adaptive strategy is 
particularly evident in the case of Ichkeul Lake (Shaiek. 2017). Residing 
in eutrophic conditions presents certain challenges for eels, such as a 
reduction of niche overlap and, consequently, competition with other 
fish species (Caputi et al., 2020). Therefore, managers should prioritize 
conservation efforts and continuously monitor the lake’s trophic and 
ecological dynamics. This multifaceted approach ensures the sustainable 

coexistence of eels and other species within these complex 
environments. 

5. Conclusion 

This paper has shown the robustness of the CB algorithm in pre-
dicting the most influential predictors affecting eel presence, notably 
water level and salinity, followed closely by turbidity and nutrient 
levels. We advocate for incorporating these variables into watershed 
management plans, benefiting not only Ichkeul Lake but also other 
Tunisian coastal ecosystems. 

we also advocate for the integration of advanced technologies into 
local management agencies’ monitoring systems to track the trophic and 
ecological status of the lake, ensuring its long-term ecological integrity. 
By providing managers with forecasts on faunal communities, the pro-
posed approach facilitates informed decisions on stock management, 
fishing accessibility, and quantity assessment, leading to optimized fish 
stocks, species preservation, and sustainable food production. Further-
more, the model enhanced government oversight of concession com-
panies and aids in estimating illegal production captured by residents of 
Tinja town, providing improved monitoring and data reliability. 

It is demonstrated that the CB technique is well-suited for our dataset 
type. To further gauge the CB model’s performance. Additional experi-
ments with larger datasets concerning the environmental parameters are 
also recommended. Other biotic data, including for instance habitat 
structures and specific richness are needed to capture the multifaceted 
relationships within the ecosystem. Furthermore, we promote the inte-
gration of socio-economic data related to land use changes, fishing 
practices, and pollution levels, which will offer a more holistic 
perspective on human impacts. This interdisciplinary approach will 
strengthen the model’s ability to anticipate the interactions between 
environmental and anthropogenic factors. These endeavors will 
contribute valuable insights for future research and management 
strategies. 
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(wind intensity), T (water temperature), WL (water level), S (salinity), DO 
(dissolved oxygen), Tur (turbidity), DIN (dissolved inorganic nitrogen), DIP 
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