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Abstract

Most multicellular organisms harbor microbial colonizers that provide various benefits to

their hosts. Although these microbial communities may be host species- or even genotype-

specific, the associated bacterial communities can respond plastically to environmental

changes. In this study, we estimated the relative contribution of environment and host geno-

type to bacterial community composition in Nematostella vectensis, an estuarine cnidarian.

We sampled N. vectensis polyps from 5 different populations along a north–south gradient

on the Atlantic coast of the United States and Canada. In addition, we sampled 3 popula-

tions at 3 different times of the year. While half of the polyps were immediately analyzed for

their bacterial composition by 16S rRNA gene sequencing, the remaining polyps were cul-

tured under laboratory conditions for 1 month. Bacterial community comparison analyses

revealed that laboratory maintenance reduced bacterial diversity by 4-fold, but maintained a

population-specific bacterial colonization. Interestingly, the differences between bacterial

communities correlated strongly with seasonal variations, especially with ambient water

temperature. To decipher the contribution of both ambient temperature and host genotype

to bacterial colonization, we generated 12 clonal lines from 6 different populations in order to

maintain each genotype at 3 different temperatures for 3 months. The bacterial community

composition of the same N. vectensis clone differed greatly between the 3 different tempera-

tures, highlighting the contribution of ambient temperature to bacterial community composi-

tion. To a lesser extent, bacterial community composition varied between different

genotypes under identical conditions, indicating the influence of host genotype. In addition,

we identified a significant genotype x environment interaction determining microbiota plas-

ticity in N. vectensis. From our results we can conclude that N. vectensis-associated bacte-

rial communities respond plastically to changes in ambient temperature, with the

association of different bacterial taxa depending in part on the host genotype. Future

research will reveal how this genotype-specific microbiota plasticity affects the ability to

cope with changing environmental conditions.
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Introduction

Most multicellular organisms live in association with microbial symbionts [1,2]. It has been

widely demonstrated that these symbionts provide various benefits for the survival and persis-

tence of their hosts [3–5]. The quality and quantity of associated microbial species is character-

istic for host species [6–8], genotype [9,10], biogeography [11–13], life stage [14–17], diet [18–

20], and environmental conditions [12,13,21,22]. Starting from these evidences, many studies

demonstrated that the host plays an active role in shaping its symbiont microbiota [7,23–26].

In addition to the effects of the host and the environment, the interaction between these 2 fac-

tors is also discussed as a potential factor influencing the plasticity of the microbiota [27].

Nematostella vectensis is a small, burrowing estuarine sea anemone found in tidally

restricted salt marsh pools. The distribution of this species extends over the Atlantic and

Pacific coasts of North America and the southeast coast of England [28] and its range encom-

passes large latitudinal variation in temperature and salinity [29]. N. vectensis’ wide environ-

mental tolerance and broad geographic distribution [28,30], combined with the availability of

a genome sequence [31] make it an exceptional organism for exploring adaptations to variable

environments. N. vectensis has separated sexes and it is able to reproduce both sexually

through external fertilization [30,32,33] and asexually through transverse fission [28].

Although a free-swimming larval stage is present, this species is considered to have overall

pretty limited dispersal abilities [34]. Seasonal population fluctuations in density may lead to

frequent bottlenecks, and when gene flow between subpopulations is restricted by physical

barriers, such fluctuations could result in conspicuous genetic structuring between locations

over short geographic distances [34,35]. Completely or largely clonal populations exist all

through the distribution range of N. vectensis [28,34,36]; however, microsatellite and SNP

markers indicated an extensive intraspecific genetic diversity and genetic structuring between

populations in their native range along the Atlantic coast of North America [37,38].

Within a single estuary, N. vectensis occupies tidal streams that flush with each tide or, iso-

lated still-water high-marsh pools, that can differ substantially in a set of ecological variables

including temperature and salinity [39,40]. Previous works showed that different N. vectensis
genotypes from same natural pools within a single estuary have significantly different toler-

ances to oxidative stress [39] and that individuals from different field populations respond dif-

ferently to same thermal conditions during lab culturing [41].

An initial categorization of the N. vectensis microbiota has shown that individuals from dif-

ferent field pools of the North American Atlantic coast have significantly different microbiota

and that these differences follow a north–south gradient [12]. The different ecological condi-

tions that distinguish these pools from each other and the genetic structuring of N. vectensis
populations led us to hypothesize that the microbiota is a subject to local selection. In particu-

lar, locally adapted host genotypes may associate with symbionts that provide advantages at

the specific ecological conditions of each native pool. Recently, we have shown that genetically

identical animals differentiate their microbiota composition in response to a change in envi-

ronmental temperature. By transplanting the adapted microbiota onto non-adapted animals,

we demonstrated that the observed microbiota plasticity leads to increased tolerance of the

animals to thermal stress [21]. However, the influence of the host genotype on the plasticity of

the microbiota and thus on the ability to cope with changing environmental conditions

remained unclear.

In this study, we analyzed the microbiota composition of polyps from different populations

directly after sampling and after 1 month of laboratory maintenance. We first investigated

which factors among ambient temperature, salinity, season, and geographic location, contrib-

ute to microbiota differentiation. The results of these analyses show that the composition of
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the microbiota changes with both season and geographic location, and that these differences

persist under laboratory conditions. Consistent with previous laboratory observations [12],

our field data confirmed that temperature, over salinity, is correlating the most with differ-

ences in bacterial community compositions. Starting from these evidences, we investigated the

influence of ambient temperature on the microbiota plasticity of 12 individual genotypes

derived from 6 different populations. We found that after 3 months of laboratory culture, tem-

perature was the factor most driving microbiota differentiation, although differences accord-

ing to genotype were also detectable. In addition, we demonstrated that microbiota plasticity

in relation to temperature is genotype-specific, suggesting that microbiota plasticity is also

influenced by interactions between genotype and temperature.

With this study, we have taken an important step toward understanding the contribution of

both local environmental conditions and host genotype in shaping the microbiota. Further-

more, we have shown that although microbial community dynamics are plastic, each genotype

is associated with a microbiota that exhibits genotype-specific flexibility. These results suggest

that local populations of the same species may have different abilities to adapt to environmen-

tal changes through microbiota-mediated plasticity.

Materials and methods

Animal sampling and culture

All experiments were carried out with polyps of N. vectensis (Stephenson 1935). Adult animals

were collected from field populations of Nova Scotia (10/03/2016), Maine (11/03/2016, 02/06/

2016, 11/09/2016), New Hampshire (11/03/2016, 02/06/2016, 11/09/2016), Massachusetts (12/

03/2016, 03/06/2016, 13/09/2016), Maryland (long-term lab culture), and North Carolina (16/

03/2016) by sieving them from loose sediments. Environmental parameters (air temperature,

water temperature, and salinity) were also recorded at the moment of sampling and used as

metadata for further analysis (see S1 Table for details). Half of the animals from March sam-

pling were kept for 1 month in the laboratory, under constant, artificial conditions, at 20˚C,

without substrate or light, in N. vectensis Medium (NM), which was adjusted to 16 ppt salinity

with Red Sea Salt and Millipore H2O (according to [30]). Polyps were fed 2 times a week with

first instar nauplius larvae of Artemia salina as prey (Ocean Nutrition Micro Artemia Cysts

430 to 500 gr, Coralsands, Wiesbaden, Germany) and washed once a week with media pre-

incubated at 20˚C.

Animal acclimation

Independently from the sampling effort described above, individually sampled polyps from 6

wild populations were asexually propagated for more than 1 year under laboratory conditions.

After that, 2 strains from each original population were selected for the following experiment.

Three polyps (3 replicates) for each of the 12 strains selected were placed separately into 6-well

plates and let acclimate for 3 months at each of the 3 different acclimation temperatures (15,

20, and 25˚C). After 3 months, the polyps were collected, frozen in liquid N, and stored at

−80˚C before DNA extraction and 16S sequencing.

DNA extraction

The specimens from the field were preserved in RNAlater until DNA extraction. For the sam-

ples from the field and after 1 month of lab culture and for negative controls, gDNA was

extracted with the AllPrep DNA/RNA Mini Kit (Qiagen), as described in the manufacturer’s

protocol. The animals from the experiment were washed 2 times with 2 ml autoclaved MQ,
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instantly frozen in liquid N without liquid and stored at −80˚C until extraction. The gDNA

was extracted from whole animals plus a negative control with the DNeasy Blood & Tissue Kit

(Qiagen, Hilden, Germany), as described in the manufacturer’s protocol. Elution was done in

50 μl and the eluate was stored at −80˚C until sequencing. DNA concentration was measured

by gel electrophoresis (5 μl sample on 1.2% agarose) and by spectrophotometry through Nano-

drop 3300 (Thermo Fisher Scientific).

16S rRNA sequencing

For each sample, the hypervariable regions V1 and V2 of bacterial 16S rRNA genes were

amplified. The forward primer (50-AATGATACGGCGACCACCGAGATCTACAC

XXXXXXXX TATGGTAATTGT AGAGTTTGATCCTGGCTCAG-30) and reverse

primer (50-CAAGCAGAAGACGGCATACGAGAT XXXXXXXX AGTCAGTCAGCC

TGCTGCCTCCCGTAGGAGT-30) contained the Illumina Adaptor (in bold) p5 (forward)

and p7 (reverse). Both primers contain a unique 8 base index (index; designated as

XXXXXXXX) to tag each PCR product. For the PCR, 100 ng of template DNA (measured with

Qubit) were added to 25 μl PCR reactions, which were performed using Phusion Hot Start II

DNA Polymerase (Finnzymes, Espoo, Finland). All dilutions were carried out using certified

DNA-free PCR water (JT Baker). PCRs were conducted with the following cycling conditions

(98˚C—30 s, 30 × [98˚C—9 s, 55˚C—60 s, 72˚C—90 s], 72˚C—10 min) and checked on a 1.5%

agarose gel. The concentration of the amplicons was estimated using a Gel Doc XR+ System

coupled with Image Lab Software (BioRad, Hercules, California, United States of America)

with 3 μl of O’GeneRuler 100 bp Plus DNA Ladder (Thermo Fisher Scientific, Waltham, Mas-

sachusetts, USA) as the internal standard for band intensity measurement. The samples of

individual gels were pooled into approximately equimolar subpools as indicated by band

intensity and measured with the Qubit dsDNA BR Assay Kit (Life Technologies GmbH,

Darmstadt, Germany). Subpools were mixed in an equimolar fashion and stored at −20˚C

until sequencing. Sequencing was performed on the Illumina MiSeq platform with v3 chemis-

try [42]. The raw data are deposited at the Sequence Read Archive (SRA) and available under

the project PRJNA757926.

Analyses of bacterial communities

The 16S rRNA gene amplicon sequence analysis was conducted through the Qiime2 2022.8 pack-

age [43]. Adapters trimming and sequences quality filtering was performed through Dada2 [44].

Sequences with at least 100% identity were grouped into Amplicon sequence variants (ASV) and

clustered against the Silva 138 reference sequence database. Samples with less than 5,000 sequences

were also removed from the dataset, being considered as outliers. For the successive analysis, the

number of ASVs per sample was normalized to the lowest number of reads after filtering.

Alpha-diversity represents the total number of different ASVs observed in each sample.

Beta-diversity matrices were generated through Qiime2 according with the different beta-

diversity metrics available (Bray–Curtis, Jaccard, Weighted-Unifrac and Unweighted-Uni-

frac). Statistical values of clustering were calculated using the nonparametric comparing cate-

gories methods PERMANOVA and Anosim. A Mantel test was applied to infer correlation

between the different beta-diversity and environmental parameters distance matrices. The

multifactorial PERMANOVA was performed through Primer 7.0.21 (https://www.primer-e.

com), by testing the impact of temperature and genotype on the microbiota beta-diversity as

fixed factors, since all categories of our experiment were included in the test. In order to test

the different impacts between pairs of genotypes originated from the same geographic loca-

tion, the genotype was nested within the location applied as random factor.
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Statistical tests were performed through JASP v0.16.4 (https://jasp-stats.org). Data were

subjected to descriptive analysis, and normality and variance homogeneity tests as described

herein. For univariate analyses, statistical differences were tested through nonparametric

Mann–Whitney U-test; for multivariate analyses, statistical significance was tested through

nonparametric Kruskal–Wallis test followed by Dunn’s post hoc comparisons.

Bacterial ASVs specifically associated with each genotype and each temperature was identi-

fied through LEfSe (http://huttenhower.sph.harvard.edu/galaxy) [45]. LEfSe uses the nonpara-

metric factorial Kruskal–Wallis sum-rank test to detect features with significant differential

abundance, with respect to the biological conditions of interest; subsequently LEfSe uses linear

discriminant analysis (LDA) to estimate the effect size of each differentially abundant feature.

Assuming that different genotypes from the same location may naturally share a number of

symbionts, we only performed pairwise comparisons between genotypes from different loca-

tions. In addition to that, presence–absence calculations were performed directly on the ASV

tables in order to detect bacterial ASVs that are unique for a specific genotype or AT.

Results

Laboratory maintenance results in loss of bacterial diversity associated

with N. vectensis polyps

Genomic DNA samples from 168 N. vectensis polyps were submitted for 16S rRNA gene

sequencing. While 53 samples were collected from 5 different populations (Nova Scotia, Maine,

New Hampshire, Massachusetts, and North Carolina) in March 2016, the sampling in Maine,

New Hampshire, and Massachusetts was repeated also in June and September (31 and 34 sam-

ples, respectively). In addition, we maintained 50 polyps sampled in March, for 1 month under

laboratory conditions before we extracted gDNA. Sequencing was successful for 156 samples. A

total of 25.737 different ASVs were detected, with 5.208 to 106.793 reads per sample.

Maintaining N. vectensis polyps for 1 month under laboratory conditions resulted in a

major shift in the associated bacterial communities compared to the bacterial communities of

polyps directly sampled from the field (Fig 1A and Table 1). The bacterial variability between

Fig 1. Laboratory maintenance reduced bacterial diversity associated with N. vectensis polyps. (A) PCoA (based on Jaccard metric, sampling

depth = 5.000) illustrating similarity of bacterial communities based on sample source; (B) beta-diversity distance box plots of the field and lab samples;

(C) alpha-diversity comparisons between field and lab samples (max rarefaction depth = 5.000, num. steps = 10). Differences in B and C were tested

through Mann–Whitney U-test (��� = p� 0.001); (D) relative abundance of main bacterial groups among the 2 different samples sources. Underlying

data can be found in S1 Data.

https://doi.org/10.1371/journal.pbio.3001726.g001
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polyps significantly decreases during 1 month of laboratory culturing (Figs 1B and S1) and

the alpha-diversity decreases to around 1 quarter of that observed in field sampled N. vectensis
polyps (Fig 1C).

The loss of bacterial diversity in laboratory-maintained polyps became also evident by com-

paring the major bacterial groups (Fig 1D). While Cyanobacteria, Campilobacteria, and

Desulfobacteria disappeared and Bacteroidota decreased in relative abundance in laboratory-

maintained animals, Gammaproteobacteria, Firmicutes, and Spirochaetota increased in rela-

tive abundance (Fig 1D).

To determine whether bacterial communities from polyps collected from different locations

reveal a biogeographic signal, and to test whether this signal is preserved in polyps maintained

in the laboratory, we analyzed the 2 data sets, field and laboratory samples, separately.

Microbial diversity in the field correlates with host biogeography and

environmental factors

Analyzing the bacterial communities associated with N. vectensis polyps sampled in the field in

March 2016, principal coordinates analysis (PCoA) revealed a clear clustering of the associated

bacterial community by provenance location (Fig 2A and 2B and Table 2). Based on the dif-

ferent beta-diversity measures, geographic location explained between 56% and 83% of the

bacterial variability (Table 2). The beta-diversity distance between samples within the same

location was significantly lower than that between the different locations, stressing the cluster-

ing of the samples sharing the same provenance (Fig 2C).

We next investigated the influence of geographic distance, water temperature, and water

salinity on a continuous scale by applying Mantel tests to each of the 5 measures of beta-diver-

sity (Table 3). Mantel tests revealed that the geographic distance is the main factor impacting

beta-diversity, explaining approximately 25% to 73% of the variation (Table 3). While both

environmental factors, temperature, and salinity also correlated significantly with bacterial

diversity, water temperature explained the highest proportion (Table 3).

In addition, alpha-diversity showed also a biogeographic signal. Polyps from the extreme

northern and southern locations (Nova Scotia and North Carolina) had lower bacterial alpha-

diversity than polyps from central locations (Fig 2D). By looking at the principal bacterial

groups in the field samples, a north–south pattern was evident regarding the Gammaproteobac-

teria that increased in relative abundance moving from Maine through North Carolina, while

Firmicutes and Desulfobacteria decreased in abundance moving in the same direction. The

samples from Nova Scotia showed a different trend, with the Gammaproteobacteria and Firmi-

cutes reaching the highest overall abundances while all the other groups the lowest (Fig 2E).

For the locations in which the samplings have been repeated at 3 different seasonal time

points (Maine, New Hampshire, and Massachusetts), we investigated the differences in the

Table 1. Statistical analysis determining the influence of animal laboratory maintenance on bacterial colonization.

PERMANOVA Anosim

Beta-diversity metric pseudo-F p-value R p-value
Source Bray–Curtis 13.129 0.001 0.488 0.001

Jaccard 12.580 0.001 0.803 0.001

Weighted-Unifrac 28.804 0.001 0.584 0.001

Unweighted-Unifrac 26.693 0.001 0.950 0.001

Statistical analyses were performed (methods PERMANOVA and ANOSIM, number of permutations = 999) on each of the pairwise comparison distance matrices

generated.

https://doi.org/10.1371/journal.pbio.3001726.t001
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microbiota composition according to sampling month (March, June, and September). A clus-

tering of the samples with sampling time point was significant (Fig 3A), contributing up to

40% of the total difference (Table 4). Interestingly, the samples from June clustered in between

those from March and September (Fig 3A), and showed a, although not significant, higher

alpha-diversity than the other 2 sampling time points, suggesting a gradual shift of associated

bacteria along seasons (Fig 3B). The Firmicutes increased in abundance moving from March

Fig 2. Natural N. vectensis populations are associated with specific microbiota. (A) Sampling sites map. The base layer was obtained at https://www.diva-gis.

org/Data. (B) PCoA (based on Jaccard metric, sampling depth = 5,000) illustrating similarity of bacterial communities based on geographic location of the

March-field samples; (C) beta-diversity distance box plots within and between geographic locations, differences were tested through Mann–Whitney U-test

(��� = p� 0.001); (D) alpha-diversity comparisons between geographic locations (max rarefaction depth = 5,000, num. steps = 10), differences were tested

through Kruskal–Wallis test followed by Dunn’s post hoc comparisons (H = 12.63, � = p� 0.05, �� = p� 0.01); (E) relative abundance of main bacterial groups

among different geographic locations. NS (Nova Scotia), ME (Maine), NH (New Hampshire), MA (Massachusetts), NC (North Carolina). Underlying data can

be found in S1 Data.

https://doi.org/10.1371/journal.pbio.3001726.g002
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to September in all the 3 locations (Maine, New Hampshire, and Massachusetts). Overall, the

Gammaproteobacteria and Bacteroidota were more abundant in March samples, while Spiro-

chaetota and Cyanobacteria were more abundant and Gammaproteobacteria less abundant in

the samples from June, respectively (Fig 3C).

N. vectensis polyps cultured in the laboratory maintain population-specific

microbiota

To test whether the biogeographic signal of the bacterial communities associated with polyps

is maintained under laboratory conditions, we analyzed the laboratory samples separately (Fig

4). A clear clustering of the samples according with the provenance location was still present

and become even more evident after 1 month under laboratory conditions (Fig 4A and 4B).

All the ANOVA comparisons performed and the Mantel tests were highly significant

(p< 0.001) (Table 5), and showed that the provenance geographic location explained between

55% and 74% of the beta-diversity difference for the lab samples, proving that the population-

specific bacterial fingerprints were maintained (Table 5). The beta-diversity distance between

samples originating from the same location was significantly lower than that between the dif-

ferent locations, stressing the clustering of the samples sharing the same provenance (Fig 4B).

For the lab samples, the alpha-diversity was also the highest in the samples from the

Table 2. Statistical analysis determining the influence of geographic location on bacterial colonization in March-field samples.

PERMANOVA Anosim

Beta-diversity metric pseudo-F p-value R p-value
Geographic location Bray–Curtis 6.549 0.001 0.800 0.001

Jaccard 2.684 0.001 0.833 0.001

Weighted-Unifrac 7.766 0.001 0.559 0.001

Unweighted-Unifrac 2.831 0.001 0.583 0.001

Statistical analyses were performed (methods PERMANOVA and ANOSIM and) on each of the pairwise comparison distance matrices generated (Number of

permutations = 999).

https://doi.org/10.1371/journal.pbio.3001726.t002

Table 3. Statistical analysis determining the influence of geographic distance, field temperature, and salinity on bacterial colonization.

Mantel test

Parameter Beta-diversity metric Mantel r Mantel P
Geographic distance Bray–Curtis 0.594 0.001

Jaccard 0.732 0.001

Weighted-Unifrac 0.253 0.001

Unweighted-Unifrac 0.400 0.001

Temperature Bray–Curtis 0.568 0.001

Jaccard 0.630 0.001

Weighted-Unifrac 0.289 0.001

Unweighted-Unifrac 0.400 0.001

Salinity Bray–Curtis 0.235 0.001

Jaccard 0.197 0.001

Weighted-Unifrac 0.258 0.001

Unweighted-Unifrac 0.155 0.006

Mantel tests were performed between the 3 different parameters distance matrices and the beta-diversity matrices generated. (Number of permutations = 999)

https://doi.org/10.1371/journal.pbio.3001726.t003
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intermediate locations (Fig 4C). Animals from the extreme locations (Nova Scotia and North

Carolina) where colonized by the highest abundances of Firmicutes and Gammaproteobac-

teria, respectively, while those from the central latitudes were associated mainly with greater

abundances of Bacteroidota and Spirochaetota (Fig 4D).

Under different temperatures, N. vectensis maintains genotype-specific

microbiota

The variation of bacterial communities associated with N. vectensis polyps in the field corre-

lated mostly with ambient water temperature (Table 3). Based on these findings, we aimed to

measure experimentally the contribution of temperature and host genotype and their interac-

tion on the microbiota composition. We selected in total 12 genotypes originating from 6 dif-

ferent geographic locations (2 genotypes/location) (Fig 5A). To be able to maintain each

genotype at different ambient temperatures, we clonally propagated the polyps to reach at least

9 clones/genotype. Subsequently, we maintained each genotype at 3 different temperatures

(15, 20, and 25˚C, n = 3) for 3 months (Fig 5A). Nine polyps out of 108 did not survive the

treatment. Interestingly, culturing at high temperature (25˚C) resulted in higher mortality in

animals from Nova Scotia, New Hampshire, and Massachusetts, while animals from Maine

had the highest mortality at low temperatures (15 and 20˚C) (S2 Fig).

Fig 3. Natural microbiota in N. vectensis vary according to season. (A) PCoA (based on Jaccard metric, sampling depth = 5,000) illustrating similarity of

bacterial communities based on sampling month; (B) alpha-diversity comparisons between sampling months (max rarefaction depth = 5,000, num. steps = 10),

differences were tested through Kruskal–Wallis test (not significant); (C) relative abundance of main bacterial groups among different sampling months.

Underlying data can be found in S1 Data.

https://doi.org/10.1371/journal.pbio.3001726.g003

Table 4. Statistical analysis determining the influence of season on bacterial colonization.

PERMANOVA ANOSIM

Beta-diversity metric pseudo-F p-value R p-value
Season Bray–Curtis 7.817 0.001 0.295 0.001

Jaccard 3.030 0.001 0.228 0.001

Weighted-Unifrac 11.493 0.001 0.405 0.001

Unweighted-Unifrac 3.827 0.001 0.207 0.001

Statistical analyses were performed (methods PERMANOVA and ANOSIM, number of permutations = 999) on each of the pairwise comparison distance matrices

generated.

https://doi.org/10.1371/journal.pbio.3001726.t004
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After 3 months of culturing at different temperatures, gDNA from 99 polyps were submit-

ted for 16S rRNA gene sequencing. A total of 985 different ASVs were detected, with the num-

ber of reads per sample ranging between a maximum of 65.402 and a minimum of 15.850.

After setting the minimum number of reads/sample at 15.800, 92 samples remained for the

successive analyses.

PCoA revealed that ambient temperature explained most of the detected bacterial diversity

associated with the polyps (between 15% and 59% diversity explained) (Fig 5B and Table 6),

while no significant differences in beta-diversity distances were evident between the 3 different

temperatures (S3A Fig). While principal component 1 (PC1) mostly separates samples accord-

ing to the ambient temperature (Fig 5B), PC2 mostly explains variations within the different

genotypes (Fig 5C). The ANOSIM results indicated that host genotype contributed between

13% and 22% to the total bacterial diversity observed (Table 6). The alpha-diversity slightly

increased, although not significantly, from the 15˚C samples through the 25˚C ones (S3B Fig),

no clear pattern from the host genotypes on the alpha-diversity analysis was evident (S4 Fig).

Interestingly, comparison of the beta-diversity distances of the different genotypes (Fig 5D)

revealed that they differ significantly (Kruskal–Wallis p< 0.001) in terms of microbiota flexi-

bility (S2 Table). These results suggest that each genotype is endowed with a microbiota that

Fig 4. Population-specific microbiota are maintained under laboratory conditions. (A) PCoA (based on Jaccard metric, sampling depth = 5,000) illustrating

similarity of bacterial communities based on geographic population; (B) beta-diversity distance box plots of the lab samples within and between geographic

locations, differences were tested through Mann–Whitney U-test (��� = p� 0.001); (C) alpha-diversity comparisons between geographic locations (max

rarefaction depth = 5,000, num. steps = 10); (D) relative abundance of main bacterial groups among different geographic locations. Differences were tested

through Kruskal–Wallis test followed by Dunn’s post hoc comparisons (H = 18.35, � = p� 0.05, �� = p� 0.01, ��� = p� 0.001). NS (Nova Scotia), ME (Maine),

NH (New Hampshire), MA (Massachusetts), NC (North Carolina). Underlying data can be found in S1 Data.

https://doi.org/10.1371/journal.pbio.3001726.g004

Table 5. Statistical analysis determining the influence of geographic distance and geographic location on bacterial colonization in laboratory-maintained

populations.

PERMANOVA Anosim Mantel test

Beta-diversity metric pseudo-F p-value R p-value Mantel r Mantel P
Geographic location Bray–Curtis 10.653 0.001 0.736 0.001 0.608 0.001

Jaccard 2.986 0.001 0.604 0.001 0.352 0.001

Weighted-Unifrac 8.902 0.001 0.551 0.001 0.433 0.001

Unweighted-Unifrac 3.753 0.001 0.599 0.001 0.384 0.001

Statistical analyses were performed (methods PERMANOVA and ANOSIM) on each of the pairwise comparison distance matrices generated according with

provenance geographic location. Mantel test was performed between the geographic location distance matrix and the different beta-diversity matrices. (Number of

permutations = 999)

https://doi.org/10.1371/journal.pbio.3001726.t005
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Fig 5. Influence of host genotype and temperature on bacterial colonization. (A) Experimental design, 2 genotypes

for each geographic location were kept in 3 replicates at 3 different temperatures for 3 months; (B) PcoA (based on

Jaccard metric, sampling depth = 15,800) illustrating similarity of bacterial communities based on ambient

temperature; (C) PCoA (based on Jaccard metric, sampling depth = 15,800) illustrating similarity of bacterial

communities based on host genotype; (D) beta-diversity distance box plots between different genotypes (Jaccard

metric, sampling depth = 15,800), differences were tested through Kruskal–Wallis test (H = 38.91, p =< 0.001); for

clarity the Dunn’s post hoc comparisons are reported in S2 Table. (E) Reaction norms plotting average principal

component 2 eigenvalues for each of the 12 genotypes at each temperature. NS (Nova Scotia), ME (Maine), NH (New

Hampshire), MA (Massachusetts), MD (Maryland), NC (North Carolina), numbers near the location abbreviations

indicate the different genotypes. Underlying data can be found in S1 Data.

https://doi.org/10.1371/journal.pbio.3001726.g005
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exhibits genotype-specific flexibility. In particular, we identified genotypes whose microbiota

exhibit low flexibility (e.g., MA1 and MD2), in contrast to genotypes whose microbiota exhibit

high flexibility (e.g., NS3 and NH3).

In order to detect genotype-specific bacterial adjustments to temperature variation, we per-

formed a multifactorial PERMANOVA, by testing the influence of the genotypes within each

provenance location separately. The results revealed that genotype x temperature interactions

significantly influenced microbial plasticity despite the possible genotype similarities within

the same location (Table 7). Plotting the average PC2 eigenvalues of each genotype at the 3 dif-

ferent ambient temperatures (Fig 5E) indicated that the microbial plasticity differed between

the 12 different genotypes. Interestingly, the adjustments in bacterial diversity within the 12

genotypes can be divided in 2 main patterns (S6A and S6B Fig). Together, these results suggest

different metaorganism strategies to cope with environmental changes.

In a further step, we aimed to detect indicator taxa specifically associated with ambient tem-

perature and genotypes (Fig 6 and S3 and S4 Tables). Through LEfSe, we were able to detect

indicator ASVs that are overrepresented in each sample category in comparison with all the

Table 6. Statistical analysis determining the influence of host genotype and temperature on bacterial colonization in experimental animals.

PERMANOVA Anosim

Parameter Beta-diversity metric pseudo-F p-value R p-value
Temperature Bray–Curtis 12.991 0.001 0.497 0.001

Jaccard 11.027 0.001 0.591 0.001

Weighted-Unifrac 5.630 0.001 0.154 0.001

Unweighted-Unifrac 8.438 0.001 0.376 0.001

Genotype Bray–Curtis 2.372 0.001 0.219 0.001

Jaccard 1.773 0.001 0.132 0.001

Weighted-Unifrac 3.041 0.001 0.225 0.001

Unweighted-Unifrac 1.869 0.001 0.155 0.001

Statistical analyses were performed (methods PERMANOVA and ANOSIM, number of permutations = 999) on each of the pairwise comparison distance matrices

generated.

https://doi.org/10.1371/journal.pbio.3001726.t006

Table 7. Statistical analysis determining the influence of host genotype x temperature interaction on bacterial colonization in experimental animals.

PERMANOVA

Parameter Beta-diversity metric pseudo-F P value
Temperature � Genotype Bray–Curtis 2.260 0.0001

Jaccard 1.823 0.0001

Weighted-Unifrac 2.342 0.0001

Unweighted-Unifrac 1.775 0.0001

Temperature Bray–Curtis 10.373 0.0001

Jaccard 6.038 0.0001

Weighted-Unifrac 4.903 0.0002

Unweighted-Unifrac 5.453 0.0001

Genotype Bray–Curtis 1.738 0.0011

Jaccard 1.921 0.0001

Weighted-Unifrac 1.620 0.0183

Unweighted-Unifrac 1.875 0.0001

Multifactorial PERMANOVA test was performed on each of the beta-diversity distance matrices generated. (Number of unrestricted permutations = 9,999; type I

(sequential) sums of squares; temperature and genotype as fixed factors, genotype nested within location as random factor.)

https://doi.org/10.1371/journal.pbio.3001726.t007
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others. We observed that extreme ambient temperatures showed higher numbers of unique

associated ASVs (Fig 6A). Interestingly, calculating the relative abundance of indicator ASVs

(Fig 6B and 6D) revealed that around 36% and 29% of bacterial abundance at 15˚C and 25˚C,

respectively, were represented by temperature-specific ASVs. In contrast, genotype-specific

ASVs represented on average 5% of the bacterial total abundance, while the 2 genotypes iso-

lated from MD (the only long-term lab culture) did not show any genotype-specific ASV (Fig

6D). Interestingly, genotypes isolated from the same location show similarities in terms of spe-

cific ASVs and their relative abundances, and notably NS1 and NS3 share 3 out of their 4 geno-

type-specific ASVs (Fig 6C and 6D). These results suggest that genotypes from the same

locations might be close relatives.

Discussion

Environmental factors can explain most but not all variability of N.

vectensis-associated microbiota

To estimate the contributions of both environmental factors and genotype to the bacterial

diversity associated with N. vectensis, we started with a huge sampling effort to collect individ-

uals of N. vectensis from multiple populations of the US Atlantic coast along a north–south

gradient of more than 1,500 km and correlated the microbial composition data to the environ-

mental factors temperature and salinity. In addition, we sampled individuals from 3 popula-

tions also in 3 different seasons. Our results showed that temperature and salinity, although

explaining a similar percentage of the observed variability, could not explain all of the observed

Fig 6. Bacterial ASVs representative of host genotype and acclimation temperature. Number of bacterial ASVs overrepresented at

each temperature (A and B) and in each genotype (C and D) compared to the others, divided by major groups. Absolute ASV number

(A and C), relative ASVs abundances on the total number of reads (B and D). Underlying data can be found in S1 Data.

https://doi.org/10.1371/journal.pbio.3001726.g006
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bacterial variation. In addition, we showed that the associated microbial community changes

gradually along a temporal pattern during the year. Previous studies in corals have also shown

that associated bacterial communities change depending on the season [46–49], e.g., due to

changes in dissolved oxygen concentrations and rainfall [47]. In addition, seasonal changes in

host physiology associated with winter quiescence may drive microbiota diversity [49]. Besides

these cues, natural seasonal fluctuations in bacterial communities can also impact the availabil-

ity of certain symbiotic species [50].

Maintenance in the laboratory reduces bacterial diversity but preserves

population-specific bacterial signatures

After sampling polyps from the wild, we additionally kept individuals of N. vectensis from each

population under constant laboratory conditions for 1 month and compared these samples to

those sampled directly from the field in terms of microbial diversity. In accordance with what

was previously found from studies on lab mice [51], insects [52–54], and corals [55,56] labora-

tory-reared N. vectensis individuals host a significantly lower bacterial diversity than in the

wild. Interestingly, the homogenous lab environment did not eliminate the original differences

in bacterial colonization observed in the animals directly samples from the field. Surprisingly,

the population-specific signature became even more evident in the laboratory-maintained ani-

mals. These results indicate that the bacterial diversity loss mainly affects bacteria that are not

responsible for the population-specific signature. Therefore, bacteria that are lost under labo-

ratory condition most likely are loosely associated environmental bacteria, food bacteria, or

might stem from taxa that are only transiently associated with the host [57,58]. In future stud-

ies, the amount of bacterial sequences derived from dead bacteria or eDNA could be reduced

by sequencing bacterial RNA instead of DNA. However, bacteria that are persisting during lab-

oratory maintenance most likely represent bacteria that are functionally associated with N. vec-
tensis [21] and might have co-evolved with its host [57,59,60].

Genotype x environment interactions shape microbiota plasticity of N.

vectensis
For several animal and plant species, it has been observed that associated microbial commu-

nity dissimilarities increase with geographical distance [61]. Host selection, environmental fil-

tering, microbial dispersal limitation, and microbial species interactions have all been

suggested as key drivers of host-microbial composition in space and time [62]. Also a previous

study in N. vectensis evidenced that individuals from different populations harbor distinct

microbiota [12].

In order to disentangle the contribution of the host, the environment, and their interaction

on the microbiota composition in N. vectensis, we selected 12 genotypes from 6 different field

populations and kept clones of each genotype for 3 months under different temperatures. We

found bacterial taxa that are associated with both specific genotypes and specific temperature

conditions. These results suggest that both intrinsic and extrinsic factors shape the host-associ-

ated microbiota, although environmental conditions appear to have a stronger influence. In

contrast to previous observations in corals [10,63], where host genotype had a greater impact

on microbiota composition than environmental conditions, in our study, we observed that

environmental conditions (in this case, temperature) had a greater effect on microbiota than

genotype. Similar results were shown in fire coral clones, where both host genotype and reef

habitat contributed to bacterial community variabilities [64]. Genomic function predictions

suggested that environmentally determined taxa lead to functional restructuring of the micro-

bial metabolic network, whereas bacteria determined by host genotype are functionally
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redundant [64]. As previously suggested [65], these observations confirm that both environ-

mental and host factors are drivers of associated microbial community composition and that

different genotype x environment combinations can create unique microhabitats suitable for

different microbial species with different functions.

One mechanism by which host selection can occur is through innate immunity, e.g., the

secretion of antibiotic compounds via the mucus layer that target non-beneficial or pathogenic

microbes [7,23,24,66]. Our results suggest that N. vectensis also plays an active role in shaping

its symbiotic microbiota in response to environmental variability and that these mechanisms

depend on genotypic differences and local adaptation.

Microbial plasticity is linked to animal adaptations

Differences in prokaryotic community composition in different environments have been doc-

umented in many other marine invertebrates and are considered to reflect local acclimation

[10,67–69]. We have recently shown that the restructuring of microbial communities due to

temperature acclimation is an important mechanism of host plasticity and adaptation in N.

vectensis [21]. The higher thermal tolerance of animals acclimated to high temperature could

be transferred to non-acclimated animals through microbiota transplantation [21]. In our

study, high temperature conditions were particularly challenging for some genotypes native to

north habitats, where they experience colder climate. Whether this is the result of local adapta-

tion of the host to colder temperatures or the symbiotic microbiota, needs to be clarified. We

also observed that the bacterial species richness increases in intermediate latitudes, seasons,

and temperature, while it decreases at the extremes, suggesting a dynamic and continuous

remodeling of the microbiota composition along environmental conditions gradients.

Evidence from reciprocal transplantation experiments in corals followed by short-term

heat stress suggests also that coral-associated bacterial communities are linked to variation in

host heat tolerance [70] and that associated bacterial community structure responds to envi-

ronmental change in a host species-specific manner [71]. Here, we show that not only do dif-

ferent species exhibit different microbial flexibility, but also genotypes can differ in the

flexibility of their microbiota.

We hypothesize that host organisms may evolve faster than on their own due to plastic

changes in their microbiota. Rapidly dividing microbes are predicted to undergo adaptive evo-

lution within weeks to months. Adaptation of the microbiota can occur via changes in absolute

abundances of specific members, acquisition of novel genes, mutation, and/or horizontal gene

transfer [14,69,72–74]. Here, we provide evidence for genotype-specific microbial plasticity

and flexibility, leading to genotype-specific restructuring of the microbial network in response

to environmental stimuli. Together, these results may indicate that the genotype-specific bacte-

rial colonization reflects local adaptation. Future studies will reveal whether lower plasticity

and flexibility of the microbiota is associated with lower adaptability to changing environmen-

tal conditions and which host factors determine the plasticity and flexibility of the microbiota.

In particular, genotypes adapted to highly variable environments might favor flexibility over

fidelity regarding the associated microbiota composition; conversely, under more stable condi-

tions, less dynamic and stricter association might be advantageous [75].
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(DOCX)

S3 Table. Temperature-unique ASVs. The (+) present in all the replicates of the indicated
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