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ABSTRACT	 Interpolation of scalar data, in the 2D space, is an important topic in many fields of 
environmental and geoscience studies, and uncertainty assessment is as important as 
interpolation itself. An example of this is the Kriging method, which is well-established 
in geostatistics and enables the automatic evaluation of uncertainties by solving a linear 
equation, taking into account the bivariate spatial continuity of the data. The Sibson 
interpolation method (natural neighbour) has the important property of providing 
unambiguous and reproducible results. However, since it is fundamentally a deterministic 
method, it does not have qualitative and/or quantitative control of the uncertainty based 
on the sampling spatial distribution geometry. In this paper, we show the different steps 
leading to an analytical approach to evaluate the uncertainties of the Sibson method. 
After a series of tests with a synthetic data set and a surface with a known differentiable 
function, we show an example using the data set of accelerometric data from the M 6.5 
Norcia earthquake of 30 October, 2016.
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1. Introduction

In his early work, Sibson (1980) showed that the principle of natural neighbour (hereafter 
NN), based on convex Voronoi polygons (Aurenhammer et al., 2013), can be used to uniquely 
determine the coordinates of a point not included in input data. In the subsequent article 
(Sibson, 1981), he applied the NN method to spatial interpolation and demonstrated its unique 
and reproducible feature. However, what this method lacks is qualitative and/or quantitative 
control of uncertainties based on the sampling spatial distribution geometry, relative to the real 
data surface. The method is an exact interpolator, in the sense that the original data values are 
preserved at the reference data points.

A first approach to evaluate uncertainties in the NN method is based on cross-validation errors 
(Etherington, 2020). This approach involves the calculation of the mean absolute error (cross-
validation) of estimate value f * over data fi, by taking into account the mutual distances between 
these points. What is important about Etherington’s study is that he outlines the method’s 
properties. Namely, the method: i) is an exact interpolator; ii) it creates a smooth surface; iii) 
it is entirely local; iv) it is spatially adaptive; v) no requirement is needed to make statistical 
assumptions; vi) it can be applied to very small data sets as it is not statistically based; and 
above all vii) it is parameter free. Thus, a previous attempt, based on fitting statistical uncertainty 
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models (Ghosh et al., 2012), contradicts properties v, vi, and vii of NN interpolation.
Early categories of interpolation methods, concerning the evaluation of uncertainties, are 

those based on objective analyses (Barnes, 1964; Gandin, 1965), and mainly used in the field of 
meteorology. For each grid point, the unknown function is computed using a series of Gaussian 
functions, given by a weighted distance. For the interpolation and variance estimation, an 
objective method, based on the spatial variability structure of the data, is used.

A recent article, which only deals with the uncertainty issue and applies a non-parametric 
approach, is that by Thiesen and Ehert (2022). For spatially distributed data, Kriging methods are 
the most important category of interpolation tools in geostatistics. The various Kriging approaches 
enable the estimation of uncertainties to estimate the confidence interval (Goovaerts, 1997). 
Variograms (Chilès and Delfiner, 1999), the basis in the theory of geostatistics, are empirical 
functions expressing data dissimilarity as a function of the distance between data themselves. 
Variograms are used to derive the covariance matrix of the likelihood function in order to solve 
the linear equation system of Kriging models, such as Ordinary Kriging, Universal Kriging, and 
so on. In practice, the theoretical semivariance, taken as the covariance function, is used as the 
second order moment. The semivariance is estimated by fitting an empirical variogram (Chilès 
and Delfiner, 1999). Kriging methods have the advantage of intrinsically estimating variance 
(known as the Kriging variance), or, rather, its square root (also called the standard deviation, or 
standard error for short).

Moreover, Kriging has a strong link with objective analysis, as described in Herzfeld (1996).
This paper outlines the steps of our research to evaluate the uncertainties of the Sibson (1980, 

1981) interpolation theory based on Voronoi tessellation. In the initial phase, we attempted 
to combine the Sibson (1981) scheme with variograms on a geostatistical point of view (see 
Appendix A), and subsequently explored a deterministic approach. The approach presented 
here, complies with the rules of Etherington (2020), in particular with properties iii and vii. Based 
on the Mean Value Theorem (MVT), the proposed methods use the gradient, which is useful “to 
increase the accuracy of local interpolants” (Belward et al., 2008) and is an important element 
in uncertainty evaluation, as in our case. However, the various numerical problems encountered 
are described in the following.

All diagrams and tests in this paper were generated with original Python code, using some 
standard libraries such as NumPy, SciPy and scikit-learn. NN interpolation was implemented with 
Python software using the methods described in Iurcev et al. (2021).

2. Sibson interpolation

The interpolation of an unknown function, f: R2 ⇒ R, can be seen as the problem of 
reconstructing value f(x*), assumed that we have a set of measured values, {fi = f(xi)}, in points 
{xi} = X (our data set). The Voronoi tessellation of our data set is uniquely defined as a set of 
convex polygons, {Vi}, partitioning the plane and having the following property:

(1)

The edges and vertices of the Voronoi tessellation, Ui {∂Vi}, are the locus of points equidistant 
from two data points (edges) or more data points (vertices). The Sibson interpolation method 
(Sibson, 1981) is based on the uniquely defined set of NNs of interpolation point x*. Considering 
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the interpolation point as a new data point, the new Voronoi V* has a non-empty intersection 
only with some Vi: the n NNs of x*. If Ai is the intersection area, then the Sibson interpolation is 
defined as follows:

(2)

where weights are:

(3)

Additionally, the interpolation is a convex combination, as

(4)

The geometry of the NN method is displayed in Fig. 1.
Some variables are defined for convenience purposes:

(5)

(6)

Fig. 1 - The Sibson interpolation method (NN).

Eqs. 2 and 4 are shared not only with the Sibson method but also with many other interpolation 
methods, for example, Inverse Distance Weighting (IDW). The latter and the Sibson method are 
both based on a convex linear combination and share the following property:

(7)

A significant difference between these two methods consists in the choice of data used 
for the interpolation. IDW uses the whole X data set, or all the points within a certain radius, 
thus offering the possibility of more complex search criteria (e.g. quadrant search, anisotropic 
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windows, etc.). The NN method only uses the NNs of x*, or the subset ν(x*)⊂X, as Etherington 
(2020) suggests in his third property.

The cardinality of ν can be approximated under the hypothesis of the data set as a stationary 
Poisson point process with density λ (i.e. the spatial density of the sampling network), as every 
NN of x* corresponds to one edge of a Voronoi polygon relative to x*, thus E(#ν(x*)) –~ 6, which is 
the first order moment of the number of edges for a Voronoi polygon (Okabe et al., 2000). If we 
choose the data subset using a circle of radius r, the cardinality of νr= {x | x ∈ X and||x - x*|| ≤ r} 
can be estimated as E(#νr(x

*)) = λπr2.
With the NN method, every specific data set {xi} defines a partition of ℝ2 as in Fig. 2. Every 

coloured region includes the points sharing exactly the same subset of NNs, i.e. ν(x).

Fig. 2 - Partition of the plane into areas with the same ν.

3. The gradient method

We assume the unknown function, f, to be differentiable, at least in proximity of the 
interpolation point. If we consider segment S = [x*, xi] and apply the Mean Value Theorem (also 
known as the Lagrange theorem) extended to ℝ2, we obtain:

(8)

By substituting Eq. 2, we can evaluate the difference between interpolated value and real 
value:

(9)

Since the weights sum to one, then the interpolation error is:

(10)
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considering the properties of the absolute value and the Cauchy-Schwarz inequality:

(11)

The last formula expresses the absolute interpolation error as a function of the gradient 
magnitude and geometrical distribution of our data set, in proximity of x*. All the sums are for 
i = 0 ... n-1, where n is the number of NNs in x*. As mentioned above, the formulae are valid for a 
wide range of methods, under the hypothesis of convex combination (Eqs. 2 and 4).

3.1. Gradient estimation

There are two issues with Eq. 10: the gradient and points ξi are unknown.
We can initially assume that the gradient is locally a constant vector. This assumption brings to 

a pointless result, since a locally constant gradient means that f(x) is linear, the NN interpolation 
of a linear function is exact, and, therefore, the error is always zero. This can also be proved 
considering Eqs. 7 and 10 with ∇f = g (constant):

(12)

Although the hypothesis of a locally constant gradient can be used for the weaker scalar 
inequality of Eq. 11, it is still necessary to estimate the gradient magnitude in the neighbourhood 
of each interpolation point.

One possible approach, which is quite common in literature, is to approximate the gradient 
using finite differences, by superimposing a regular grid in which the function value is known or 
estimated. We have also tested this method, which, however, introduces an additional level of 
uncertainty, as the function must be interpolated through the grid.

Another approach is the local least-squares plane approximation of the unknown surface, as 
presented in Stead (1984) or De Keyser (2006).

The ordinary least-squares (OLS) approximation requires a subset of points xi , f(xi) in the 
neighbourhood. With at least three non-collinear points in ℝ3 space, linear regression defines 
a plane whose slope is a possible gradient estimator, as in Fig. 3. In this context, two different 
least-squares strategies, for computing the gradient for bivariate surface interpolation, were 

Fig. 3 - Gradient estimation with the OLS method.
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investigated by Belward et al. (2008). The two methods are based on the generalisation of 
Moving Least Squares. In the former, a classic method based on a linear system of equations, 
the gradient is derived by a truncated Taylor expansion at the second order; while in the second 
method the gradient is a consequence of the Finite Volume Method solution used for solving 
diffusion equations. Belward et al. (2008) show that “the uniqueness of the gradient estimates 
(using both methods) is not a result of the analytical properties of the approximation processes, 
it is a consequence of the method of linear least squares”.

There are many possible choices for the subset of points, for instance ν(x*) or νr(x
*). We define 

the former n estimation (based on NNs), and the latter r estimation (using distance within a 
fixed radius). For sake of simplicity, let us define g(x) = ∇f(x) and G(x) = ||∇f(x)||. The estimated 
gradients are then gn (with NNs) and gr (fixed radius); their magnitudes are Gn and Gr.

Of course, the choice of the radius with the r-method is quite arbitrary, whereas the n-method is 
uniquely defined. If the radius is too small, the subset used for the OLS estimator is possibly empty 
for many interpolation points. If the radius is too large, the gradient estimate is very poor. The best 
choice for the fixed radius depends on the local density of the data set. As described in De Keyser et 
al. (2007), the method is valid with a least an intrinsic stationary condition (Chilès and Delfiner, 1999).

4. Data sets

In order to investigate the validity of an uncertainty assessment, a first experiment with a 
synthetic data set, using a non-polynomial function proposed by Franke (1979), is presented in 
this paper. A representation of the Franke function can be found in Iurcev et al. (2021).

The second data is a set of 164 surveys of Peak Ground Acceleration (PGA) in cm/s2 of the M 
6.5 Norcia earthquake (central Italy) of 30 October, 2016.

4.1. The Franke test function

The Franke function is a differentiable function that is often used as a test function in 
literature. The surface has two Gaussian peaks and a narrow minimum superimposed fold on a 
surface sloping towards the first quadrant. Closed-form expressions for the gradient vector and 
its magnitude were obtained using the Python symbolic library SymPy.

The test data set was modelled as a Poisson point process, defined (Okabe et al., 2000) by the 
process in which, for any point, subset A is:

(13)

Parameter λ is the density, or process intensity, and defines the expected number of points 
in a unitary area.

It is possible to improve the test by considering the impact of data errors (e.g. introducing 
some noise) or using other synthetic functions.

4.2. Franke function gradient estimation

We used a random data set of 500 points in the unitary square (0.1)2. For every interpolation 
point, gradients gr and gn were estimated with the OLS method. The fixed radius for the r-method 
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was set to 0.08, which is approximately 2/√–λ.
Fig. 4 shows the results of an OLS gradient estimation, for a data set of 500 points. Fig. 4d 

shows the exact magnitude, whereas Fig. 4e the ‘bubble’ pattern displayed in Fig. 2, since all 
interpolation points, in each subset Ni, have the same NNs and, thus, the same OLS gradient 
estimator. In Fig. 4f, the gradient estimate with fixed radius can be seen.

We, then, examined the error in the gradient estimation (Fig. 5), both for the gradient magnitude 
and gradient phase. The approximation error for the gradient magnitude was higher near the 
edges, due to typical interpolation problems, such as the Runge effects. The phase error for gn was 
plotted considering the metric hn, a kind of pseudo-error, based on the cosine of the angle:

(14)

This value is zero if the two vectors have the same direction, 0.5 if they are orthogonal, one if 
they point in opposite directions. The same definition applies to hr. Table 1 contains a comparison 
between the two estimates of the gradient magnitude.

4.3. Franke function: interpolation error estimate

Both Eqs. 10 and 11 provide an estimate for the NN interpolation error. The former is a 
vectorial method, the latter a scalar one, which provides only the absolute error. For consistency 
reasons, only absolute estimated errors are compared.

Fig. 4 - The Franke function on a data set of 500 random points: a) Voronoi tessellation; b) exact function; c) NN 
interpolated function; d) exact gradient magnitude G(x); e) estimated gradient Gn(x) with NNs; f) estimated gradient 
Gr(x) with fixed radius.
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Fig. 5 - Errors for gradient estimates (Franke function, OLS method): a) (Gn-G) magnitude error for n estimator; 
b) (Gr-G) magnitude error for r estimator; c) hn phase error for n estimator; d) hr phase error for r estimator.

Table 1 - Magnitude gradient estimate errors with the OLS methods.

		  n estimator (NNs)	 r estimator (fixed radius) 
		  error Gn-G	 error Gn-G

Errors
Mean

Variance
RMSE

Skewness coefficient
Absolute errors

Quartile Q1
Median Q2
Quartile Q3

Q3-Q1
min
Max

Bivariate statistics
Pearson’s correlation coefficient

Moment of inertia
Linear regression offset
Linear regression slope

0.001874
0.08162
0.2857
180.1

0.02389
0.07959
0.1837
0.1598

2.52e-07
3.958

0.9444
4.081

0.05616
0.9589

-0.02568
0.06519
0.2566
831.8

0.02528
0.08112
0.1711
0.1458

6.382e-07
8.076

0.9543
3.292

0.05052
0.9423
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There are many possible ways to combine gradient estimation and our equations. Since the 
Franke function is known, it is also possible to obtain a ‘semi-exact estimator’ by using the exact 
gradient. The only issue is given by the true location of points ξi, which must be approximated by 
x*, xi, the midpoints, or by other means. Table 2 lists the proposed methods.

We cannot use an n-method for the gradient estimate, because the NNs of an NN are coincident 
with the NN itself, so the subset for the OLS estimation would be useless. Therefore, we only 
applied an r-method, generating the er estimated error. The results are compared in Fig. 6.

Table 2 - Estimated interpolation errors.

	 Symbol	 Method description	 Approximation	 Ref. formula	 Estimated error

	 e0	 Exact error		  (f� − f *)	

	 em	 Semi-exact, midpoint		  Eq. 10	 Relative

	 ei	 Semi-exact, xi		  Eq. 10	 Relative

	 er	 Vectorial estim., xi		  Eq. 10	 Relative

	 es	 Scalar estim., xi		  Eq. 11	 Absolute

	 ec	 Scalar estim., x*		  Eq. 11	 Absolute

Fig. 6 - Interpolation 
errors obtained with 
different estimation 
techniques: a) exact 
error e0; b) error em; 
c) error ei; d) error 
er; e) error es; f) error 
ec. Errors ec and es 
are absolute errors, 
while the others are 
relative errors.

A statistical analysis between exact interpolation errors and estimated interpolation errors 
provides more details, as shown in Fig. 7 and Table 3.

4.4. Norcia test data set

To show an example of uncertainty estimation using the gradient method in a real-world 
scenario, we used the PGA surveys of the M 6.5 Norcia earthquake. This event occurred in central 
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Italy on 30 October 2016. The ITACA database [version 3.2: Russo et al. (2022)] provides a total 
of 296 registrations.

An amount of 164 data, within a distance of 200 km from the epicentre (at coordinates 
42.832° N; 13.111° E), was selected. The nucleation, at a depth of 9.2 km, was located 5 km NE 
from Norcia. It was a normal mechanism, with strike in the direction of the central Italian axes 
(Apennine trends: NNW - SSE). The PGA range spans from 2 to 1,000 cm/s2 (temporary station 
MZ24 - east component), but the data are presented here as log10(PGA).

The WGS84 coordinates are projected into UTM33. Of utmost importance is the use of a 
metric projection or the application of other methods in order to take into account the anisotropy 
underlying latitude/longitude representation, as described in Iurcev et al. (2021).

Fig. 7 - Scatter plot of estimated interpolation errors vs. exact errors, where the red line is the linear regression and 
the black line the exact estimation: a) plot for em; b) plot for ei; c) plot for er; g) plot for es; h) plot for ec. Bland-Altman 
plot (dashed lines show ±1.96 σ): d) plot for em; e) plot for ei; f) plot for er.
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Table 3 - Statistics of estimated interpolation errors vs. exact errors: es
* is an absolute error, while the others are 

relative errors.

Errors
Mean

Variance
RMSE

Skewness coefficient
Absolute errors

Quartile Q1
Median Q2
Quartile Q3

Q3-Q1
Min
Max

Bivariate statistics
Pearson’s correlation coeff.

Moment of inertia
Linear regression offset
Linear regression slope

em

0.00052
1e-05

0.0033
3.6e+07

-0.0007
-3.9e-05
0.00098
0.0017
-0.014
0.017

1
0.00053
8.9e-06

0.52

ei

-0.0013
3.9e-05
0.0064

-5.5e+06

-0.002
3.1e-05
0.0012
0.0032
-0.032
0.023

0.98
0.0021

-0.00039
1.9

er

-0.0018
6.9e-05
0.0085

-3.8e+06

-0.0023
-8e-05
0.0011
0.0034
-0.058
0.038

0.91
0.0036

-0.00081
1.9

es
*

0.033
0.00049

0.039
1.4e+05

0.017
0.027
0.043
0.027

0.00015
0.17

-0.12
0.078
0.031
-0.37

Fig. 8a shows the distribution of stations with the Apennine alignment clearly visible. Fig. 8b 
shows the 3D NN interpolated surface of log10 PGA, with the typical decay with distance. Finally, 
Figs. 8c and 8d show the distribution of uncertainties calculated with the fixed radius OLS (er) 
estimation method. The maximum errors (2.5) near the border are close to the upper range limit 
for log10 PGA values, while in the middle the errors do not exceed 0.5.

In Fig. 8a, the data set is represented with blue and red dots. The red dots are data where 
the OLS gradient approximation provides very poor results due to the fact that the least-squares 
matrix has a rank <2. In the peripheral regions, where the data set is sparser and the Voronoi 
polygons are larger, both interpolation and error estimation tend to be unreliable.

The implemented method for error estimation was er, based on the OLS gradient estimate 
with a fixed radius r = 25 km, applying the vectorial formula in Eq. 10 with ∇f (ξi) ≅ gr (xi).

5. Discussion

Interpolation error assessment for the Sibson method (NN) is not a straightforward process. 
The most difficult aspect is potentially the geometric definition of weights, wi, which is hard 
to analytically express and depends solely on the spatial distribution of the Voronoi polygons. 
Moreover, the properties of the interpolated function are generally unknown, so hypotheses 
related to them must be assumed. If differentiability is assumed, a possible deterministic 
approach is to apply the mean value theorem in the neighbourhood of the interpolation point.

A completely different approach is based on a geostatistical point of view, and takes into 
account the statistical properties of the function inferred from the data set. This is what the 
Kriging method does and this possible approach is mentioned in the Appendix.
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Fig. 8 - NN interpolation error estimation for Norcia data set: a) data set and Voronoi; b) interpolated surface; c) and 
d) estimated errors er.

The deterministic methods proposed here, based on the MVT, raise two major issues. The 
first problem is the unknown location of points ξi along the line between the interpolation point 
and the i-th NN. These points can be approximated by means of the NNs themselves or a point 
at half distance, etc.

The second issue concerns gradient estimation. Here, we have applied a method that employs 
OLS linear approximation, exploring two different techniques for choosing the data subset: a 
fixed radius or the NN. The former raises an additional problem, since the optimal radius is 
strictly dependent on the local spatial density of the data set. The latter bypasses this problem, 
but, at the same time, is not feasible if we approximate points ξi with relative NNs, since the 
vectorial expression of Eq. 10 becomes zero.

All these possibilities define several sub-techniques for deterministic error estimation; 
however, we have implemented and tested only some of them here. The test bed was the Franke 
test function, with a random data set generated as a Poisson point process. This is, to some 
extent, a Montecarlo approach for an assessment and comparison relying upon statistics.
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Some interesting results, highlighting possible caveats and applications, can be observed.
The midpoint technique (em) seems to underestimate the interpolation error, while the other 

methods, on the contrary, seem to overestimate it.
The vectorial method, using OLS gradient approximation with fixed radius (er), gives better 

results, while the scalar methods (using Eq. 11) are far too unstable to be considered. The scatter 
plots exhibit a moderate degree of correlation with an offset close to zero, in the best cases. 
However, there is a significant difference between the linear regression slope and the ideal 
correlation line, which seems to imply a multiplicative factor.

It would appear that the fixed radius method is the most promising, although dependence on 
λ must be taken into account and should not be based on an arbitrary choice as in our examples.

Finally, we made an attempt at error estimation in a real-world scenario by applying 
the method to a small data set related to the Norcia earthquake. The data set has a spatial 
distribution, which is closely aligned with the Apennine trend (NNW-SSE). It was interpolated 
using the NN method and the error estimate was better in the central region where λ was higher 
and the Voronoi polygons denser.

6. Conclusions

We attempted to confront the bivariate NN interpolation error estimation problem with an 
irregular and, possibly, sparse data set. We explored some possible techniques based on the 
MVT, under the hypothesis of differentiability of the unknown function, f.

Some preliminary results of our investigations suggest that the OLS gradient estimation with a 
fixed radius can provide reasonable estimates. Many interesting issues that have arisen, require 
further investigation from both theoretical and experimental perspectives.

In the Appendix, we have also attempted to outline a geostatistical approach relative to error 
assessment or convex interpolation methods, like NN, and restricted to simple semivariogram 
models.
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Appendix: A geostatistical approach

A geostatistical approach considers the unknown function, f(.), as the realisation of a random 
process. Thus, we may think in terms of variance and covariance, where the latter is:

(A1)

Let us adopt a temporary notation for the indices: if {x1, x2 ... xn} are the n NNs, x0 = x* is the 
interpolation point, and w0 = -1 is defined, then the variance of the interpolation error ε is:

(A2)

and for the properties of the variance of a linear combination:
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(A3)

Reverting to our original index notation and assuming the random process stationarity, which 
entails a constant variance, the following is obtained:

(A4)

Incidentally, the stationarity hypothesis also ensures that the first moment of the error is null, 
because, if E(f) = constant, then:

(A5)

For the stationarity, a theoretical semivariance, which is a function of the distance, can also 
be defined as follows:

(A6)

and:

(A7)

Subsequently, since cov(fi, f
*) = cov(di) and cov(fi, fj) = cov(dij), from Eqs. 4, A4, and A7, it can 

be inferred that (the summation indices are always from 0 to n-1):

(A8)

A1. Linear model

Considering a linear semivariogram γ(d) = (c0 + c1d), which is a valid model in many practical cases 
and especially if d is small, and taking into account that in our case d ≤ maxi (di), then from Eq. A8:

(A9)

The r0 and r1 functions, depending only on the geometrical disposition of our data set, are 
both dimensionally equal to a distance and are functions of the interpolation point. In Fig. A1, 
r1(x*) is represented over a Voronoi tessellation sample, in a Sibson interpolation (NN). The plot 
represents the error with c0 = 0; c1 = 1.

The r1 function has its zeroes on data set points xi, where it is also not differentiable. Elsewhere, 
it represents how big the interpolation error is, assuming the stationarity condition and a local 
linear semivariogram with null nugget (c0 = 0).

If we consider a non-negative nugget (c0 ≥ 0), then r0(x
*) can be plotted as in Fig. A2. The plot 

represents the error with c0 = 1; c1 = 0.
The total error variance is the linear combination of r0 and r1, as in Eq. A9.
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Fig. A1 - Plot of r1(x
*) for NN 

interpolation.

A2. Exponential model

An exponential semivariogram model is in the form:

(A10)

Considering its Taylor expansion around d = 0:

(A11)

Substitution in Eq. A8 results in:

(A12)

If we define:

(A13)

and r0, r1 corresponds to the results for the linear model.

Fig. A2 - Plot of r0(x
*) for NN 

interpolation.


