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CHAPTER1 

Introduction 

1.1 Cartilage 

CHAPTER 1 
Introduction 

Cartilage is a connective tissue of mesenchymal origin displaying three key 

functions within the body. Firstly, it acts as a template for the growth and 

development of long bones, forming a large part of the foetal skeleton and 

playing an important role in endochondral ossification. In addition, cartilage 

is present at the articulating surfaces of bones, where it provides a low-

friction surface. It also acts as a supporting framework in some organs within 

the body, for example in the trachea where it prevents airway collapse. 

Cartilage differs with respect to biochemical composition, structure and 

location within the body (Serafini-Fracassini and Smith, 1974). 

Cartilage is a tissue with unique properties consisting of a small number of 

highly specialized cells ( chondrocytes) surrounded by a large amount of 

extracellular matrix (ECM). 

Cartilage tissue in the human body can be divided into three subtypes. 

Hyaline cartilage is the predominant type, is present on the articulated 

surfaces of ali joints and in large parts of the respiratory tract; elastic 

cartilage is the main component of the outer ear and is found in some parts 

of the respiratory tract; fibrocartilage is located in the menisci and in the 

intravertebral discs. 

Hyaline cartilage, found in ali the diarthrodal joints in the human body, is 

rich in type-11 collagen fibres. It can be divided into four zones with different 

celi shape and size, collagen fibril diameter and orientation, proteoglycan 

concentration and water content. 
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- Superficial zone: it's the outer layer of the articular cartilage; the 

collagen fibrils are oriented parallel to the surface and are very closely 

packed. The dense arrangement of collagen fibres in this region of the 

tissue provides it with its low friction surface and high tensile strength 

(Guilak and Mow, 2000). Chondrocytes in the superficial zone are flat 

in shape, with the main axis of the cells oriented along the articular 

surfaces: for this reason it is also called "tangential zone"; the 

proteoglycan content of the extracellular matrix is low, and the water 

content is high. 

- Middle or transitional zone: at this level the collagen fibrils are 

thicker and randomly oriented; the chondrocytes have a more 

rounded profile. 

- Deep zone: collagen fibrils are thick and oriented perpendicular to 

the articular surface. The chondrocytes in this zone are rounded and 

arranged in vertical columns. The proteoglycan content is high, while 

the water content decreases. 

- Calcified Zone: the tidemark separates the deep zone from the 

calcified cartilage zone, which represents the boundary between the 

articular cartilage and the subchondral bone. In this region the 

chondrocytes are small and the extracellular matrix is calcified. 
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Superficial. parallel 
fibers 

Fig. 1.1: Different zones of articular cartilage (Aufderheide and Athanasiou, 2004 ). 

Fig. 1.2: The organization of chondrocytes and ECM within articu/ar cartilage. 
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Elastic cartilage, in the ear and in the respiratory tract, is lined by 

perichondrium. The extracellular matrix of this tissue is a network of elastic 

fibres. Elastin comprises approximately 20°/o of the dry tissue weight. While 

the structure of articular cartilage changes from top to bottom, elastic 

cartilage has a more homogeneous, symmetrical structure. In this type of 

cartilage chondrocyte morphology is different, with larger cells, often 

characterized by two nucleoli and lipid vesicles. 

Fibrous cartilage is found in the meniscus and in intravertebral disc. 

Fibrocartilage contains lower glycosaminoglycans (GAGs) levels than other 

types of cartilage, possesses highly organized collagen fibres and is found at 

the ends of ligaments and tendons. This tissue has intermediate features, 

between connective tissue and hyaline cartilage. There is a significant 

amount of type-1 collagen; chondrocytes have a morphology similar to 

fibroblasts. This is the predominant repair tissue found in articular cartilage 

defects. 

1.2 Articular Cartilage 

Articular cartilage forms a durable layer 0.5 to 7.0 mm thick at the surface, 

reducing friction between the bones and distributing loads across the entire 

joint surface (Carver and Heath, 1999). The exact biochemical composition of 

articular cartilage varies with species, age and location within the tissue 

(McDevitt and Webber, 1990). The tissue is composed of cells within an 

extracellular matrix (ECM) composed of fibrillar components, for example 

collagen, proteoglycans, non-collagenous proteins and water (Aiberts et al., 

2002). Articular cartilage is considered to be one of the simplest tissues 

within the body since it possesses a single celi type, the chondrocyte; it is 
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aneural and has no vascular or lymphatic supply (Buckwalter and Mankin, 

1998b). 

Middle or transitional 

Deepzone 

Calcified cartitage zone 

Fig. 1.3: Chondrocyte morphology and co/lagen orientation in hyaline cartilage. 

1.3 Articular Cartilage Components 

1.3.1 Cells 

Chondrocytes form a very small proportion of articular cartilage, typically 

around l% of the tissue dry weight (Buckwalter and Mankin, 1998b). 

Chondrocytes are responsible for synthesis of the cartilage ECM 

macromolecules, the assembly and organization of these macromolecules 

into an ordered framework and the continuai replacement of degraded 

matrix components (Buckwalter and Mankin, 1998b). Within the tissue, the 

cells vary in number, shape, size and metabolic activity (Aydelotte, 1988). 

One of the key differences between chondrocytes and fibrochondrocytes is 

that the predominant collagen secreted by fibrochondrocytes is type I, 

whereas that of chondrocytes is type II (Benjamin and Ralphs, 2004). 
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1.3.2 Extracellular Matrix of Articular Cartilage 

Water makes up to 65 to 80% of the wet weight of the tissue. 

Collagen 

CHAPTER 1 
Introduction 

Collagen is the main component of the extracellular matrix in articular 

cartilage. The fibrous network of collagen accounts for 50-60% of the tissue 

dry weight (LeBaron and Athanasiou, 2000). The predominant collagen of 

articular cartilage is type II, which represents up to 90-95% of the total 

collagen (Heath and Magari, 1996). Type II collagen, having a glycine rich 

amino acid sequence of glycine-X-Y, where X and Y are hydroxyproline and 

proline arbitrarily, forms rope-like fibrils which aggregate into larger cable-

like bundles or fibres (Aiberts et al., 2002). 

Fig. 1.4: Collagen fibres molecular organization. 

Other collagen types present in the cartilage are collagen V, VI, IX, X and XI, 

ali having a triple-helical structure and contributing to the ECM network 

organization. Type-XI is a fibrillar collagen involved in the establishment of a 

fibre network; type-IX is a fibril-associated collagen thought to aid linkage of 
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the collagen fibrils to the rest of the ECM; type-VI is found in the matrix 

immediately surrounding chondrocytes and is believed to help attachment of 

the cells to the ECM; type-X collagen is involved in chondrocyte hypertrophy 

(Loeser, 1993). 

The collagen network covalently binds the proteoglycans, providing articular 

cartilage tensile and shear properties. 

Proteoglycnn nggrecan molecule 

Fig. 1.5: Composition of the ECM of cartilage; interactions between collagen, proteoglycan 

and hyaluronic acid. 

Proteoglycans 

Proteoglycans are the third important component of the extracellular matrix, 

constituting between 15 and 30% of the dry weight of articular cartilage 

(Freed et al., 1998). Proteoglycans are complex macromolecular aggregates, 

consisting of a core protein to which one or more glycosaminoglycan chains 
' 

(GAGs) are attached (Buckwalter and Mankin, 1998b). GAGs are unbranched 

polysaccharide chains which contain repeating disaccharide units where one 

of the sugars within the repeating unit is an amino sugar, for example N-

acetylglucosamine, and the second is usually a uronic acid, for example 

glucuronic acid (Aiberts et al., 2002). Since each of the disaccharides 

contains at least one ionizable carboxylic or sulphate group, GAGs contain 
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long chains of negative charge which attract cations and repel anions 

(Buckwalter and Mankin, 1998b ). In solution these groups become negatively 

charged. Water molecules are bound to the negatively charged 

glycosaminoglycans leading to an osmotic swelling pressure. Constraining 

forces of the collagen network counteract this swelling pressure. 

There are four groups of GAGs: i) hyaluronan, ii) chondroitin sulphate and 

dermatan sulphate, iii) keratan sulphate and iv) heparan sulphate, the first 

three groups of which are present in articular cartilage (Buckwalter and 

Mankin, 1998b ). 

Two classes of proteoglycan are present: large aggregating proteoglycan 

monomers, for example aggrecan, and small proteoglycans, such as decorin, 

biglycan and fibromodulin (Buckwalter and Mankin, 1998b; Nakano et al., 

1997). 

About the 80-90% of the total amount of proteoglycans can be found as 

large aggregates, as aggrecan. Aggrecan consists of chains of chondroitin 

and keratan sulphate bound to core proteins. Individuai aggrecan monomers 

interact with hyaluronan, to form high molecular weight aggregates. These 

interactions are stabilized by link protein, which binds to both the hyaluronan 

and a specific binding site at the N-terminus of the aggrecan (Hardingham, 

1979). The GAG/proteoglycan aggregates form gels which occupy a large 

volume relative to their mass. These hydrophilic gels draw in considerable 

quantities of water that confer high compressive strength properties to the 

tissue (Bryant and Anseth, 2001). 

The smaller non-aggregating proteoglycans are involved in binding 

macromolecules, for example decorin and fibromodulin bind with type II 

collagen and therefore it is postulated that they may play a role in organizing 

and stabilizing the collagen meshwork (Hasler et al., 1999). The smaller 

proteoglycans are also able to bind transforming growth factor-~ (TGF-~), a 

cytokine known to stimulate cartilage matrix synthesis (Buckwalter and 

Mankin, 1998b). 
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A"g. 1.6: The combined properties of collagen and aggrecan in articular cartilage (Kiani et 

al., 2002). 

Non-collagenous Proteins and Glycoproteins 

In addition to proteoglycans and collagens, articular cartilage contains non-

collagenous proteins and glycoproteins. Some of these molecules are thought 

to be involved in the organization and maintenance of the ECM structure 

(Buckwalter and Mankin, 1998b). Anchorin CII, for example, is a collagen 

binding protein found at the surface of chondrocytes that is believed to help 

anchor chondrocytes to collagen fibrils (von der Mark and Kuhl, 1985). 

Another example is fibronectin, a protein that has been identified in many 

other tissues. 1t has been shown that chondrocytes attach to fibronectin and 
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that the binding is mediated by integrins (Loeser, 1993). Whilst the exact 

role of fibronectin in cartilage is not fully understood, it is postulated that it 

may be involved in matrix organization or cell-matrix interactions (Hayashi et 

al., 1996). Three adhesion glycoproteins have been identified within meniscal 

fibrocartilage ali of which have been found to contain the arginine-glycine-

aspartic acid (RGD) peptide sequence: type VI collagen, fibronectin and 

thrombospondin (McDevitt and Webber, 1990). 

Tissue Fluid Components 
Besides water, tissue fluid contains gases, small proteins, metabolites and a 

large number of cations. Interactions between the negative charge of the 

large aggregating proteoglycans and the cations within the tissue fluid help 

retain water within the tissue and contribute to the mechanical properties of 

cartilage (Buckwalter and Mankin, 1998b). 

Articular cartilage can be divided into regions according to the distance of 

matrix from the cells: the pericellular, territorial and interterritorial 

compartments (Newman, 1998). In generai, the pericellular and territorial 

regions are thought to facilitate attachment of chondrocytes to the ECM and 

to protect them during loading of the tissue (Buckwalter and Mankin, 1998b). 

The pericellular region occurs where the membranes of cells appear to be 

attached to the ECM (Temenoff and Mikos, 2000b). The matrix in this region 

contains a high concentration of proteoglycans. Anchorin CII and type VI 

collagen are present in this region of articular cartilage, supporting the 

hypothesis that this matrix region is involved in attachment of chondrocytes 

to the ECM (Buckwalter and Mankin, 1998b). The pericellular matrix of each 

chondrocyte is contained within envelopes of territorial matrix known as 

lacunae (Temenoff and Mikos, 2000b ). 1t is believed that these collagenous 
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envelopes protect the cells from mechanical stresses experienced within the 

tissue (Buckwalter and Mankin, 1998b). The interterritorial region comprises 

the majority of the ECM and is considered to be responsible for the 

mechanical properties of articular cartilage (Temenoff and Mikos, 2000b). 

Although articular cartilage of human adults has no blood supply, articular 

chondrocytes show a high level of metabolism. Chondrocytes derive their 

nutrition mainly from the synovial fluid and to a lesser extent from the 

underlying bone. They synthesize and assemble extra-cellular matrix 

components and direct their distribution within the tissue. Ali this is done in 

order to maintain the structure and function of the extracellular matrix. The 

high level of metabolism is mainly due to proteoglycan turnover. Although 

collagen turnover does take piace, its level is much lower. 

Fig. 1.7: Hierarchica/ structure of articular cartilage (Bonzani et al, 2006). 
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1.4 Cartilage Lesions 
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Since articular cartilage has a poor intrinsic capacity for repair, two major 

problems need to be addressed in the regeneration process. The first is to fili 

the defect void with a tissue that has the same mechanical properties as 

articular cartilage. The second is to trigger successful integration between 

the repair tissue and surrounding articular cartilage (Redman et al., 2005). 

Although the presence of undifferentiated chondrocyte precursor cells in 

cartilage has been demonstrated (Aisalameh et al., 2004), chondrocytes 

show a rather poor proliferation capacity, being virtually locked in the 

extracellular matrix that strongly impedes celi migration toward the defect. 

The most important factor limiting the response of articular cartilage to injury 

is, however, the lack of blood supply. When a vascularized tissue is damaged 

a fibrin clot is formed. Inflammatory cells and undifferentiated stem cells 

migrate with the blood to the tissue defect. Removal of necrotic tissue by 

inflammatory cells, accompanied by proliferation and differentiation of 

undifferentiated cells lead to the tissue repair (Jackson et al., 2001; Shapiro 

et al., 1993). When studying articular cartilage defects it is therefore 

essential to discriminate between superficial chondral defects (limited to 

the cartilage layer), and osteochondral defects extending into the 

subchondral bone. In superficial defects no blood clot is formed and as a 

consequence no repair tissue occurs. Cells surrounding the defect will die in 

a process called apoptosis (Shapiro et al., 1993). Only when a cartilage 

injury perforates the subchondral bone can a fibrin clot be formed. 

Inflammatory and mesenchymal stem cells from the bone marrow can enter 

the defect and initiate a repair response, influenced by growth factors 

released from the platelets. But even then the repair is insufficient. The 

defect is filled with fibrocartilage, the tidemark is not restored and there is no 

integration with the intact native cartilage. Diseased cartilage shows a 

distinctly different ultrastructure compared to healthy tissue. The long-term 
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performance of fibrocartilage is inferior to that of norma l hyaline cartilage. It 

lacks mechanical strength and the collagen fibril network is disorganized 

(Shapiro et al., 1993; Heath and Magari, 1996; Buckwalter and Mankin, 

1998b). The articulating surface is less smooth compared to healthy adult 

tissue. The water content of the diseased tissue is higher, increasing the 

permeability and reducing the compressive modulus of cartilage. Failure of 

the intrinsic repair capacity has led to several surgical techniques to treat 

isolated articular cartilage defects. 

A: partial thickness defect 

B: full thickness defect 

subchondral 
bo ne 

Fig. 1.8: Diagram illustrating a partial thickness defect in articular cartilage {A} and full 

thickness defects that penetrates to the subchondral bone (B) (Redman et al., 2005). 
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In generai, repair strategies involve one or more of the following: (i) surgical 

intervention; (ii) a space-filling device e.g. a tissue graft; or (iii) a treatment 

to stimulate a healing response and chondrogenesis (e.g. penetration of the 

subchondral bone to allow infiltration of inflammatory and progenitor cells 

into the defect site (O'Driscoll, 1999)). Something that ali current treatment 

options have in common is the variability in their success - functional repair 

that can be achieved in some joints in some patients, but no one treatment 

allows complete healing of ali defects in ali patients (Lohmander, 2003). 

A variety of surgical procedures have been used in the treatment of articular 

cartilage defects. Arthroscopic lavage and debridement are often used to 

reduce joint pain. Lavage implying irrigation of the joint during arthroscopy 

appears to alleviate pain through an unclear mechanism (Livesley et al., 

1991). Debridement is the arthroscopic removal of damaged tissue from the 

joint, which has shown to reduce pain as well. When used in conjunction, 

these two procedures have shown to produce a longer effect in pain 

reduction. However both lavage and debridement do not stimulate 

chondrogenesis or repair of the injury site since there is no penetration of 

the subchondral bone (Chen et al., 1999). 

Many arthroscopic techniques used to induce repair of articular cartilage 

exploit the intrinsic healing properties of the tissue when the subchondral 

bone is exposed. These procedures include abrasion arthroplasty, Pridie 

drilling and microfracture. Abrasion arthroplasty uses an automated burr to 

access the vasculature and is used combined with debridement (Friedman et 

al., 1984). Pridie drilling stimulates bleeding by drilling the subchondral bone. 

Microfracture is based on the debridement of damaged tissue down to the 

subchondral bone, and the following perforation with small awls. The aim of 

these techniques is to induce the formation of blood clots that, in turn, will 
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induce fibrous tissue synthesis that promote cartilage regeneration. The 

clinica! outcome of these methods varies according to the unpredictable 

composition of the tissue that fills the defect, the age and activity level of the 

patient (Hunt et al., 2002). 

5oft tissue grafts involve the transplantation of periosteum and 

perichondrium. These methods have been used in animai models and human 

clinica! trials. 1t has emerged that there is no significant difference between 

the repair tissue produced from periosteum and perichondrium (Carranza-

Bencano et al., 1999). Anyway, periosteum is more easily obtained and more 

frequently used for transplantation. Periosteum has a chondrogenic potential 

during development, due to the presence of chondrocyte precurspr cells in 

the cambiai layer (O'Driscoll, 1999). However, clinica! experience with 

periosteal grafts has shown poor results. 

To treat predominantly large defects, osteochondral transplantation 

(mosaicplasty) of autogenic and allogenic tissue has been widely used 

(Hangody et al., 2001). Allogenic materia! derived from cadaveric donors 

have been applied (Czitrom et al., 1986). Experiments have demonstrated 

that fresh tissue is more successful than frozen tissue (Tomford et al., 1992). 

An immune response is stili a potential problem with this approach. 

Autologous osteochondral transplantation consists of cylindrical 

osteochondral pieces removed from non-weight bearing areas of the articular 

cartilage and their transfer into debrided full thickness defects. Results have 

shown decreased pain and improved joint function, mainly in small and 

medium sized full-thickness defects (Hangody et al., 2004). 

Autologous chondrocyte implantation (ACI) was first applied in clinica! 

practice in 1994 (Brittberg et al., 1994). This surgical procedure involves two 

stages. The first one involves the excision of healthy biopsy by arthroscopy 
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from a non-load bearing region of the articular cartilage. Following enzymatic 
digestion, the cells are expanded in culture. In the second stage, the lesion is 
cleared to healthy cartilage and with a separate incision a periosteal graft is 
taken from the mediai tibia and sutured over the defect. Cultured autologous 
chondrocytes are then injected under the periosteal flap. Results showed 
reduced pain and improved joint function in many patients. 

Femur 

Artlculer 
cartilage 

Chondrocytes 
........... ~~. re!Q;IS(Id by 

- ~~:,:::. enzymatic digestion 
Heahhy biopsy taken "'.. 
from non-toad bearìng ~ 
region 

Defect 

Perio&teat grafi 
removed from 
mediai tibia 

Choodrncytes 
expandEid in culture 

Defect debrided back 
to healthy cartllag.e 

Perlosteal grafi 
, ,60 sutured over 
. -~defect 

Suspension of 
cultured 
autologous 
chondròcyles 
prepared 

\ 
'~ \ 

Cultured 
autologo\JS 
chondrocytes 
injected under 
periosteal ffap 

Fig. 1.9: Schematic diagram showing the different phases of autologous chondrocyte 

implantation. 
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Osteoarthritis is one of the most common forms of arthritis characterized by 

the degeneration of cartilage. This debilitating and progressive syndrome of 

joint pain and dysfunction caused by joint degeneration affects more people 

than any other joint disease (Brooks, 2002). Joint degeneration is a process 

that includes progressive loss of articular cartilage accompanied by 

attempted repair of articular cartilage, remodelling and sclerosis of 

subchondral bone, and osteophyte formation (Buckwalter and Mankin, 

1998a). 

Current therapies do not prevent or cure osteoarthritis, and symptomatic 

treatments often fail to provide satisfactory pain relief. Once patients develop 

osteoarthritis, this disease remains for their entire lives and the severity of 

pain and disability generally increases. 

The frequency and chronicity of osteoarthritis and the lack of effective 

preventive measures or cures make this disease a substantial economie 

burden for patients, health care systems, businesses, and nations (Reginster, 

2002). 

The World Health Organization (WHO) estimates that 10°/o of the world 

people over the age of 60 years suffers from osteoarthritis, and the 80°/o of 

people with osteoarthritis have limitation of movement and 25% cannot 

perform major daily activities (WHO, 2001). 

Osteoarthritis represents a combination of several disorders in which 

biomechanical properties of cartilage are altered, leading to tissue softening 

and ultimately to degradation (Pool, 2001). The main feature of osteoarthritis 

is an imbalance between chondrocyte anabolic (synthesis) and catabolic 

(resorptive) activities. Degradation of cartilage is characterized by two 

phases: phase one, where the chondrocytes attempt to repair the damaged 

ECM with little success, and phase two, where the activity of the enzymes 
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produced by chondrocytes digests the ECM and matrix synthesis is inhibited. 

In osteoarthritic cartilage, chondrocytes continue to produce the matrix 

components; however they are unable to face the rate of degradative 

catabolic activity and tissue degradation results (Nesic et al., 2006). Enzymes 

such as collagenases and aggrecanases cause the degradation of the 

cartilage matrix. Collagenases (also known as matrix metalloproteinases) 

cause the degradation of the triple helix of collagen allowing for further 

degradation by aggrecanases (Mort and Billington, 2001). Collagenases make 

an initial cleavage in a weak point in the collagen fibril and then the 

aggrecanases cleave the core protein. Aggrecanases, in tandem with other 

enzymes, cause the degradation of aggrecan. These changes in the matrix 

components of cartilage cause it to weaken and to lose its biomechanical 

function. 

(a) 

Norrnal Osfeoarthrilìc 

Join1aurfaca 

Fig. 1.10: Macroscopic view (a) and histology (b) of norma! versus osteoarthritic cartilage 

(Kuo et al, 2006). 
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The etiology of osteoarthritis, although not fully understood, is comprised of 

several interconnected factors: age, programmed celi death (apoptosis), local 

inflammatory processes and mechanical stress (Nesic et al., 2006). 

Risk Factors for osteoarthritis (Neustadt, 2006; Felson, 1988): 

- aging 

- genetic factors 

- overweight and obesity 

- overuse of the joints 

- trauma 

- misalignment of the knee 

- muscle weakness 

The prevalence of osteoarthritis in ali joints increases with age. More than a 

third of people over 45 years report joint symptoms that vary from a 

sensation of occasionai joint stiffness to permanent loss of motion and 

constant deep pain (Buckwalter and Mankin, 1998a). In some populations 

more than 75% of the people over 65 have osteoarthritis that involves one 

or more joint (Felson, 1990). 

After the age of 40 the incidence of osteoarthritis increases rapidly with each 

passing decade in ali joints, and in most joints the incidence is greater in 

women than in men (Felson et al., 1995). 

The total economie burden of arthritis is 1% to 2.5% of the gross national 

product of western nations, and osteoarthritis accounts for the major share 

of this burden (Reginster, 2002). Osteoarthritis is second to ischemic heart 

disease as a cause of work disability in men over the age of 50 years 

(Lawrence et al., 1998). 
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In addition to the disorders associated with secondary osteoarthritis ( e.g. 

joint injuries, joint dysplasias, and joint infections) genetic predisposition, 

obesity, female gender, greater bone density, and joint laxity have been 

identified as risk factors. 

The most important risk factor in ali populations is age. The percent of 

people with evidence of osteoarthritis in one or more joints increases from 

less than 5% of people between 15 and 44 years, to 25% to 30% percent of 

the people 45 to 64 years of age, and to more than 60% and as high as 90% 

in some populations, of the people over 65 years of age (Eiders, 2000). 

Mechanical loading that exceeds the ability of a joint to repair or maintain 

itself is another universal risk factor. 

The radiographic changes associated with osteoarthritis include narrowing of 

the cartilage space, increased density of subchondral bone and the presence 

of osteophyte (Buckwalter and Martin, 2006). 

24 



CHAPTER 1 
Introduction 

Fig. 1.11: X-ray (top) and MRI (bottom) images of /esions of the articular cartilage. 
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The main function of synovial fluid (a highly viscoelastic solution) is to 

surround and protect the synovial tissue and surface structure of the articular 

cartilage from mechanical damage. Hyaluronic acid (HA) is the molecule 

responsible far the synovial fluid's rheological properties, enabling it to act as 

a lubricant or shock-absorber in dependence of the forces exerted upon it 

(Lo et al., 2003). 

Hyaluronic Acid 

A"g. 1.12: Hyaluronlc acld chemlcalstructure. 

Hyaluronan is a glycosaminoglycan polysaccharide composed of repeating 

disaccharide units of a ~(1-4) glucuronic acid a(1-3) linked to an N-

acetylglucosamine. 1t differs from other glycosaminoglycans in that it is 

unsulfated, and it does not bind covalently with proteins to form 

proteoglycans monomers, serving instead as the backbone of proteoglycan 

aggregates. In joints it is produced by chondrocytes and synovial cells. At 

high molecular weights hyaluronic acid is viscoelastic, aiding weight-bearing 

joints in lubrication, shock-absorption, and fluid retention during movement 

(Carney and Muir, 1988; Lo et al., 2003). 

In the synovial fluid of patients with osteoarthritis there is an increase in the 

relative number of hyaluronic acid molecules of molecular weight lower than 
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normal and a reduction in the concentration of hyaluronic acid due to 

exudation. These changes reduce the viscoelasticity of the synovial fluid and 

its ability to protect the joint, resulting in the destruction of cartilage and 

bone (Conrozier and Vignon, 2005). 

Viscosupplementation is the symptomatic treatment of osteoarthritis by intra-

articular injection of exogenous hyaluronic acid or its derivatives. This 

therapy aims to restore the physiological homeostasis of the pathologically 

altered joint and induce a restoration of normal hyaluronic acid metabolism 

(Balazs and Denlinger, 1993). Hyaluronic acid possesses chondroprotective 

effects and is reported to inhibit the loss of proteoglycans from the 

extracellular matrix of joint cartilage. Hyaluronic acid is also reported to 

protect the cartilage against proteoglycan loss, against chondrocyte celi 

death caused by free oxygen radicals, interleukin-1 (IL-1), and against other 

alterations (Goldberg and Buckwalter, 2005). 

Injections of exogenous hyaluronic acid induce a decrease of inflammatory 

and proliferative processes within the synovium. The mechanisms of action 

include contro! of synovial permeability, blockade of inflammatory scavenging 

oxygen free radicals, and inhibition of matrix metalloproteinases. Hyaluronan 

protects also chondrocytes and promote cartilage matrix synthesis. In vitro 
studies of human synoviocytes from osteoarthritic joints reveal that 

exogenous hyaluronan stimulates de nova synthesis of hyaluronan 

(Neustadt, 2006). 
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Fig. 1.13: Arthrocentesis of the joint (top). Injection into the joint via media/ approach 

(bottom) (Neustadt, 2006). 

More than 20 commerciai viscosupplement formulations are available 

worldwide from different manufacturers. These products vary in their 

molecular weight and residence times in the joint, and recommended dosing 

regimens range from one to five injections at weekly intervals. An intra-

articular preparation was approved by the US Food and Drug Administration 

(FDA) in 1997 for use in osteoarthritis of the knee. In 2006 four FDA-

approved hyaluronan preparations, extracted from rooster combs were 

available in United States (Neustadt et al., 2005): 

- sodium hyaluronate (Hyalgan) 

- sodium hyaluronate (Supartz) 

- Hylan G-F 20 (Synvisc) 

- high molecular weight hyaluronan (Ortho-visc). 
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Ali are highly purified native hyaluronan except for Hylan G-F 20, which is 

chemically crosslinked hyaluronan with added formaldehyde and vinylsulfone 

to increase its stability and retention in the joint cavity. Non-animal-derived 

hyaluronan preparations, obtained by a bacterial fermentation process, are 

available in Europe. One of this products, Euflexxa, recently approved in the 

United States is a highly purified hyaluronan sample of high molecular weight 

(2.3-3.6x106 Da) (Kirchner and Marshall, 2006). 

Four meta-analyses of randomized clinica! trials with viscosupplementation in 

symptomatic knee osteoarthritic patients have been published to date and 

provide the most robust evaluation of efficacy. 

Lo et al. 22 analyzed placebo-controlled randomized clinica! trials in knee 

osteoarthritis patients. The authors concluded that viscosupplementation has 

a small effect when compared with intra-articular placebo. They further 

noted that the highest MW products may be more efficacious than those with 

lower MW, but significant study heterogeneity limited definitive conclusions 

(Lo et al., 2003). 

The analysis of Wang et al. of 20 blinded viscosupplementation randomized 

clinica! trials in knee osteoarthritis found significant improvements in pain 

and functional outcomes with few adverse events. Although between-study 

differences in efficacy estimates were observed, the trials of high MW 
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products demonstrated greater pooled estimates of efficacy than those 

involving low MW products (Wang et al., 2004). 

Modawal et al. evaluated the efficacy of viscosupplementation by conducting 

a meta-analysis of 11 trials and concluded that moderate symptomatic relief 

was achieved up to 10 weeks after the final injection (Modawal et al., 2005). 

Most recently, and most extensively, a Cochrane review by Bellamy et al. has 

analysed 63 randomized clinica! trials of 17 viscosupplement products in 

osteoarthritis of the knee. This systematic review concludes that 

viscosupplementation is superior to placebo, demonstrates comparable 

efficacy to non-steroidal anti-inflammatory drugs (NSAIDs) and has a more 

prolonged effect than intra-articular corticosteroids. In generai, few adverse 

events were reported in the hyaluronan/hylan trials included in the analyses. 

Again, the review noted considerable between-product, between-variable 

and time dependent variability in clinica! response, and the majority of 

studies using high MW products had more robust effect sizes than those 

using low MW viscosupplements (Bellamy et al., 2006). 

These four meta-analysis vary in methodology, selection criteria, data 

extraction and data analysis, resulting in significant heterogeneity. However, 

there is generai agreement in considering that viscosupplementation is 

effective and safe, and that higher MW preparations may be more effective 

than lower MW preparations. 

As a local therapy administered by intra-articular injection, 

viscosupplementation has a much lower risk of systemic effects than other 

osteoarthritis treatments, such as NSAIDs with their risk of gastric, hepatic 

and renal side-effects. Due to the method of delivery, some local reactions 

usually involving mild transient discomfort, swelling and/or effusion are to be 

expected (Pagnano and Westrich, 2005). 

In conclusion, viscosupplementation is an effective treatment far 

osteoarthritis of the knee and appears to be a promising option far 

osteoarthritis of the hip. Anyway, as with ali therapies, appropriate diagnosis, 
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effective patient selection and correct technique can determine the best 

results in term of clinica! outcome with this treatment. 
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In 1993 Langer and Vacanti defined tissue engineering as a multidisciplinary 

research area that exploits both biologica! and engineering principles for the 

purpose of generating new, living tissues to replace the diseased or damaged 

tissue and restore tissue function (Langer and Vacanti, 1993). Ideally, the 

biologica! substitute should structurally and morphological resemble native 

tissue and be able to perform similar biologica! functions. In comparison to 

artificial implants, biologically engineered tissue may offer a better long-term 

performance due to the enhanced biocompatibility, integration into 

surrounding tissues and the ability to remodel according to the body 

requirements. 

The ultimate ai m of cartilage tissue engineering is the in vitro generation of 

cartilaginous constructs for implantation. These constructs should be able to 

remodel upon implantation into the patient so that functional cartilage with 

the required biochemical composition and mechanical properties is able to 

fully integrate with the host tissue (Vunjak-Novakovic, 2003). 

It has been proposed that the tissue may either be grown entirely in vitro 
and implanted into the defect as hyaline cartilage or that the developing 

tissue within the scaffold structure may be implanted and allowed to form 

cartilage in vivo (Hutmacher, 2000). 

Cartilage tissue engineering is critically dependent on selection of appropriate 

cells (differentiated or progenitor cells), fabrication and utilization of 

biocompatible and mechanically adequate scaffolds, stimulation with 

chondrogenically bioactive molecules and application of dynamic, mechanical 

loading regimens for conditioning of the engineered tissue constructs, 

including the design of specialized biomechanically active bioreactors. 
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Cells used in tissue engineering must be biosynthetically active and have 

nutrients, metabolites and other regulatory molecules readily available 

(Jackson and Simon, 1999). The donor age and differentiation state have ali 

varied in the cells used in cartilage tissue engineering studies to date 

(Buckwalter and Mankin, 1998b; Vunjak-Novakovic, 2003). Mature, 

differentiated chondrocytes are advantageous for cartilage regeneration as 

they are the native celi population within cartilage and synthesize the 

appropriate ECM components (Freed et al., 1999). Articular chondrocytes are 

therefore the most obvious choice of celi for articular cartilage tissue 

engineering. Whilst articular chondrocytes can easily be isolated, obtaining 

an appropriate number of cells with the capacity to regenerate cartilage is 

one of the challenges facing tissue engineers (Huckle et al., 2003). It is 

possible to expand celi populations using in vitro celi culture techniques; 

although it has been observed that in monolayer culture articular 

chondrocytes dedifferentiate, become fibroblastic in appearance and secrete 

a fibrous matrix. 1t has been documented that culturing the cells within a 3-

dimensional environment such as a porous scaffold can help them retain 

their chondrocytic phenotype (Freed et al., 1999). A population of progenitor 

cells have recently been isolated from the superficial zone of articular 

cartilage. In addition it has been shown that these cells retain their ability to 

produce articular cartilage following several population doublings 

(Dowthwaite et al., 2004). The use of chondrocytes from other cartilage 

types for engineering articular cartilage has also been studied (Huckle et al., 

2003). Kafienah and co-workers have published data showing that 

chondrocytes from nasal cartilage can be used to engineer articular cartilage 

following in vitro expansion (Kafienah et al., 2002). Other celi types that 

have been used in cartilage tissue engineering studies include stem cells 

isolated from a variety of tissues, such as muscle (Deasy et al., 2002) and 
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adipose (Huang et al., 2005); mesenchymal stem cells, MSCs (Caplan and 

Bruder, 2001). Despite these cells having greater proliferative capacities than 

adult articular chondrocytes they do not have the intrinsic ability to 

differentiate into chondrocytes unless given specific stimuli (Huckle et al., 

2003). 

Adult MSCs (Song et al., 2004) are easily obtained from bone marrow and 

possess a multi-lineage potential, allowing them to be induced to 

differentiate into bone, cartilage, and adipose-like celi types, even after many 

doublings in culture. Chondrogenic differentiation of MSCs has been effected 

by the application of transforming growth factor (TGF)-~ family members 

(Johnstone et al., 1998) in a variety of three dimensionai scaffolds (Worster 

et al., 2001; Awad et al., 2004). 
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Fig. 1.14. The schematic drawing depiding mesengenic process. Mesenchymal stem cells 

{MSCs) differentiate into a variety of tissues including muscle, bone, cartilage, marrow, fat 

and ligaments etc. 

34 



1.8.2 Scaffolds 

CHAPTER 1 
Introduction 

The basic function of a tissue engineering scaffold is to provide a temporary 

structure while cells seeded within the biodegradable matrix synthesize new, 

natural tissue. New tissue regeneration takes piace during scaffold 

degradation, with the new tissue gradually growing off the mould of the 

originai scaffold (Kuo et al., 2006). Therefore, design criteria include 

controlled biodegradability, suitable mechanical strength and surface 

chemistry, ability to be processed in different shapes and sizes, and the 

ability to regulate cellular activities, such as proliferation, differentiation, and 

more (Kuo and Tuan, 2003). 

A wide range of scaffolds have been used in cartilage tissue engineering 

studies. These scaffolds may be classified with respect to the types of 

materia! used (natural or synthetic, degradable or non-degradable), the 

geometry of the scaffold (gels, fibrous meshes or porous sponges) and their 

structure (total porosity, pore size, connectivity and distribution) (Vunjak-

Novakovic, 2003). 1t is crucial that a tissue engineering scaffold is fabricated 

from a materia! that is biocompatible, allowing attachment of cells, ECM 

secretion and tissue formation without the induction of an inflammatory or 

toxic response (Freed et al., 1994b; Temenoff and Mikos, 2000b; Agrawal 

and Ray, 2001). In order for cells to be able to infiltrate the structure 

uniformly, it should contain a large number of interconnected pores (Freed et 

al., 1994b). The size of the pores is important to the infiltration and 

attachment of the cells, for chondrocytes an optimum pore size of between 

100 and 200 1-1m has been suggested (Agrawal and Ray, 2001). The scaffold 

must also be permeable, to allow diffusion of nutrients into the matrix and 

the removal of metabolic and degradation by-products from it (LeBaron and 

Athanasiou, 2000). Finally, it is important that the scaffold has mechanical 

properties that allow it to withstand implantation and the loads experienced 

in vivo (Agrawal and Ray, 2001). The materia! used should be easily 
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processed into the required structure and shape and be able to withstand 

sterilization processes (Freed et al., 1999). 

Natura/ Materials 

Many naturally derived polymers had been used to support chondrocytes 

growth, because of their similarity with cartilage ECM components. There are 

two kinds of naturally derived polymers. The first is carbohydrate-based 

polymers, such as alginate (Fragonas et al., 2000), agarose (Saris et al., 

2000), hyaluronan (Brun et al., 1999) and chitosan (Suh and Matthew, 

2000). The other is protein-based matrices, such as collagen (Fujisato et al., 

1996) and fibrin. Natura! polymers are advantageous in tissue engineering 

applications as they can undergo cell-specific interactions (Grande et al., 

1997). The use of natural materials, however, is limited by the large variation 

between batches, the lack of large supplies for commerciai use and as they 

are often derived from non-human tissue they carry the risk of transferring 

pathogens (Temenoff and Mikos, 2000a). 

Protein-based Matrices 

Collagen: Type I collagen-based structures have generally bee n used as 

carriers for chondrocytes or mesenchymal stem cells (Kawamura et al., 1998; 

Frenkel et al., 1997). Many preparations of collagen type I are soluble under 

acidic conditions. The neutralization of collagen solutions results in the 

formation of a hydrated collagen gel. When cells are included in the 

neutralizing solution, they are effectively encapsulated in the collagen gel. 

Collagen, as a natura! bodily constituent, is made up of fibrils with celi 

adhesive surface and carries the required biologica! information for their 

activity. Furthermore, the degradation products of collagen are physiological 

and non-toxic. One of the main shortcomings in using these systems in 
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clinica! practice is the poor mechanical strength. An additional concern 

associated with the use of type I collagen as a scaffold materia l is that most 

cartilages do not contain type I collagen. Some authors suggested type II 

collagen from native cartilage matrix may be better than type I collagen 

(Nehrer et al., 1997). Finally, it should be recalled that ali collagens from 

mammalian sources are under severe scrutiny by the regulatory Authorities 

in relation to threatens connected to bovine spongiform encephalopathy 

(BSE). 

Fibrin: Fibrin clots or fibrin glues are the resulting products from the 

reaction of fibrinogen and thrombin. Fibrin is proinflammatory and induces its 

own degradation and substitution by cellular components of the 

extravascular tissue spaces. Its degradation products are non-toxic 

physiological substances. Fibrin has been employed extensively as a scaffold 

materia! for incorporating chondrocytes into the exogenous fibrin clot, both 

in vitro (Fortier et al., 1997) and in vivo (Hendrickson et al., 1994). However, 

some immunologica! reactions to exogenous fibrin have been observed in 

several animai studies (Haisch et al., 2000). 

Carbohydrate Polymers 

Alginate: Alginate is an anionic polysaccharide extracted from seaweeds 

and from bacterial culture broths. In the presence of calcium cations, 

alginate chains are crosslinked by ionic bonding through guluronic acid 

blocks (Wong et al., 2001). Typical methods for in vitro chondrocyte culture 

in alginate involve encapsulation of cells in beads made by dropping cells 

suspended in 1-20% alginate solution into a bath of CaCb. If CaS04 were 

used as a crosslinking agent, the time required for crosslinking will be 

lengthened. This allows for injectable delivery of chondrocytes in alginate 

and results in in situ gelation (Paige et al., 1995). Within three dimensionai 

alginate cultures, dedifferentiated chondrocytes can readily redifferentiate 

(Bonaventure et al., 1994), although chondrocytes do not proliferate in 
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alginate. Likewise, bone marrow derived mesenchymal stem cells can 

differentiate into chondrocytes when seeded within this matrix and under the 

appropriate nutritional and stimulatory conditions, both in vitro and in vivo 
(Diduch et al., 2000). 

Agarose: Agarose is the compositionally purest polysaccharide component 

of the agar materia! used for bacterial celi culture which is isolated and 

purified from red seaweeds. The best agarose samples contain very little 

amount of ionic groups (mainly sulfate, but also carboxylate). Typically, 

agarose is heated in aqueous solution to maximize solubility, and then mixed 

with cold media containing cells (Buschmann et al., 1992). The mixture 

forms a hydrogel when cooled, effectively encapsulating cells. In vitro 
cultures of chondrocytes in agarose have demonstrated the production of 

significant amounts of cartilage ECM and increases in the mechanical 

properties of the constructs. But it has poor biodegradability because there is 

no enzyme degradation system for agarose in mammalian tissues. 

Hyaluronan: Hyaluronan is a physiological component of the articular 

cartilage matrix and can induce embryonic mesenchymal stem cells to 

differentiate into chondrocytes (Kujawa and Caplan, 1986). Theoretically, 

hyaluronan would be an ideai matrix to support articular cartilage repair. 

However, crosslinking by esterification or other chemical methods are usually 

necessary to fabricate hyaluronan-based scaffold, which will compromise its 

biocompatibility. Matrices composed of hyaluronan have been frequently 

used as carriers for chondrocytes or bone marrow derived mesenchymal 

stem cells (Brun et al., 1999). Hyaluronan matrices loaded with such cells 

have been shown to form a cartilage-like tissue both in vitro and in vivo 
(Solchaga et al., 1999). Hyalograft C is a hyaluronan-based scaffold which 

has been used clinically in the treatment of articular cartilage lesions, and a 

recent clinica! study has showed that 96.7% of the repaired tissue was 

hyaline cartilage (Pavesio et al., 2003). Such constructs have likewise been 

shown to support celi differentiation processes. 
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Chitosan: Chitosan is a cationic polymer whose biologica! properties have 

been extensively demonstrated. Its activity towards chondrocytes and its 

processability have rapidly increased the interest of the researchers on the 

application of structures based on this polymer as scaffolds in cartilage tissue 

engineering. Sechriest et al. have utilized a hydrogel scaffold comprised of 

ionically crosslinked chondroitin sulfate A and chitosan to support 

chondrogenesis (Sechriest et al., 2000). Several in vitro studies yield 

evidence of its potential value as a matrix to facilitate articular cartilage 

repair. It efficiently supports not only chondrogenic activities (Suh and 

Matthew, 2000), but also the in vitro expression of cartilage extracellular 

matrix proteins by human chondrocytes (Lahiji et al., 2000). It can also serve 

as a carrier for growth factors. Chitosan has excellent biodegradability. 

Since the work described in this thesis involves the characterization and the 

application of a chitosan-derived polymer in protocols of cartilage 

regeneration, chitosan features and application as biomaterial in cartilage 

tissue engineering will be analyzed in detail further on, in dedicated 

paragraphs. 

Synthetic Materials 

The main feature of synthetic polymers is the chance of mass-producing 

polymers with custom-designed properties. Poly(lactic acid) (PLA), 

poly(glycolic acid) (PGA) and co-polymers of PLA and PGA (PLGA) are 

commonly used in tissue engineering studies (Vacanti et al., 1991; Freed et 

al., 1993), as they have Food and Drug Administration (FDA) approvai for 

use within the human body. These materials degrade through hydrolysis of 

the ester bond in the polymer backbone. Controls of the physical 

characteristics of the scaffolds, such as fibre diameter, pore size, and 

polymer crystallinity can regulate the scaffold degradation rates, which can 

range from 6-8 weeks in the case of highly porous PGA fibrous mesh to 6-18 
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months in the case of a highly crystalline PLA (Hooper et al., 1998). The 

degradation profiles of synthetic polymers can therefore be controlled to 

match the rate at which the tissue develops, hence ensuring the structural 

integrity of the construct is maintained throughout tissue regeneration 

(Woodfield et al., 2002). 

Similarly, the mechanical properties of these scaffolds can be regulated and 

the elastic modulus has been shown to range from 5 kPa to l GPa. The most 

common materia! used for cartilage tissue engineering has been non-woven 

PGA mesh (Freed et al., 1994a). PLA and PLGA sponges and foams are stiffer 

than PGA scaffolds and are in generai easier to process than PGA owing to 

their solubility in common organic solvents. However, there are some 

shortcomings of these materials. These polymers have relatively poor celi 

adhesion and tissue-integration properties and are potentially poorly 

biocompatible. Further, there is a significant foreign body giant celi reactions 

associated with these systems. This is particularly true in applications for 

reconstructive surgery, where acute reactions to subcutaneous implants 

involve a significant inflammatory response (Cao et al., 1998). Inflammatory 

agents such as interleukin-1 (IL-l) have been shown to inhibit cartilage 

formation and degrade cartilage ECM. Even in a non-inflammatory 

environment, the natural breakdown products of these materials are acidic 

and will lower local pH, rendering the environment cytotoxic. Chondrocytes 

are known to be acutely sensitive to changes in environmental pH (Gray et 

al., 1988). 

Other synthetic polymers that have been used in tissue engineering 

applications include poly(ethyleneterephalate) (PET), poly(caprolactone) 

(PCL) and poly(tetrafluoroethylene) (PTFE). Ideally a scaffold that is to be 

implanted into the human body should be bioderodible and biodegradable 

(Freed et al., 1999) and the degradation products should be non-toxic (Freed 

et al., 1994b; Agrawal and Ray, 2001). 
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Signalling molecules, including growth factors, cytokines, and non-

proteinaceous chemical compounds, are used to trigger tissue growth in 

cartilage tissue engineering. Indeed, signalling molecules, which bind surface 

receptors to activate intracellular signa! pathways, are the main source of 

different stimuli towards the cells, such as proliferation, differentiation, 

extracellular matrix synthesis during the overall process of tissue 

regeneration (Kuo et al., 2006). 

Growth factors responsible of regulatory effects on chondrocytes or stem 

cells for cartilage tissue engineering include members of the TGF-~ 

superfamily, insulin-like growth factors (IGFs), fibroblast growth factors 

(FGFs), platelet-derived growth factors (PDGFs), and epidermal growth factor 

(EGF) family. Among these growth factors, TGF-~s (Li et al., 2005; Lee et al., 

2004a; Barbero et al., 2004) are the most potent stimulators of 

chondrogenesis in MSCs, and enhance the synthesis of cartilage ECM in 

chondrocytes. Recently, bone morphogenetic protein (BMP)-2 (Park et al., 

2005), a member of the TGF-~ superfamily, and FGF-18 (Davidson et al., 

2005) have also been shown to promote chondrogenesis of MSCs and limb 

bud mesenchymal cells, respectively. Growth factors that mediate 

chondrocytic physiology rather than promote chondrogenesis of MSCs 

include IGF, FGF, and PDGF. To enhance cartilage growth, these factors 

commonly work in tandem with TGF-~s (Stevens et al., 2004). A recent trend 

in cartilage tissue engineering is to exploit a "cocktail" of growth factors to 

improve their effect and to simulate the physiological growth factors' 

environment. In a recent study, the combinations of TGF-~3/BMP-6, and 

TGF-~3/IGF-1 effectively promoted chondrogenesis of MSCs (lndrawattana et 

al., 2004). IGF-1 together with bFGF and TGF-~2 increased cartilage-specific 

ECM expression and improved the histological features of engineered 

cartilage (Chua et al., 2004). 
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Chitosan is a partially deacetylated derivative of chitin, the second most 

abundant natural biopolymer on earth, which is the main component of the 

exoskeleton of marine crustaceans and celi walls of fungi. Chitosan is a linear 

polysaccharide consisting of ~(1-4) linked D-glucosamine residues (GicNH2) 

with a variable number of randomly located N-acetylglucosamine groups 

(GicNAc). The main parameters influencing the characteristics of this 

copolymer are its molecular weight (MW) and the degree of deacetylation 

(DD), representing the proportion of deacetylated units. These parameters 

are determined by the conditions of preparation but can be further modified: 

the degree of deacetylation can be lowered by reacetylation (Sorlier et al., 

2001) and the molecular weight can be lowered by acidic depolymerization 

(Dong et al., 2001). 

n 

Fig. 1.15: Chitosan chemical strudure. 

Depending on the source and preparation procedure, chitosan's average 

molecular weight may range from 300 to over 1000 kDa, with a degree of 

deacetylation from 30 to 90%. Chitosan is a semi-crystalline polymer and the 

degree of crystallinity is a function of the degree of deacetylation. While 

crystallinity is maximum for chitin (O% deacetylated) and fully deacetylated 
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(100%) chitosan, intermediate degrees of deacetylation are characterized by 

minimum crystallinity. 

In its crystalline form, chitosan is normally insoluble in aqueous solutions 

above the pH 7; however, in dilute acids (pH<6), the protonated free amino 

groups on glucosamine facilitate solubility of the molecule (Athanasiou et al., 

2001; Madihally and Matthew, 1999). 

Shrimp Squill 

Fig. 1.16: Schematic diagram of the chemica/ structure of chitin and chitosan. 
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Nowadays chitosan is receiving a great deal of interest for medicai and 

pharmaceutical applications. The main reasons for this increasing attention 

are the interesting intrinsic properties of this polymer (Berger et al., 2004a). 

Indeed, chitosan is known for being biocompatible allowing its use in 

different medicai applications such as topical ocular application (Felt et al., 

1999), implantation (Patashnik et al., 1997) or injection (Song et al., 2001). 

Moreover, chitosan is considered as biodegradable because it is metabolized 

by certain human enzymes, especially lysozyme (Muzzarelli, 1997). In 

addition, it has been demonstrated that chitosan acts as a penetration 

enhancer by opening epithelial tight-junctions (Kotze et al., 1999). Due to its 

positive charges at physiological pH, chitosan is also bioadhesive, a property 

that determines an increasing in retention at the site of application [11,12]. 

Chitosan also promotes wound-healing [13,14] and has bacteriostatic effects 

[15,16]. Finally, chitosan is very abundant, and its production is of low cost 

and ecologically interesting [17]. In medicai and pharmaceutical applications, 

chitosan is used as a component in hydrogels. 

Chitosan is a cationic polymer, with chemical groups responsible for 

electrostatic interactions with anionic glycosaminoglycans (GAG), 

proteoglycans and other negatively charged molecules. This property is of 

paramount interest because a large number of bioactive molecules, such as 

cytokines/growth factors are linked to GAG (mostly with heparin and heparan 

sulphate), and therefore a chitosan-GAG complex may retain and 

concentrate growth factors secreted by colonizing cells (Madihally and 

Matthew, 1999). Moreover, the presence of the N-acetylglucosamine moiety 

on chitosan also suggests related bioactivities. In fact, chitosan 

oligosaccharides have a stimulatory effect on macrophages, and both 

chitosan and chitin are chemo-attractants for neutrophils both in vitro and in 
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vivo. Lysozyme is the primary enzyme responsible for in vivo degradation of 

chitosan through hydrolysis of acetylated residues, other proteolytic enzymes 

have shown low level of degradation activity on the molecule. The 

degradation rate of chitosan is inversely related to the degree of crystallinity, 

and thus on deacetylation. Highly deacetylated forms may thus last several 

months in vivo; eventual degradation of the polymeric chain produces 

chitosan oligosaccharides of variable length. A direct correlation between 

degree of deacetylation of the chitosan and celi adhesion has been reported 

(Mao et al., 2004). Therefore, careful selection of chitosan grade is crucial 

while developing a scaffold for tissue engineering. Host tissue response to 

chitosan-based implants has been characterised widely: in generai, these 

materials stimulate a minimal foreign body reaction, with little or no fibrous 

encapsulation (Vandevord et al., 2002). Formation of normal granulation 

tissue associated with accelerated angiogenesis, appears to be the typical 

course of the healing response. This immunomodulatory effect has been 

suggested to stimulate the integration of the implanted materia! by the host 

(Suh and Matthew, 2000). 

One of the properties of chitosan is that it can be moulded in various forms 

(Hu et al., 2004). Porous chitosan-based scaffolds are generated by freezing 

and lyophilizing chitosan solutions (Risbud and Bhonde, 2000) or by 

processes such as an "internai bubbling process" (IBP) where CaC03 is 

added to chitosan solutions to generate chitosan-CaC03 gels (Chow and 

Khor, 2000). Ice removal by lyophilization generates a porous materia! whose 

pore size and orientation can be controlled by variation of the freezing rate, 

the ice crystal size and the geometry of thermal gradients during freezing. It 

is then possible to mould the obtained materia! as porous membranes, 

blocks, tubes and beads. Mechanical properties of chitosan scaffolds are 

closely related to pore size and orientation. Tensile testing of hydrated 

samples showed that porous membranes have greatly reduced elastic moduli 

(0.1-0.5 MPa) compared to non-porous membranes (5-7 MPa). The 
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extensibility (maximum strain) of porous membranes varied from values 

similar to non-porous chitosan (approximately 30%) to greater than 100% as 

a function of both pore size and orientation. Tensile strengths of the porous 

structures were reported to be in the range of 30-60 kPa (Madihally and 

Matthew, 1999; Suh and Matthew, 2000). Rapid prototyping technique has 

been applied to fabricate porous chitosan scaffolds (Geng et al., 2005). This 

procedure sequentially dispenses sodium hydroxide solution and chitosan 

dissolved in an acetic acid resulting in a gel-like chitosan strand. 

Another interesting property of chitosan is its intrinsic antibacterial activity. 

Studies have shown that chitosan can reduce the infection rate of 

experimentally induced osteomyelitis by Staphylococcus aureus in rabbits 

(Aimin et al., 1999). Its cationic amino group associates with anions on the 

bacterial celi wall, suppressing biosynthesis; moreover, chitosan disrupts the 

mass transport across the celi wall accelerating the death of bacteria. 

Chitosan is also a preferred carrier for drug delivery (Aimin et al., 1999), thus 

combining its intrinsic antibacterial activity with that of the bound antibiotic. 

When added to HA and plaster of Paris to obtain a composite for sustained 

vancomycin or fosfomycin release, the composite materia! was able to inhibit 

methicillin-resistant S. aureus in vitro for as long as 3 months, a period 

compatible with the treatment of most orthopedic infections (Buranapanitkit 

et al., 2004). 

Chitosan has been combined with a variety of delivery materials such as 

alginate, hydroxyapatite, hyaluronic acid, calcium phosphate, PMMA, poly-L-

Iactic acid (PLLA), and growth factors for potential application in 

orthopaedics. In conclusion, chitosan offers a broad possibilities for cell-

based tissue engineering (Hu et al., 2004). Possible matrix preparations for 

celi cultures include gels (Chenite et al., 2000), sponges, fibres (Tuzlakoglu 

et al., 2004), or porous compositions of chitosan with ceramic (Zhang and 

Zhang, 2004) or other polymeric materials such as collagen or gelatin 
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(Risbud et al., 2001) to adjust celi seeding properties and mechanical 

behaviour of celi transplants for the intended clinica l application. 

Chitosan has been used as a scaffolding materia! in articular cartilage 

engineering (Suh and Matthew, 2000; Lahiji et al., 2000), due to its 

structural similarity with various GAGs found in articular cartilage. This is of 

paramount importance given GAGs fundamental role in modulating 

chondrocyte morphology, differentiation, and function. Chondrocytes 

cultured in vitro on chitosan substrates maintained round morphology and 

preserved synthesis of cell-specific ECM molecules (Lahiji et al., 2000). 

Chitosan was used to improve chondrocyte attachment to PLLA films with a 

positive effect either on celi adhesion, than in proliferation and biosynthetic 

activity (Cui et al., 2003). Similarly, to increase the cellular adhesiveness of 

chitosan, Hsu et al. have developed chitosan-alginate-hyaluronan complexes 

with or without covalent attachment with RGD containing protein. Cell-

seeded scaffolds showed neocartilage formation in vitro. When chondrocyte 

seeded scaffolds were implanted into rabbit knee cartilage defects, partial 

repair was observed after 1 month both in the presence or absence of RGD 

indicating potential of this composite materia l for cartilage regeneration (Hsu 

et al., 2004). Chitosan-based scaffolds can deliver growth factors to promote 

the ingrowth and biosynthetic potential of chondrocytes. Lee et al. reported 

porous collagen/CS/GAG scaffolds loaded with TGF-~1 (Lee et al., 2004b). 

This scaffold exhibited controlled release of TGF-~1 and promoted cartilage 

regeneration. 
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Hydrogels based on covalently crosslinked chitosan can be divided into three 

types with respect to their structure: 

- chitosan crosslinked with itself; 

- hybrid polymer networks (HPN); 

- semi- or fully-interpenetrating polymer networks (IPN). 

In the simplest structure, chitosan crosslinked with itself, crosslinking 

involves two structural units that may or may not belong to the same 

chitosan polymeric chain (Monteiro, Jr. and Airoldi, 1999). The resulting 

structure could be considered as a crosslinked gel network dissolved in a 

second entangled network formed by chitosan chains of restricted mobility. 

In hydrogels formed by a HPN, the crosslinking reaction takes piace between 

a structural unit of a chitosan chain and a structural unit of a polymeric chain 

of another type, even if crosslinking of two structural units of the same type 

and/or belonging to the same polymeric chain cannot be excluded. 

Finally, semi- or fuii-IPNs contain a non-reacting polymer added to the 

chitosan solution before crosslinking. The result is the formation of a 

crosslinked chitosan network in which the non-reacting polymer is entrapped 

(semi-IPN). At this point it is possible to further crosslink this additional 

polymer in order to have two entangled crosslinked networks forming a fuii-

IPN, whose microstructure and properties can be quite different from its 

corresponding semi-IPN. 

In each of the three different structures, covalent bonds are the main 

interactions that form the networks, but other interactions cannot be 

excluded. In fact, secondary interactions, such as hydrogen bridges and 

hydrophobic interactions, occur between acetylated units of chitosan and 

lead to a more solid-like gel if the degree of deacetylation is low enough, but 

as crosslinking density increases, the hydrogel rigidity is predominantly 

determined by covalent bonds. 
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When a different polymer is included, additional secondary interactions 

between this polymer and chitosan arise and participate in the formation of 

the hydrogel, as it happens in the case of HPN formed with gelatine (Zhao et 

al., 2002) or in semi-IPN with polyether (Beena et al., 1995), silk fibroin 

(Gobin et al., 2005) or PEO (Khalid et al., 2002). 

Preparation of a hydrogel containing a covalently crosslinked chitosan 

requires chitosan and a crosslinker in an appropriate solvent, usually water. 

If the purpose is the formation of a HPN or a semi- or full-IPN other 

polymeric components need to be ad d ed. 

Crosslinking agents are molecules with at least two reactive functional 

groups that allow the formation of bridges between polymeric chains (Berger 

et al., 2004a). Direct crosslinking in aqueous media is of course desirable, 

but the addition of potentially toxic auxiliary molecules is often required to 

initiate or catalyse polymerization or crosslinking. 

To date, the most common crosslinkers used with chitosan are dialdehydes 

such as glyoxal (Khalid et al., 2002; Patel and Amiji, 1996) and in particular 

glutaraldehyde (Yamada et al., 2000; Denkbas et al., 1999). Their reaction 

with chitosan is well-documented; the aldehyde groups form covalent imine 

bonds with the amino groups of chitosan, due to the resonance established 

with adjacent double ethylenic bonds (Monteiro, Jr. and Airoldi, 1999) via a 

Schiff reaction. However, the reaction with hydroxyl groups of chitosan 

cannot be excluded. Dialdehydes allow direct reaction in aqueous media, 

under mild conditions and, in principle, without the addition of auxiliary 

molecules such as reducers (Khalid et al., 2002). 

The main drawback of dialdehydes (such as glutaraldehyde) as crosslinkers 

is that they are generally considered to be toxic (Ballantyne and Jordan, 

2001; Leung, 2001). It's been demonstrated that glutaraldehyde is 

neurotoxic, and its fate in the human body is not fully understood 
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(Beauchamp, Jr. et al., 1992) and glyoxal is known to be mutagenic (Murata-

Kamiya et al., 1997). 

It is therefore of paramount importance an extensive purification of the 

hydrogels before administration, to ensure the complete removal of 

unreacted dialdehydes which could otherwise disclose toxic effects. The 

unavoidable extensive purification can then suggest the use of reducing 

agents, a slight excess of which can simultaneously produce more stable 

crosslinks and safer reduction products of aldehydes, i.e. alcohols. Other 

covalent crosslinkers for chitosan have been investigated as alternatives. 

Besides dialdehydes, crosslinkers such as diethyl squarate (DES) (De Angelis 

et al., 1998), dimethylsuberimidate (DMS) (Charulatha and Rajaram, 2003; 

Charulatha and Rajaram, 1997), 1,4 butanediol diglycidyl ether (BDGE) 

(Subramanian et al., 2004) or genipin (Jin et al., 2004) can exhibit direct 

crosslinking mechanisms. However, there is a lack of data regarding the 

biocompatibility of diethyl squarate, while oxalic acid has shown in vitro 
toxicity in rats (Kiug et al., 2001). The use of genipin is an interesting 

alternative to dialdehydes. It is a naturally occurring materia!, which is 

commonly used in herbal medicine and as a food dye (Mi et al., 2002). The 

biocompatibility of genipin in humans has not been assessed yet, but it is not 

cytotoxic in vitro (Sung et al., 2001) and has been shown to be 

biocompatible after injection in rats (Mi et al., 2002). 

Another approach is the formation of covalently linked networks, close to 

HPN, by use of water soluble, biocompatible polymers ad hoc functionalized 

to act as crosslinker. Such functionalized biopolymers ca n be poly( ethylene 

glycol) (PEG) diacrylate, oxidised ~-cyclodextrin, telechelic-PVA or 

dialdehydes derived from PEG or scleroglucan. However, even if these 

products are known to be biocompatible before functionalization, data 

concerning the biocompatibility of their functionalized derivatives are lacking. 

In any case, the preparation of a HPN requires the use of additional polymers 
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that bear reactive groups, able to undergo crosslinking with chitosan. When 

gelatine, collagen or a sialylating agent, ali bearing amine groups are used, 

they are crosslinked via glutaraldehyde with the amine groups of chitosan 

(Monteiro, Jr. and Airoldi, 1999). For the preparation of a semi-IPN, the 

additional polymers do not need functional groups able to react with the 

crosslinker used. Examples are polyether (Beena et al., 1995), poly(vinyl 

pyrrolidone) (PVP) (Risbud et al., 2000), silk fibroin (Gobin et al., 2005), PEO 

(Khalid et al., 2002), poly(N-isopropylacrylamide) (varez-Lorenzo et al., 

2005) and PEG (Bhattarai et al., 2005). The latter two polymers can also 

serve for the preparation of a fuii-IPN. 

The formation of a full-IPN requires crosslinking al so of the additional 

polymer. This can be performed by UV irradiation to polymerize and crosslink 

for instance PEG (Bhattarai et al., 2005) or by the addition of a second 

crosslinker, such as methylene bis-acrylamide to crosslink poly(N-

isopropylacrylamide) networks. However, the addition of a second crosslinker 

certainly decreases the biocompatibility of the resulting scaffold. Covalent 

crosslinking can also be performed after chitosan (polyelectrolytic) 

complexation with chondroitin sulfate (Shahabeddin et al., 1990), collagen 

(Zhang et al., 2006) or poly(acrylic acid) (PAA) (Rossi et al., 2003). In 

addition, chitosan/PVA complexes (Koyano et al., 1998) and grafted chitosan 

networks of poly(N-isopropylacrylamide)- (Lee et al., 2004c), fructose- (Yagi 

et al., 1997) or N,O-carboxymethyl--chitosan (Costain et al., 1997) can be 

crosslinked. In these cases, crosslinking is added in order to reinforce the 

complexed network and to avoid dissolution during swelling (Berger et al., 

2004a). 

It is important to characterize the conditions of the crosslinking reaction, 

since they determine and allow the modulation of the crosslinking density, 

which is the main parameter influencing interesting properties of hydrogels 
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such as drug release and mechanical strength. Covalent crosslinking, and 

therefore the crosslinking density, is influenced by various parameters, but 

mainly dominated by the concentration of the used crosslinker (Peppas et al., 

2000; Mi et al., 2000). 1t is generally favoured when chitosan has high MW 

and when the temperature is sufficiently high (Mi et al., 2000). Moreover, 

since crosslinking requires mainly deacetylated reactive units, a chitosan with 

high degree of deacetylation is preferable (Draget, 1996). Obviously, 

crosslinking reactions are also influenced by their duration (Knaul et al., 

1999). As the main parameters influencing crosslinking density have been 

identified, the possibilities of monitoring reaction during hydrogel formation 

should now be investigated to facilitate the development of tailor-made 

hydrogels. 

Covalent crosslinking leads to the formation of a permanent network allowing 

the free diffusion of water and enhancing the mechanical properties of the 

gel. As a result of these characteristics, covalently crosslinked chitosan 

hydrogels have two main applications, as permanent networks used as 

scaffolds in celi culture and as drug delivery systems allowing release of 

bioactive materials by diffusion. 
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One of the most interesting feature of chitosan as biomaterial is connected 

with the presence of amino groups located on the glucosamine units. 

Chemical derivatization based on the reactivity of the glucosamine residues 

leads to strong modification of the physico-chemical and biologica l properties 

of the polycation. Derivatization examples include acylation (Kubota et al., 

2000) (Sorlier et al., 2001), alkylation (Yang et al., 2005) and 

carboxymethylation (Muzzarelli et al., 1984). 
Starting from these assumptions, our group has modified highly deacetylated 

chitosan by grafting lactose moieties on the free amino groups of the 

polymer to obtain, by reductive amination, the corresponding lactitol 

derivative. A low charged, highly hydrophilic chitosan derivative was 

obtained, namely Chitlac. This synthetic glycopolymer exhibited the ability to 

induce chondrocyte aggregation leading to the formation of nodules of high 

dimensions (up to 0.5-1 mm) within 12-24 hours. 1t stimulated as well the 

biosynthesis of markers typical of articular cartilage, such as type II collagen 

and glycosaminoglycan (Donati et al., 2005). 

OH 

·~~. 
HOiH 

HO qlH 
HO§ 

HO 

Fig. 1.17: Chitlac chemical structure. 
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Fig. 1.18: SEM image of a nodu/e (with a major axis of about 325 nm) formed by 

aggregated chondrocytes cultured in a dish coated with chitlac; the bar indicates 20 nm 

(Donati et al., 2005). 

These findings seem promising in connection to a possible application of 

Chitlac in protocols of tissue engineering applied to the regeneration of 

articular cartilage. 

The localization of Chitlac at the plasma membrane of isolated chondrocytes 

and its permanence at the same site also after nodule formation indicate that 

the process is mediated by a specific binding of Chitlac to cells, most likely 

through its ~-galactose residues (Donati et al., 2005). 
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Further experiments demonstrated the involvement of Galectin-1 as a 

molecular bridge between Chitlac and chondrocyte celi surfaces (Marcon et 

al., 2005). Galectin-1 is a member of the 5-type galactoside-binding animai 

lectins (Barondes et al., 1994; Cooper and Barondes, 1999). The discovery 

that Galectin-1 binds with high affinity to polylactosamine-containing ligands 

(such as laminin) and the co-localization of Galectin-1 with laminin in 

extracellular matrix suggested that its major function could be to promote 

celi adhesion to glycoconjugates (Ramkumar and Podder, 2000; Van den 

Brule et al., 1995; Wasano and Hirakawa, 1997). 

55 



CHAPTER2 

Genera/Aim 

CHAPTER 2 
Genera/Aim 

In 1743, Hunter stated: "From Hippocrates to the present age it is universally 

allowed that ulcerated cartilage is a troublesome thing and that when 

destroyed, it is not recovered" (Hunter, 1743). Historically, many scientists 

and clinicians attempted to develop clinically useful procedures to repair 

damaged articular cartilage, but these have not yet proved entirely 

successful. Treatment options are limited and the long-term outcome is stili 

uncertain. 

Self-repair of cartilage is limited and the repair tissue that is formed does not 

perform as well as hyaline cartilage, degrades over ti me and usually lacks the 

mechanical properties and ultrastructure to ensure long-term stability 

(Lonner, 2004). 

Tissue engineering, considered as a potential therapeutic option for the 

regeneration of damaged tissue, has been defined as "an interdisciplinary 

field that applies the principles of engineering and the life sciences toward 

the development of biologica! substitutes that restore, maintain, or improve 

tissue function" (Langer and Vacanti, 1993). Tissue engineering can perhaps 

be best described as the use of a combination of interactive factors: cells, 

engineering materials to either carry or encapsulate the cells, and suitable 

bioactive factors. 

The overall goal of this thesis was the utilization of a lactose-modified 

chitosan (chitlac) in cartilage tissue engineering. Chitosan-based structures 

has been extensively used in biomedica! sciences and several studies were 

focused on cartilage regeneration (Di Martino et al., 2005). Bioactive 

properties of chitlac towards chondrocytes had already been pinpointed: this 

synthetic glycopolymer exhibited the ability to induce chondrocyte 

aggregation and stimulated as well the biosynthesis of markers typical of 
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articular cartilage, such as type II collagen and glycosaminoglycan (Donati et 

al., 2005). 

The first objective of this thesis (CHAPTER 3) was the physico-chemical 

characterization of this chitosan-derived polymer: the rheological behaviour 

of chitlac and chitosan aqueous solutions were compared in order to assess 

the influence of the residues grafted onto the polymer backbone on the 

hydrodynamic properties of the biopolymer. An important aspect to be 

investigated was the kinetic of degradation by lysozyme of the lactose-

modified polymer, in order to evaluate the overall stability of chitlac. 

The second objective (CHAPTER 4) involved the rheological characterization 

of blends of chitlac and hyaluronic acid (HA). HA is the molecule that being 

responsible for the synovial fluid's rheological properties (Mazzucco et al., 

2002) is widely used in viscosupplementation therapy for the treatment of 

osteoarthritis through joint injections (Kelly et al., 2004). The viscoelastic 

properties of the mixture of the two polymers were evaluated in order to 

define the effect of the chitlac component on the HA network features. 

The third objective (CHAPTER 5) was the development of a three 

dimensionai scaffold based on crosslinked chitlac to be used as a carrier of 

chondrocytes in cartilage tissue engineering protocols. Celi proliferation, 

morphology and extracellular matrix synthesis were evaluated in order to 

assess the biocompatibility and the bioactivity of the produced structures. 
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Synthesis and Physico-chemical Characterization 

ofChitlac 

3.1 Introduction 

Following previously reported findings on the biocompatibility and bioactivity 

properties of the chitlac polymer towards chondrocytes (Donati et al., 2005), 

a further physico-chemical characterization of the lactose-modified chitosan 

has been carried aut, in arder to elucidate the differences existing between 

the native polymer and its derivative. Rheological and viscometry 

characterization of native chitosan and lactose-modified chitosan was 

performed in arder to assess the influence of the presence of the lactose 

moieties (grafted on the polymeric backbone) on the flow properties of the 

biopolymer. Viscosity measurements were performed to determine the 

molecular weight of the used chitosan and to assess the hydrodynamic 

behaviour of chitlac in di Iute solution in comparison to the parent polymer. 

To get a direct comparison between the two polymeric species, experiments 

were carried aut in acidic aqueous solutions, due to the poor solubility of 

chitosan at physiological pH. Further investigations on chitlac solution 

properties were performed in physiological conditions (pH 7.4 and ionic 

strength 0.15 M), in arder to mimic the environment in which the polymer 

should be used in vivo. 
Lysozyme is the primary enzyme responsible far the in vivo degradation of 

chitosan, so its action towards chitlac needed to be determined. The stability 

of chitlac towards enzyme degradation was tested by following the time 

dependence of viscosity of chitlac solution in the presence of lysozyme. 
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3.2 Materials and Methods 

3.2.1 Materials 

Chitosan and sodium cyanoborohydride (NaBH3CN) were purchased from 

Aldrich Chemical Co. (Milwaukee, WI, USA). Deionized MilliQ water (Millipore, 

MA, USA) was used to prepare ali the aqueous solutions. Lysozyme (chicken 

egg white) was purchased from Sigma (St.Louis, MO, USA). Ali other 

chemicals were of analytical grade. 

3.2.2 Methods 

Chitosan Purification 

Commercially available chitosan (Aidrich), highly deacetylated (89%) and of 

medium MW (about 350 kDa), was purified by isopropanol precipitation from 

an acidified aqueous solution (pHtv4.5). The precipitation was repeated three 

times, and the precipitated air dried before dissolution in milliQ water 

(pHtv4.5). Chitosan solution was then exhaustively dialyzed against milliQ 

water, filtered through 0.451-Jm Millipore filters and freeze-dried. 

Chitlac Synthesis 

The synthesis of lactose-modified chitosan (Chitlac) was performed according 

to the procedure reported elsewhere (Yalpani and Hall, 1984). 

Briefly, chitosan (200 mg) was dissolved in 14 mi of a mixture 1:1 of 

methanol and acetic acid 1% (pH 4.5); 8 mi of the sa me methanol:acetic 

acid solution containing lactose (840 mg) and sodium cyanoborohydride (350 

mg) were slowly added. The obtained solution was then incubated under 
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stirring at room temperature for 24 hours. At the end of the reaction 60 mi 

of water were added and the reaction mixture was dialyzed exhaustively 

against deionized water, filtered through 0.45 1-1m Millipore filters and the 

polymer recovered by freeze-drying. 

Chitosan 

Lactose, NaB~CN 

MeOH, AcOH l% 

Fig. 3.1: Synthesis of chitlac via N-alkylation of chitosan with /actose (Donati et al., 2005). 

Viscosity Measurements 

Capillary viscosity measurements were performed at 25 °C by means of a 

Schott-Gerate AVS/G automatic apparatus using an Ubbelohde type 

viscometer. 

The viscosity behaviour of macromolecular substances in solution is one of 

the most frequently used approaches for their characterization. From an 

experimental point of view, using a capillary viscometer, the viscosity of a 

solution is simply obtained by measuring the time employed by a given 

volume of liquid to flow under the gravity force through a given capillary. 

The measured time interval, L1t, for a fixed geometry (length and diameter) 

of the capillary is dependent only from the density p and the viscosity 17 of 

the liquid, therefore a measurement of the flow time is a direct measurement 

of the liquid viscosity. 
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The relative viscosity 11ret is defined as (eq. 3.1): 

n _ !l.l_ _ tiPo 
"Ire/ - -

lJo toPI 
eq. 3.1 

where indexes 1 and O are referred to the solution and to the solvent, 

respectively. 

For sufficiently dilute solutions, Po = p 1 , therefore (eq. 3.2): 

eq.3.2 

From simple ti me flow measurements the specific viscosity ( 17sp) and the 

reduced specific viscosity (TJs/c) of a polymer solution of concentration c can 

then be obtained (eq. 3.3 and 3.4): 

lJsp = '7rel -l eq. 3.3 

lJsp /C= (lJrel -l)/ C eq. 3.4 

The limit of reduced specific viscosity for c~ o is the intrinsic viscosity [ 11] a 

typical dynamic global property of a polymer chain. 

Since the intrinsic viscosity [ 11] is a limiting value at infinite dilution, it is a 

parameter which directly reflects molecular properties of the solute. Indeed, 

[ 11] depends on size and shape of the investigated polymer, being directly 

proportional to its hydrodynamic volume: [17] represents the specific volume 

(typically expressed as di of solvent per gram of polymeric solute) that the 

chain occupies when swollen by solvent molecules, at infinite dilution. 
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For the polymers used in the present thesis, the intrinsic viscosity ([ 1]]) 

values were determined by extrapolating the reduced specific viscosity 

(1Js/c) values to zero concentration by the use of the Huggins equation (eq. 

3.5) and by extrapolation of the reduced logarithm of the relative viscosity 

(ln(1JreJic) by the use of Kraemer equation (eq. 3.6), respectively: 

llsp = [17 ]+ k'.[l] Y 'C eq. 3.5 
c 

eq. 3.6 

where k' and k" are the Huggins and Kraemer constants, respectively. 

A rather surprising generality in polymer field is that [ 11] for a given polymer 

of molar mass M, under a fixed solvent condition (solvent species and 

temperature) follows a simple power law as: 

eq. 3.7a 

For a mixture of chemically identica! polymers, differing only for the molar 

mass, the experimentally determined average intrinsic viscosity of the 

mixture, [ 11 ]exp1 with: 

eq. 3.7b 

it holds: 

eq. 3.7c 
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where Mv is the viscosity-average molar mass. 

The relation between the intrinsic viscosity value [17] and the polymer molar 

mass (M) in eq. 3.7a is referred to as the Mark-Houwink-Sakurada relation. 

k and a are given parameters for a specific solute-solvent system. The 

numerica! values of these constants depending on both the nature of the 

polymer and the nature of the solvent, as well as on temperature. 

The value of the coefficient a normally varies between 0.5 and 1. The value 

of this coefficient is related to the conformation of the polymer ranging from 

0.5 to 0.8 for flexible polymers (coils), reaching value of = 1 for polymers 

characterized by a high rigidity, whereas a values greater than 1 are 

expected for so called "rigid-rod" chain shape. Therefore the intrinsic 

viscosity has a direct correlation with the molecular weight of the polymer, 

through parameters that reflect chain conformation and rigidity. 

Rheological Characterization 

Steady-state Shear Viscosity 

Polymeric fluids exhibit a variety of non-Newtonian rheological properties 

(Barnes et al., 1989; Bird et al., 1987). 

The shear viscosity of these materials is often a non-linear function of the 

rate of shear. Indeed, polymeric liquids are viscoelastic materials in the sense 

that the stress experienced by a fluid particle depends upon the history of 

the deformation experienced by that particle. The elastic character of a given 
• 

flow is measured by the dimensionless Weissenberg number W e= À r where 

À is a characteristic relaxation time (usually expressed in s) of the fluid, and 

; is a characteristic shear rate of the flow(usually expressed in s-1• While 

We =o for Newtonian fluids, it is of arder 1 or 10 in many applications 

involving polymeric liquids. 
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In non-Newtonian fluids, the viscosity is generally found to decrease with 

increase in shear rate, giving rise to a phenomenon known as "shear-

thinning" behaviour. For these materials the curve of viscosity against shear 

rate indicates that only in the limit of very low shear rates the viscosity is 

constant, whilst in the limit of very high shear rates the viscosity is again 

constant, but at a lower level. In the intermediate shear regime, viscosity 

decreases with increasing shear rate. These two extremes are known as the 

upper and lower Newtonian regions, and defines the two regions where the 

viscosity reaches constant values. The higher constant value is called "zero-

shear viscosity" (1'/o). Polymers are expected to show Newtonian behaviour as 

long as the rate of shear is low enough to allow the molecules to respond 

and the transient network of hydrated polymer chains to "reorganize"; when 

the velocity gradient is too large, the molecules are unable to keep up, and 

non-Newtonian behaviour results. 

A model to predict the shape of flow curves was described by Cross (eq. 

3.8): 

eq. 3.8 

Where 1'/o and 1'/w refers to the asymptotic values of viscosity at very low and 

very high shear rates respectively, K is a constant parameter with the 

dimension of ti me and m is a dimensionless constant. 

If certain approximations to the Cross model are assumed it is possible to 

introduce other viscosity models. For values of 17 <<'lo and 17 >> 'loo the Cross 

model reduces to (eq. 3.9): 
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eq. 3.9 

which with a redefinition of parameters can be written (eq. 3.10): 

eq. 3.10 

This is the "power law" model and n is called the power-law index. K2 is 

called the "consistency". 

Viscosity-concentration Dependence 

A log-log plot of the Newtonian viscosity versus the polymer concentration 

highlights the presence of two regions1 each characterized by a distinct 

viscosity-concentration dependence. These two regions are generally 

represented by two straight-line portions delimiting the "dilute" solution 

hydrodynamic behaviour from that occurring in the so called "semi-dilute" 

concentration regime. The intersection between the two segments is called 

the overlap concentration ( C*)1 the criticai value at which hydrodynamic 

interactions between different chains begin to rise1 resulting in the formation 

of entanglements with interpenetrated coil regions. 

The principal difference in the theoretical approach to the two regimes 

involves the absence or the presence of chain entanglements. For 

concentration values higher than C* the presence of intermolecular 

entanglements arising from coils overlap and interpenetration predominate 

the overall molecular motion of polymer. On the other hand for concentration 

values lower than C* individuai coiled molecules only very occasionally 

impinge and interpenetrate1 thereby preserving a statistically fluctuating 

conformation independent from each other. The criticai concentration (C*) is 

then clearly dependent on molecular size and conformation. 
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Oscil/atory shear viscosity 

In dynamic experiment the materia! is subjected to a sinusoidal shear strain 

(eq. 3.11): 

r = ro sin(mt) eq. 3.11 

where ro is the shear strain amplitude, m is the oscillation frequency (which 

ca n be al so expressed as 27ifwhere fis the frequency in Hz) and t the ti me. 

The mechanical response, expressed as shear stress r of viscoelastic 

materials, is intermediate between an ideai pure elastic sol id ( obeying to the 

Hooke's law) and an ideai pure viscous fluid (obeying to the Newton's law) 

and therefore is out of phase respect to the imposed deformation as 

expressed by (eq. 3.12): 

r = G'(m )r0 sin(mt )+ G"(m )r0 cos(mt) eq. 3.12 

where G'(m) is the shear storage modulus and G"(m) is the shear loss 

modulus. G' gives information about the elasticity or the energy stored in the 

materia! during deformation, whereas G" describes the viscous character of 

the energy dissipated as heat (Ferry, 1970). 

Rheological Measurements 

Rheological measurements were performed on a HAAKE controlled stress 

rheometer (RS 150 Rheostress), with a cone-plate geometry (C60/1 ° Ti, gap 

43 !Jm), at a temperature of 25 °C. The solutions of chitosan and chitlac 

were loaded on the plate of the rheometer and the flow properties of the 

samples were determined. Two replicate measurements were performed for 

each sample. Rheological tests were performed under continuous shear 
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conditions to determine steady viscosity values in the stress range 0.05-500 

Pa. 

Fig. 3.2: HMKE Rheometer (RS 150 Rheostress). 

Preparation of Polymer Solutions 

Proper amounts of chitosan were dissolved in 0.25 M CH3COOH/0.25 M 

CH3COONa (pH 4.7) for 4 hours at room temperature. Chitlac solutions were 

prepared using either the acetate buffer (pH 4.7) or a physiological aqueous 

salt solution (0.14 M NaCI, 0.01 M Tris/HCI, pH = 7.4). Capillary viscosity 

measurements were performed on 0.45 1-1m Millipore filtered solutions with 

polymer concentrations ranging from 0.03 to 0.1 g/dl. 

Acetate buffered (pH 4.7) chitosan and chitlac solutions with polymer 

concentration ranging from 0.5% to 5% (w/w) were used for rheological 

measurements. 

Rheological characterization of chitlac was performed as well in physiological 

condition, at pH 7.4 and I=0.15 M. I is the ionic strength of the solution: I 

was given by 0.14 M NaCI and 0.01 M Tris/HCI. Ten chitlac solutions were in 

tested this case, with concentration ranging from 0.5% to 5% (w/w). 
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Chitlac Enzymatic Degradation 

The kinetic of chitlac degradation with lysozyme was assessed by measuring 

time depencence viscosity using a Schott-Gerate AVS/G automatic apparatus 

and an Ubbelohde type viscometer. As the enzymatic cleavage of the 

polymer proceeded, the capillary viscosity of the system decreased. 

A certain amount of chitlac was dissolved in PBS solution (pH 7.4) at room 

temperature. Lysozyme was dissolved in the same buffer. The solutions were 

clarified by filtering through a 0.45 1-1m Millipore filter and mixed in known 

volume ratio in order to obtain the desired final polymer and enzyme 

concentration. 

Measurements were carried out at constant enzyme concentration (1000 

U/ml) for variable polymer concentrations (0.14, 0.7 and 0.014 g/dl), as well 

as at constant polymer concentration (0.14 g/dl) for variable enzyme 

concentrations (100-1000 U/ml). Measuring temperature was 37 oc. 
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3.3 Results and Discussion 

3.3.1 Chitlac Synthesis 

In this study a highly deacetylated chitosan (89%) has been derivatized with 

lactose moieties via reductive amination. This chemical reaction took piace 

between the aldehyde group of the disaccharide and the free amino groups 

present on the backbone of the polymer. The obtained polymer, chitlac, was 

characterized by a low residua! positive charge on the chain (polycation), by 

high hydrophilicity (due to the presence of the disaccharidic moieties as side 

chains) and by a good solubility in aqueous solution and at physiological pH. 

The biologica! activities of this biopolymer in solution have been extensively 

investigated, pointing out its biocompatibility, its ability to induce 

chondrocyte aggregation and to stimulate the synthesis of extracellular 

matrix components (Donati et al., 2005). 

3.3.2 Viscosity Measurements 

As indicated in eq. 3.5 and 3.6, rts/C and {lnrtret)IC are expected to vary 

linearly with polymer concentration, the C=O intercept of the both straight 

lines corresponding to the intrinsic viscosity ([ 17 ]). In Fig. 3.3 the reported 

rts/C and {lnrtret)IC experimental data obtained for chitosan in 0.25 M 

CHJCOOH/0.25 M CH3COONa (pH 4. 7) nicely followed the predicted Huggins 

(eq. 3.5) and Kraemer (eq. 3.6) concentration dependence, leading to a 

value of 3.9 dl/g for the chitosan intrinsic viscosity [17]. A molar mass of 

approximately 3.65 x 105 g/mol could then be estimated with Mark-Houwink-

Sakurada, eq. 3.7 (Roberts and Domzy, 1982). Intrinsic viscosity of 
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synthesized chitlac (Fig. 3.4) in the same experimental conditions resulted 

3.02 dl/g (calculated with both the Huggins and Kraemer equations). 

Chitosan derivatization with lactose residues is not a degradative reaction 

and leaves the degree of polymerization of the polymer unchanged. Hence, 

the grafting of the lactose moieties results in an augmentation of the 

molecular weight of the chitlac in comparison with native chitosan. Despite 

this increase in molar mass the intrinsic viscosity [17] of chitlac is lower than 

the value of the parent chitosan, indicating a reduced value of the 

hydrodynamic volume-to-molar mass ratio. Having the intrinsic viscosity the 

dimension of a specific volume this finding, in turn, should correspond to a 

more "dense" coiled chain arrangement for chitlac with respect to the native 

chitosan. The reduced charge density accompanying lactose grafting likely 

favour the observed coiling ability increase. Chitosan grafting reaction, 

transforms primary amino groups into secondary groups, therby modifying 

the overall positive charge on the polymer chain, although in a way not 

easily quantifiable. 

Chitosan pH 4.7 

4Q:Il~1 .... ..... i~d ·-
u 
~ 3 .. . ....... ················· ---t····-·····1· ····+·········+····-·+ 
"! 
~ c 
~ 2+-~-4--+-~-4--+-~~--+-~ 

l 

u -a. 
Ul 
~ 1 +-~-4--+-~-4--1 [TJ] Huggins = 3.90 

[TJ] Kraemer = 3.91 

o~-r~~~~~~~~~~~~ 
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 

polymer concentration {%) 

Fig. 3.3: Concentration dependence of r7s,/C and ln(fJreJIC far chitosan (pH 4.7). 
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Fig. 3.4: Concentration dependence of rJs/C and ln(fJreJIC for chitlac (pH 4.7). 

3.3.3 Rheological Characterization 

Rheological characterization of native chitosan and lactose-modified chitosan 

was performed in order to assess the influence of the residues grafted onto 

the polymer backbone on hydrodynamic behaviour of the biopolymer. Flow 

properties of the samples were evaluated through steady shear 

measurements to determine the viscosity of the polymer solutions as 

function of the shear rate. The concentration range was chosen in order to 

cover both the dilute and semi-dilute intervals, so to characterize polymer 

hydrodynamic behaviour in both regimes. To widen the otherwise limited 

concentration range achievable by the used rheometer, additional viscosity 

data in the dilute region were obtained using capillary viscometer. 

Given the low solubility of chitosan the comparative study of chitosan and 

chitlac was carried out at p H 4. 7, further investigations on chitlac were 

performed at pH 7.4, to reproduce physiological conditions needed for 

possible applications in vivo. 
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3.3.4 Chitosan and Chitlac Flow Curves pH 4.7 

The shear rate dependence of viscosity was obtained for chitosan and chitlac 

(in 0.25 M CH3COOH/0.25 M CH3COONa) at pH 4.7 (Fig. 3.5 and 3.6) in the 

concentration range of 0.5-5% (w/w). Throughout the entire range, with the 

exclusion of the most diluted 0.5% (w/w) polymeric solution, two distinct 

viscosity behaviour regions were observed: the Newtonian flow region 

showing the constant zero-shear viscosity (170) at low shear rate and the 

power-law flow region showing the shear rate dependent apparent viscosity 

('lapp) at relatively higher shear rate. The shear rate interval at which 

viscosity was maintained constant covered roughly two orders of magnitude. 

There the rate of intermolecular disentanglements brought about by shear 

force exerted was nearly the same as that of entanglements newly formed 

(Graessley, 1974). The zero-shear viscosity has been frequently employed to 

study the structure-function relation of biopolymeric systems (Hwang and 

Kokini, 1991). Actually the magnitude of zero-shear viscosity is a 

macroscopic representation of the microstructural nature of biopolymers. 

In contrast, the viscosity decreased with increasing shear rates in the power-

law region, where the rate of disentanglements was higher than that for 

newly forming entanglements (Graessley, 1974). Increasing shear rate 

dependence of viscosity was observed with increasing polymer 

concentration. The explanation of this phenomenon carne in terms of the 

degree of chain entanglements. As polymer concentration was increased, the 

freedom of movement of the individuai chains became restricted due to the 

correspondingly increased number of entanglements (Graessley, 1974). This 

gave rise to an increase in time required to form new entanglements to 

replace those disrupted by the externally imposed deformation. Thus, the 

shear rate at which the Newtonian behaviour was lost progressively moved 

towards lower values with the increasing polymer concentrations, according 

to findings reported elsewhere (Morris et al., 1981). 
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As described so far, the overall behaviour of the solutions of chitosan and 

chitlac was hence comparable, with an almost completely Newtonian 

behaviour for polymeric concentration of 0.5% (w/w) and the presence of 

the phenomenon of shear thinning for concentration higher than 1% (w/w). 

The main difference observed between chitosan and chitlac was the 

Newtonian viscosity value (170) for comparable concentrations. If, as an 

example, we consider the 4.5°/o (w/w) concentration (Fig. 3.7), there was 

almost one order of magnitude of difference between the chitosan sample 

and the chitlac sample. This situation can be accounted for by the decreased 

ability of chitlac to form a highly interpenetrated polymeric network. In line 

with the more dense coiling form, above deduced by intrinsic viscosity data, 

the presence of the lateral residues grafted on the polymer backbone 

seemed here to impede the chain to be extensively interacting through 

topological constrains with other polymeric chains. 
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Direct comparison of the dependence of the Newtonian viscosity on the 

concentration of polymer solutions at pH 4. 7 showed for both chitosan and 

chitlac the typical behaviour of polymers in good solvent (Fig. 3.8 and 3.9). 

Linear least square fitting of the data showed the presence of two different 

zones delimiting the dilute and semi-dilute concentration regimes of the 

polymer solution. The intersection between the two segments is the overlap 

concentration (C*), the value at which hydrodynamic interactions between 

different chains begin to be seen, resulting in topological constrains and 

entanglements formation. The figures showed that C* was determined to be 

approximately 1.17% for chitosan, while a value of 1.56% was found for 

chitlac. Intermolecular entanglements predominate the overall molecular 

motion of polymers at C > C*, while individuai molecules are statistically 

separated from other molecules at C< C*. The criticai concentration (C*) is 

dependent on molecular size and conformation of a polymer: the higher 

molecular weight and the more rigid conformation, the lower C*. 

In the di Iute region (C < C*) Fig. 3.6 and 3.8 showed that the slope of the 

logarithmic viscosity dependence on lnC was 1.48 and 1.29 for chitosan and 

chitlac, respectively. These gradients are in fairly good agreement with the 

value range of 1.1-1.4 reported for other polysaccharides (Launay et al., 

1986). The gradients in dilute solutions are almost independent of the 

degree of branching and the intrinsic viscosity. In contrast, the slope was 

3.91 for chitosan and 3.25 for chitlac in the more concentrated region (C> 

C*). A value close to 3.4 is found for the majority of semi-flexible 

polysaccharides with an exception of galactomannans showing 5.1 (Launay 

et al., 1986; Morris et al., 1981). The higher gradient value found for 

chitosan (3.91 ) with respect to chitlac (3.25) suggested that a higher rate of 

interconnections formation in the polymeric network belonged to the native, 

underivatized chitosan. 
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Fig. 3.8: Dependence of the Newtonian viscosity on the polymer concentration for solutions 

of chitosan at pH 4.7. 
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3.3.5 Chitlac Flow Curves pH 7.4 

Rheological measurements were performed on chitlac solutions in 

physiological conditions (pH 7.4 and ionic strength 0.15 M), in order to mimic 

the environment in which the polymer should be used in vivo. The behaviour 

of the polymer at pH 7.4 (Fig. 3.10) was comparable to that observed at pH 

4.7. The values of Newtonian viscosity were similar in both cases, showing a 

rather unperturbed hydrodynamic behaviour with pH variations. 

Under these experimental conditions, chitlac solutions exhibited a typical 

shear thinning behaviour with a Newtonian plateau at low shear rates at 

concentrations higher than 1.5% w/w. When the shear rate exceeded the 

rate at which chains were able to relax, the structures remained distorted 

and being unable to recover the equilibrium network organization a drop of 

the viscosity resulted. For chitlac solution below 1.5% (w/w) the Newtonian 

behaviour covered the enti re range of investigated shear-rates. 
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3.3.6 Chitlac Enzymatic Degradation 

The ti me course of the enzymatic chitlac degradation of chitlac was followed 

by solution viscosity measurements. Fig. 3.11 and Fig 3.12 showed the 

decrease on time of the specificic reduced viscosity as a result of the ~-1,4 

N-acetylglucosamine linkage cleavages. The enzymatic hydrolytic reaction 

almost reduced by half the molar mass at the end of the time interval 

investigated (Fig. 3.11). More than three times of reduction of the initial 

molar mass was instead observed, after the sa me ti me period, using a higher 

concentration of enzyme (Fig. 3.12) . The zero-order model that assumes a 

degradation rate independent on substrate concentration but proportional to 

the enzyme concentration seemed here to likely apply. The degradation lead 

to a rapid viscosity decrease at short degradation times followed by a slower 

rate subsequently (Figs. 3.11 and 3.12). Assuming that a fast and a slow 

component were both contributing to the bond cleavage a bi-exponential 

function was used to fit the experimentally determined reduced specific 

viscosity data and the predominant contribution of the slow component was 

then deduced. 
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In this chapter a physico-chemical characterization of the lactose-derivative 

of chitosan was accomplished and polymer properties compared with that 

observed for the parent polysaccharide. From the obtained intrinsic viscosity 

data it turned out that the observed reduced hydrodynamic volume-to-mass 

ratio resulting by lactose branching accounted for a more dense coiling 

conformation assumed by chitlac chains with respect to the parent chitosan. 

Rheological studies further confirmed the above reported finding. As deduced 

from the displayed low Newtonian viscosity, chitlac showed a strongly 

decreased ability to coil interpenetration in comparison with the native 

chitosan. This low tendency to form hydrodynamic inter-chain interactions is 

further confirmed by the shift of the overlap concentration toward a higher 

value for chitlac than for chitosan. Beside the increase of the molecular 

weight, lactose branching favours a more hydrodynamically unperturbed 

coi led conformation of the chain. 

In arder to mi mie the in vivo environment, chitlac rheological characterization 

was carried out also in physiological conditions.The comparable results 

obtained at the two investigated pH values (4.7 and 7.4) accounted for a 

hydrodynamic behaviour rather unperturbed by pH variations. 

An important issue to be addressed was the lysozyme degradative action on 

the lactose-derived chitosan. Lysozyme is the main enzyme responsible for 

the degradation of chitosan in vivo, so the evaluation of the action of this 

enzyme on chitlac needed to be investigated. Data were interpreted 

assuming that a fast and a slow component were both contributing to the 

chain cutting. In arder to discriminate the relative weight of the two 

components a bi-exponential function was used to fit the experimentally 

determined specific viscosity. 
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Characterization of Blends of Chitlac and 

Hyaluronic Acid 

4.1 Introduction 

Hyaluronic acid (HA) is the molecule responsible for the rheological 

properties of synovial fluid, enabling it to act as a lubricant or shock-absorber 

in dependence of the forces exerted upon it (Mazzucco et al., 2002). 

Viscosupplementation is the symptomatic treatment of osteoarthritis by intra-

articular injection of exogenous HA or its derivatives. This therapy aims to 

restore both the physiological homeostasis of the pathologically altered joint 

and the normal hyaluronic acid metabolism (Kelly et al., 2004). 

Rheological characterization of blends of chitlac and hyaluronic acid were 

performed to investigate the effect of the lactose-modified chitosan on the 

viscoelastic behaviour of the HA. These experiments were focused on a 

possible coupling of the viscoelastic properties of the two polymers with the 

already demonstrated biologica! activity of chitlac (Donati et al., 2005). A 

favourable interaction of the two polymers could be exploited in the optic of 

designing a new formulation to be used in a viscosupplementation protocol. 

The rheological measurements were carried out using hyaluronic acid of two 

different molecular weights, to relate the viscoelastic properties displayed by 

the HA-chitlac blends to the relative chain sizes of the involved polymers. 
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4.2 Materials and Methods 

4.2.1 Materials 

Chitosan and sodium cyanoborohydride (NaBH3CN) were purchased from 

Aldrich Chemical Co. (Milwaukee, Wl, USA). Hyaluronic acid of two different 

molecular weights was a gift from Genzyme (Cambridge, MA, USA). 

Deionized MilliQ water (Millipore, MA, USA) was used to prepare ali the 

aqueous solutions. Ali other chemicals were of analytical grade. 

Acronym Characteristic Molecular weight 

LMWHA Low Molecular Weight Hyaluronic Acid Approx. 2.5x105 g/mol 

HMWHA High Molecular Weight Hyaluronic Acid Approx. 1x10b gjmol 

Table 4.1. Different hyaluronic acid used in the experiments. 

4.2.2 Methods 

Preparation of Polymer Solutions 

For HA molar mass determination by using capillary viscosity measurements 

hyaluronic acid of low molecular weight (LMW HA) or high molecular weight 

(HMW HA) was dissolved in in 0.14 M NaCI and 0.01 M Tris/HCI, pH 7.4 

solution for 4 hours at room temperature. Measurements were performed 

covering the 0.03 to 0.1 % (w/w) concentration range on solutions 

previously clarified by filtering through a 0.45 !Jm Millipore filter before 

measurements. 

HA-chitlac blends were prepared starting from pure (3% w/w) HA or chitlac 

solutions in 0.14 M NaCI and 0.01 M Tris/HCI, pH 7.4. Blends with a constant 
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total polymer concentration (3°/o w/w), used for rheological measurements, 

were obtained by mixing known weights of pure HA and chitlac solutions. 

Viscosity Measurements 

Reduced capillary viscosity was measured at 25 °C by means of a Schott-

Gerate AVS/G automatic apparatus and an Ubbelohde type viscometer, as 

described in the Section 3.2.2. Measurements were performed solely on HA 

solutions in order to derive the molar mass of the employed samples. 

Chitlac-HA Blends Rheological Characterization 

Rheological measurements were performed on a stress controlled HAAKE 

rheometer (RS 150 Rheostress), with a cone-plate geometry (C60/1 o Ti, gap 

43 1-1m). Ali the measurements were performed at 25 °C. 
Rheological tests were performed on blends of hyaluronic acid and chitlac 

under continuous shear conditions to determine steady viscosity values in the 

stress range 0.05-500 Pa, as well as under oscillatory shear conditions to 

individuate the extension of the linear viscoelasticity regime (stress sweep 

tests at 1 Hz) and to determine the mechanical spectra (frequency sweep). 

The complex viscosity (77*), the storage (G') and loss (G'') moduli of the 

binary polymer solutions were recorded in the frequency range 0.01 - 100 

Hz (maximum strain < 10%). Two replicate measurements were performed 

for each sample. 
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~3 ResuftsandD~cussmn 

4.3.1 Reduced Viscosity 

The molecular weight of commercially available hyaluronic acid was 

determined by the capillary viscometry. Using Huggins equation (eq. 3.5) an 

intrinsic viscosity [ 17] value of 5.99 dl/g for the low molecular weight (LMW 

HA) sample was obtained from data, as reported in Fig. 4.1, which compares 

well with that of 5.97 dlfg obtained by Kraemer equation (eq. 3.6). By using 

the proper Mark-Houwink parameters (a=0.81, k=2.63 x 10-4, (Gamini et al., 

1992)) a molar mass of approximately 2.5 x 105 gjmol was estimated. The 

intrinsic viscosity of HMW HA in the same experimental conditions (Fig. 4.2) 

was 19.75 dl/g (as obtained by the Huggins equation) and 20.15 dl/g 

(Kraemer equation), corresponding to a molecular weight of approximately l 

x 106 g/mol. 

LMW HA pH 7.4 
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Fig. 4.1: Concentration dependence of fJ5r/C and ln(fJreJ/C for LMW HA (pH 7.4). 
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Fig. 4.2: Concentration dependence of fJ5,/C and ln(fJret/C for HMW HA (pH 7.4). 

4.3.2 Chitlac-HA Blends 

Once the rheological characterization of chitosan and chitlac has been carried 

aut, and the hydrodynamic properties of the derivatized polymer have been 

evaluated, attention was focused on the hydrodynamic properties of chitlac-

hyaluronan polymer blends. 

Indeed, the assessment of the influence of chitlac on the well known 

viscoelastic properties of hyaluronan aqueous solutions (Gibbs et al., 1968), 

beside its great scientific interest, is of fundamental importance far 

application purposes, beside its great scientific interest. Since hyaluronan is 

the main component of ali the preparations used far viscosupplementation 

(Kelly et al., 2004), the promising therapy far symptomatic treatment of 

osteoarthritis, a favourable interaction of the two polymers could be 

exploited aiming at designing new formulations in the field of 

viscosupplementation. The coupling of the rheological properties of 

hyaluronic acid with the already proven biologica! activity of chitlac towards 
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chondrocytes would give additional valuable properties to the polymer matrix 

for applications in the biomedica! field. 

To investigate the properties of the transient mixed-polymer network as a 

function of HA chain size two different molecular weights were considered for 

the hyaluronic acid, i.e. the above indicated samples LMW HA and HMW HA, 

respectively. 

4.3.3 Characterization of Chitlac-LMW HA Blends 

FlowCurves 

In Fig 4.3 the steady-state shear flow curves for mixtures of chitlac and a 

low molecular weight hyaluronic acid (MW=2.5 x 105 g/mol) at total polymer 

concentration of 3% are reported. 
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Fig. 4.3: Flow curves of blends of LMW HA and chitlac (pH 7.4)/ total concentration 3% w/w. 
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In this case, taking into account that HA has a repeating unit mass per unit 

length (ma/L) of 408 gjmol*nm, the average chain contour length of the 

used HA sample ( IV620 n m) was comparable to that of chitlac ( IV1000 n m). 

The Newtonian viscosity measured for pure HA solution (3% w/w) was one 

order of magnitude higher than that observed for chitlac solution of identica! 

concentration. Interestingly enough, HA/chitlac mixed solutions showed an 

initial viscosity increase for chitlac weight fraction up to 0.25, followed by a 

slight decrease on increasing the chitlac abundancy, recovering the viscosity 

observed for a pure 3% HA solution at a 1:1 polymer weight ratio (Fig. 4.4). 
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Fig. 4. 4: Dependence of the Newtonian viscosity on the weight ratio in blends of LMW HA 

and ch1tlac (pH 7.4). 

The further rising of the chitlac weight fraction up to 0.75 lead to phase 

separation, with the solution turning into an opaque suspension of polymeric 

aggregates. The above reported results suggested that the positively 

charged chitlac chains, establishing electrostatic interaction with (negatively 

charged) HA, likely acted as a sort of inter-chain bridging. A stabilizing effect 
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of the transient network then resulted, if the number of chitlac chains was 

kept sufficiently low as found for the HA-rich mixture. 

On the contrary, when in the blend the number of chitlac chains in the blend 

closely approached that of HA, electrostatic interactions could occur across 

the whole polymer network and the high probability of extensive inter-chain 

bridging establishment lead to stable, water insoluble, macroscopic HA-

chitlac aggregates. 

Frequency Sweep 

Frequency sweep tests in the frequency range 0.01 - 100Hz (maximum 

strain < 10%) were performed to evaluate the dependence of dynamic 

moduli G' (storage modulus) and G" (loss modulus), of LMW HA-chitlac 

mixture, on the periodically varying applied stress frequency (mechanical 

spectrum). 

As shown in Fig. 4.5 the viscoelastic spectrum obtained for a 3% HA solution 

was characterized by a loss modulus (G'') higher than the storage modulus 

( G') throughout almost the enti re range of analyzed frequency. Only for 

frequencies above 20 Hz ( crossover point), the elastic component became 

higher than the viscous one. For blends containing increasing chitlac 

fractions up to 50% of abundancy, the crossover point shifted towards lower 

frequencies (10 Hz) indicating an increase of the mixed-network elastic 

response. This finding, in agreement with the above discussed flow 

behaviour, further confirmed the higher stability of the HA-chitlac mixed 

network with respect to the transient network formed by a pure 3% HA 

solution, as a result of chitlac-mediated inter-chain bridgings established by 

favourable electrostatic interactions. 

Taking into account that here both HA and chitlac shared comparable chain-

lengths, one can figure out this more stable network as formed mainly by 

loosely hydrodynamically interacting chains, kept together by 
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electrostatically interacting (likely short) chain portions in the form of few 

and rather distant cross-linking sites. 

LMWHA3% 

0.1 

Frequency (Hz) 

LMW HA - Chitlac 3% 
1000 (50-50) 

(:, 10 -t------+-----+ 

0.01 0.1 

Frequency (Hz) 

10 100 

10 100 

Fig.4,5: Frequency sweep measures of LMW HA solution, 3% w/w (top), and of a 

blend of HA/chitlac, ratio 1:1, total concentration 3% wjw (bottom). 
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4.3.4 Characterization of Chitlac-HMW HA Blends 

A second set of experiments was carried out on mixtures of chitlac and a 

high molecular weight hyaluronic acid (HMW HA, MW= 1 x 106 g/mol), a 

polymer with a chain contour length much higher than that of chitlac (i.e 

rv2400 nm for HMW HA, rv1QOO nm for chitlac). The experimental conditions 

were the same as in the measurements previously performed with the LMW 

HA-chitlac mixtures (physiological condition, total polymer concentration 3°/o 
w/w and variable polymer ratio). 

FlowCurves 

Flow curves obtained with blends of HMW HA and lactose-modified chitosan 

also showed a shear-thinning behaviour (Fig. 4.6). The Newtonian viscosity 

of a 3% solution of HMW HA was extremely high, as expected from the large 

size of the HA polymeric chains. 
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~ • chitlac ·v; • o u 
Vl ·::; 
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1E-3 0.01 0.1 10 100 1000 10000 

shear rate (1/s) 

Fig. 4.6: Flow curves of blends of HMW HA-chitlac (pH 7.4), total concentration 3% wjw. 
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Flow curves obtained with these blends showed that the rheological 

behaviour of the mixtures was predominantly governed by the HMW HA 

component (Fig. 4.7). 
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Fig. 4.7: Dependence of the Newtonian viscosity on the weight ratio in blends of HMW HA 

and chitlac (pH 7.4). 

Indeed, only for HMW HA fraction lower than 0.3 the Newtonian viscosity 

abruptly dropped showing a decrease of more than one order of magnitude. 

Given the substantial difference between HA and chitlac chain size, the 

chitlac fraction had to be raised to significant values to observe a 

destabilization of the network formed by the molecules of HMW HA. 

No phase separation took piace over the entire range of polymer ratios 

examined. In the polymer mixtures here investigated the chitlac chains were 

rather short with respect to those of the HA sample. Here also chitlac-

mediated electrostatic inter-chain interactions were likely to occur but their 

bridging ability was not as estensive as to perturbe the already stable, highly 

interpenetrated network of very long HA chains. 
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Frequency Sweep 

Frequency sweep measurements were performed in order to evaluate the 

dependence of dynamic moduli G' (storage modulus) and G" (loss modulus), 

of HMW HA-chitlac blends on the periodically varying frequency of the 

applied stress (mechanical spectrum). 
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Fig.4/8: Frequency sweep measures of HMW HA solution 3% (wjwJ and of blends 

of HMW HA-chitlaç different ratios/ total concentration 3% {w/w). 
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As shawn in Fig. 4.8 the presence af chitlac had here an apposite effect 

compared with the LMW HA-chitlac blends. Blends containing up to 25% of 

chitlac displayed a dynamic response that, in terms of both elastic and 

viscous components, was comparable to that of a pure 3% solutions of 

HMW HA. However, upan increasing the chitlac polymer fraction, the cross-

aver point of the G' and G" moduli shifted to higher frequencies, clearly 

indicating that the presence of chitlac at weight fractions > 0.5 drastically 

reduced the elastic response of the palymer matrix. Furthermore, a 

concomitant decrease on moduli magnitude at cross-aver point was 

observed, demonstrating how the increasing chitlac fraction destabilized the 

HMW HA network. 
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In this chapter a rheological characterization of blends of chitlac and 

hyaluronic acid was performed, in arder to assess the influence of the 

chitosan-derived polymer on the well known viscoelastic properties of 

hyaluronic acid (HA). Two different HA samples, each other differing on 

chain length, were used far blends. 

Steady state shear viscosity data as well as oscillatory dynamic spectra 

obtained far blends containing chitlac and HA, both of comparable chain 

length (i. e.: LMW HA-chitlac mixtures), indicated that a stabilizing effect was 

exerted by the presence in the mixed polymer matrix of lactose-branched 

chitosan chains. Indeed, a synergistic effect on Newtonian viscosity as well 

as an increase in the elastic response were observed far these HA-chitlac 

transient networks, providing the chitlac weight fraction was sufficiently low. 

The higher stability of these chitlac/HA-riched mixed networks with respect 

to the transient network formed by a pure 3°/o wfw HA solution, likely 

accounted far chitlac-mediated inter-chain bridgings established by 

favourable electrostatic interactions. Apparently, far blends containing high 

chitlac weight fractions apparently the inter-chain bridging was so extensive 

as to lead to the formation of macroscopic, water insoluble aggregates. 

Steady state shear viscosity as well as oscillatory dynamic spectra obtained 

far chitlac-HMW HA mixtures highlighted that the rheological behaviour of 

the mixtures was essentially governed by the high molar mass HA 

component. A substantial fraction of chitlac ( :::::0.5) was needed to reduce of 

one arder of magnitude the Newtonian viscosity showed by a pure 3% w/w 

HA solution. These findings were confirmed by frequency sweep data, 

clearly indicating that the presence of chitlac at weight fractions > 0.5 

drastically reduced the elastic response of the polymer matrix, as deduced 

from the high frequency shift of the G' and G" cross-aver point, as well as 

from the decreased moduli magnitude. Far the chitlac-HMW HA blends, the 
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wide difference in contour chain length between HA and chitlac likely 

accounted for the high amount of chitlac required to reduce the viscoelastic 

properties of a HA-based transient network. 

Here also chitlac-mediated electrostatic inter-chain interactions are likely 

occurring but their bridging extent can not be as extensive as to perturbe the 

already stable, highly interpenetrated network of very long HA chains. 

From a biomedica! point of view, the synergistic effect observed in the 

system chitlac-LMW HA could be exploited to upgrade the viscoelastic 

properties of LMW fractions of HA (that are per se devoid of significant 

viscoelastic properties of appealing commerciai interest) with the bioactive 

chitlac component, in arder to develop a new formulation to be used in 

viscosupplementation protocols. On the other hand, the system chitlac-HMW 

HA could be useful as well as it has been already proved that high molecular 

weight hyaluronan-based preparations works better as viscosupplementation 

agents (Bellamy et al., 2006). Moreover, the additional presence of a small 

fraction of chitlac could introduce bioactive properties without depleting the 

viscoelastic properties of HMW HA matrix. 
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30 Scaffolds Based on Crosslinked Chitlac 

5.1 Introduction 

Chitosan has been used as a scaffolding materia! in articular cartilage tissue 

engineering (Nettles et al., 2002). Severa l in vitro studies yielded evidence of 

its potential value as a matrix to promote articular cartilage repair. It 

efficiently supports not only chondrogenic activities (Sechriest et al., 2000; 

Suh and Matthew, 2000), but also the in vitro expression of cartilage 

extracellular matrix proteins by human chondrocytes (Lahiji et al., 2000). It 

can also serve as a carrier for growth factors, and the polymer presents as 

well excellent biodegradability as well. 

An effective strategy to produce a stable scaffold based on chitosan is the 

utilization of a crosslinking agent to covalently bind different polymeric chains 

(Berger et al., 2004b). Three different crosslinkers have been selected from 

literature to be used for the synthesis of chemically crosslinked chitlac-based 

scaffolds. The principal aim was to develop a stable three dimensionai 

structure able to maintain the biologica! properties demonstrated by the 

polymer in solution (Donati et al., 2005) and therefore to be favourably 

applicable in cartilage tissue engineering. Severa! structures were 

synthesized and different techniques were used to characterize them. SEM 

was used to characterize the microstructure of the scaffolds, while water 

uptake and stability were assessed by equilibrium swelling experiments. The 

best scaffolds were then biologically tested, and primary cultures of porcine 

chondrocytes were seeded on them. The celi morphology, proliferation and 

matrix synthesis were evaluated. 

96 



5.2 Materials and Methods 

5.2.1 Materials 

CHAPTERS 
3D Scaffolds Based on Cross/inked Chitlac 

Chitosan and sodium cyanoborohydride (NaBH3CN) were purchased from 

Aldrich Chemical Co. (Milwaukee, Wl, USA). The crosslinker agents 1,4 

Butanediol Diglycidyl Ether (BDGE), Dimethyl Suberimidate (DMS) and 

Diethyl Squarate (DES) were purchased from Sigma (St.Louis, MO, USA). 

Dulbecco's Modified Eagle Medium (DMEM) culture medium, streptomycin, 

penicillin, foetal calf serum (FCS), trypsin/EDTA and PBS buffer were 

purchased from GIBCO-BRL (Grand Island, NY, USA). 12-plates and 24-

plates multiwell were from Sarstedt (Newton, NC, USA). Deionized MilliQ 

water (Millipore, MA, USA) was used to prepare ali the aqueous solutions. 

Type II collagenase was from Worthington Biochemical Corp. (USA). 

Ialuronidase and sodium cyanoborohydride were purchased from Sigma 

(St.Louis, MO, USA). Alamar Blue™ was purchased from Prodotti Gianni 

(Italy). Ali other chemicals were of analytical grade. 

5.2.2 Methods 

Scaffolds Preparation 

Lyophilized Chitlac was dissolved in milliQ water, to obtain a 2% solution (20 

mg/ml). 500 1-11 of 2% chitlac solution were poured in each well of a 24-plate 

multiwell, frozen for 24h at -20 °C and freeze-dried overnight. Different 

protocols were followed depending on the type of the crosslinker agent used. 

In ali cases, after the crosslinking reaction scaffolds were thoroughly washed 

with milliQ water to remove any excess of reagents and unreacted 
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molecules. At least 4 crosslinked samples were prepared with each type of 

crosslinking agent. 

Crosslinkers Used 

Three different crosslinking agents were selected to be used to produce 

covalently crosslinked chitlac structures: 1,4 Butanediol Diglycidyl Ether 

(BDGE), Dimethyl Suberimidate (DMS) and Diethyl Squarate (DES). 

Crosslinker Acronym Chemical Structure References 
1,4 Butanediol BDGE (Subramanian and 
Diglycidyl ~0~o~o Un, 2005) 
Ether 

Dimethyl DMS (Charulatha and 
Suberimidate 

NH Rajaram, 1997) NH 
Il Il 

CHp-C-CH2 (CH2)4 CH2 -C-OCH3 (Charulatha an d 

Rajaram, 2003) 

Diethyl DES O):J(O-JCH, (de Nooy et al., 
Squarate 2000) 

O O~CH3 

T ab/e 5.1: Crosslinking agents used. 

Preparation of Chitlac Crosslinked with BDGE 

Freeze-dried chitlac scaffolds were incubated at 37 oc for 16 hours with 

isopropanol solutions containing different percentages of BDGE ranging from 

0.5 to 4%. At the end of the reaction the samples were extensively washed 

with isopropanol, in order to remove any unreacted BDGE molecule. The 

BDGE-crosslinked chitlac scaffolds were then exhaustively washed with milliQ 

water and air-dried. 
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Preparation of Chitlac Crosslinked with DMS 

Freeze-dried chitlac scaffolds were incubated at room temperature overnight 

with aqueous solution (pH 9) containing different DMS percentage in the 

range 0.5-4%. The DMS-crosslinked chitlac scaffolds were then exhaustively 

washed with high amount of milliQ water and air-dried. 

Preparation of Chitlac Crosslinked with DES 

Freeze-dried chitlac scaffolds were incubated at room temperature overnight 

with aqueous solution (pH 11) containing different DES percentage in the 

range 0.5-4%. The DES-crosslinked chitlac scaffolds were then exhaustively 

washed with high amount of milliQ water and air-dried. 

Swelling Behaviour of the Scaffolds 

In order to assess the swelling behaviour of the crosslinked scaffolds in PBS, 

the specimens were withdrawn from a PBS solution at different ti me intervals 

and their wet weights were determined after blotting with a filter paper to 

remove the surface water. The swelling ratio was calculated using the 
equation: 

eq. 5.1 

where Esr is the amount of uptaken water (weight percent) by the polymer 

matrix, Wd and Ws are the weights of the samples in the dry and the swollen 

state, respectively. 
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The scanning electron microscope (SEM) is a type of electron microscope 

capable of producing high-resolution images of a sample surface. Due to the 

manner in which the image is created, SEM reproductions have a 

characteristic three-dimensional appearance and are useful for characterizing 

the surface structure of the sample. SEM has the capacity of magnifying 

features from 10 to 100,000X with a great depth of field and increased 

resolution, allowing the observation of magnified images of the specimen 

showing details not visible with a light microscope leading to a length 

resolution in the order of 25 A. The SEM uses electrons instead of light 

(photons) to form an image, in fact a very finely focused beam of electrons is 

produced at the top of the microscope by heating a metallic filament. The 

electron beam follows a vertical path through the column of the microscope. 

It makes its way through electromagnetic lenses which focus and direct the 

beam down towards the sample. Once it hits the sample, other electrons 

(backscattered or secondary) are ejected from the sample. Detectors collect 

the secondary or backscattered electrons, and convert them to a signal that 

is sent to a viewing screen, producing an image. As the electron beam scans 

the specimen, providing topographical information. The imaging process of 

the SEM takes piace when a cathode ray tube (CRT) is scanned 

simultaneously with the electron beam. The most common method of 

imaging utilizes secondary electrons. As the electron beam is scanned over 

the specimen, surface features in line of sight of the secondary electron 

detector will generate proportionally more electrons. The detector generates 

a signal that is proportional to the number of the electrons received as 

various surface features come under the electron beam. The intensity of the 

CRT beam is modulated proportionally to represent the magnitude of the 

signal arriving from the secondary electron detector. A picture is built up that 

represents the surface topographical features and are discerned by the effect 

that, for a "hill" on the surface, the side facing the detector will generate 
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more secondary electrons that are likely to arrive at the detector, and 

consequently, that side will appear brighter than the side that is not in the 

li ne of sight of the detector. 

Fig. 5.1: Scanning electron microscope (S-4700 SEM, Hitachi High Technologies Corp.). 

This technique has been used here to characterize the microstructure of the 

scaffolds produced via crosslinking of chitlac and the celi morphology of the 

chondrocytes seeded on the structures. 

SEM of Scaffolds 

Scaffolds were freeze-dried, split into two parts through the sagittal piane, 

mounted on an aluminium stub using double stick carbon tape and sputter 

coated with gold for 4 minutes. The outer surface and middle region of each 

sample were viewed using a scanning electron microscope (S-4700 SEM, 

Hitachi High Technologies Corp.). Digitai images were acquired using the 

software of the microscope. 

101 



Isolation of Cartilage 

CHAPTERS 
30 Scaffolds Based on Crosslinked Chitlac 

Thin slices of articular cartilage were aseptically removed from the humeral 

proximal head of mature pigs within 2 hours from the sacrifice. Cells were 

then isolated by enzymatic digestion of the tissue as described (Grandolfo et 

al., 1993). 

Chondrocyte Isolation 

The joint was cleaned, and the exposed cartilage was washed in sterile 

phosphate buffered saline (PBS). Articular cartilage from the humeral 

proximal head was dissected using a sterile surgical scalpel. The pieces of 

tissue were collected in sterile Petri-dishes containing hyaluronidase (270 

U/ml; Sigma, 1-S type), penicillin (500 U/ml; Sigma) and streptomycin (500 

U/ml; Sigma). The tissue was chopped into fine pieces and moved in a 

solution containing type II collagenase (250 U/ml; Worthington; ratio: 10 mi 

solution to l g tissue) in PBS, in presence of penicillin and streptomycin 

(sa me concentration as above). Enzymatic digestion of the tissue was carried 

on for 15 hours at 37 oc in a Budnoff chamber under stirring (80 rpm). The 

digestion solution was filtered with a sterile filter for plankton (pore size 20 

1-1m). The resulting celi suspension was centrifuged at 1000 rpm for 10 

minutes. The supernatant solution was aspirated and sterile PBS was added 

to the centrifuge tubes to wash the cells and remove residua! collagenase. 

The cells were then suspended in 1-2 mi of complete DMEM and the celi 

pellet was broken by repeated pipetting using a 5 mi pipette. After a uniform 

celi suspension was obtained, cells were counted in a Thoma chamber and 

cultured at the desired concentration. 
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Chondrocytes isolated from articular cartilage were transferred in a 75 mi 

flask with 10 mi of DMEM medium supplemented with 2% glutamine, 500 

U/ml penicillin, 500 mg/ml streptomycin and 10% FCS and cultured in a 

humidified incubator (37 °C, 5% C02). 

Celi Seeding into Scaffolds 

A celi suspension was obtained by enzymatic digestion with trypsin EDTA in 

PBS. The cells were washed by centrifugation (1200 rpm) and diluted to a 

concentration of 3.5 x 105 cells per mi in the appropriate culture medium. 

Before cell-seeding, scaffolds were arranged in separate wells of 12-well 

plates and sterilized with a cycle (15 minutes) of UV irradiation on each side 

of the structure. 

The celi suspension was pipetted through each scaffold ( 1 mi per scaffold) in 

order to foster celi attachment and cultured in a humidified incubator (37 oc, 
5°/o C02). 

Ce/1-seeded Scaffolds Culture 

Seeded scaffolds were transferred to 12-well non-tissue culture treated 

plates. One scaffold was placed in each well containing 1 mi DMEM medium. 

Three times per week, medium was removed and replaced with fresh culture 

medium. Cell-seeded scaffolds were cultured for 6 weeks in a humidified 

incubator (37 °C, 5% C02). 

SEM of Ce/1-seeded Scaffolds 

Cell-seeded scaffolds were washed with PBS (3X), fixed in 2.5% ( v/0 
glutaraldehyde solution in PBS at 4 °C for 3 hours, before washing in PBS. 
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Samples were then dehydrated through an increasing series of ethanol (70°/o 

[ vjv], 95% [v/v] and 100% [v/v]). After dehydration in 100% ethanol, a 

criticai point dryer was used to avoid the introduction of surface tension 

artefacts. Finally the scaffolds were cut, mounted on an aluminium stub 

using double stick carbon tape. Samples were then introduced into the 

chamber of the sputter coater, coated with gold for 4 minutes and viewed 

under the SEM microscope (S-4700 SEM, Hitachi High Technologies Corp.). 

Digitai images were acquired using the software of the microscope. 

A/amar Blue™ Assay for Celi Proliferation 

The Alamar Blue™ assay is based on the detection of metabolic activity of 

cells (Fields and Lancaster, 1993). The assay reagent, Alamar Blue™, 

contains a reduction-oxidation (REDOX) indicator (resazurin). The metabolic 

activity of cells, conferring reducing properties to the medium induces a 

chemical reduction of the reagent, leading to the formation of resorufin, a 

pink fluorescent product (O'Brien et al., 2000). Decreased fluorescence levels 

are indicative of a decrease in the synthetic rates of cells and therefore 

suggestive of cells being cultured in a less favourable environment and 

having a lower relative viability compared to cells that show higher 

fluorescence levels when incubated with Alamar Blue™. 

Calibration Curve forA/amar Blue™ Assay 

A celi number titration assay was performed in arder to determine a 

correlation between the number of cells seeded in each well and the 

fluorescence level. 

Chondrocytes were plated on a 12-well plate, in the range of 5 x 103 to 2 x 

105 cells/well in 1ml DMEM medium. The cells were cultured overnight in a 

humidified incubator (37 °C, 5% C02) to let the cells adhere to the plate. 
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The wells were washed twice with PBS and incubated with 1 mi of 10% 

Alamar Blue™ in DMEM culture medium for 4 hours in darkness within the 

humidified incubator (37 oc, 5% C02). Following gentle agitation, the 

solution was removed from each well. The samples were diluted 1:1 with 

DMEM culture medium and transferred into a quartz cuvette of 1 cm of 

optical path before the fluorescence measurement. 

The fluorescence intensity, with an excitation wavelength of 530 nm, was 

measured in the 500 to 700 nm range, amply covering the emission 

spectrum of Alamar Blue™ dye. A Fluorimeter Perkin Elmer LS50B was used, 

the measurements performed at 25°C using a thermostated celi holder. As a 

control, 1 mi of 10% Alamar Blue™ in DMEM culture medium without cells 

was incubated for 4 hours and analyzed as described above. 

After correction for the control readings, fluorescence intensity values 

measured at 590 nm were plotted as a function of celi number and the 

calibration curve obtained by linear least-square fitting. 

Fig. 5.2: Perkin Elmer LSSOB Luminescence Spectrometer. 
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Celi proliferation on Ce/1-seeded Scaffolds 
Cell-seeded scaffolds were transferred to a 12-well plate, washed twice with 

PBS and incubated with l mi of 10% Alamar Blue™ in DMEM culture medium 

for 4 hours in darkness within a humidified incubator (37 °C, 5% C02). 

Following gentle agitation, l mi was removed from each well. The samples 

were diluted l: l with DMEM culture medium and transferred in a quartz 

cuvette of l cm of optical path before the assessment of the fluorescence. 

Using an excitation wavelength of 530 nm, fluorescence intensity readings 

were collected in the 500 to 700 nm range. As a contro!, scaffolds without 

cells were incubated for 4 hours with l mi of 10% Alamar Blue™ in DMEM 

culture medium and analysed as described above. 
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5.3 Results and Discussion 

5.3.1 Scaffolds Production 

Three different crosslinking agents have been used to produce chitlac-based 

scaffolds, in ali cases exploiting as the crosslinking sites the primary amino 

groups remaining after chitosan derivatization. 

One of the physico-chemical properties shown by chitlac in comparison with 

native chitosan is the complete solubility at physiological pH. It is therefore 

of fundamental importance the introduction of covalent crosslinks to obtain a 

stable network of chitlac chains. The final purpose of a 3D chitlac-based 

scaffold is its application in a physiological environment in the hydrated 

state. Therefore, it is mandatory that the introduction of covalent crosslinks 

give rise to a stable network of covalently linked chitlac chains. 

The reticulation of the chitlac network, beside creating a stable structure, 

should preserve the bioactive lactose moieties available for the cells 

eventually seeded on the structure, stimulating them to synthesize the 

extracellular matrix components typical of the cartilage. 

Chitlac 

~ 
•= Lactose 

residue 

+ crosslinking -+ 
agent 

crosslinked chitlac 

Fig. 5.3: Scheme of the crosslinking of chitlac. 

1,4 Butanediol Diglycidyl Ether (BDGE), Dimethyl Suberimidate (DMS) and 

Diethyl Squarate (DES) have already been used in literature as crosslinker of 
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different polymers, among which also chitosan, for the production of 

scaffolds in protocols of tissue engineering (Charulatha and Rajaram, 2003; 

Charulatha and Rajaram, 1997; Subramanian and Un, 2005; de Nooy et al., 

2000). 

Crosslinker Acronym Chemical Structure 
1,4 Butanediol BDGE 
Diglycidyl ~o~o~o 
Ether 

Dimethyl DMS 
Suberimidate NH NH 

Il Il 
CH30-C-CH2 (CH2)4 CH2 -C-OCH3 

Diethyl DES ):(0_,cH, 
Squarate 

O O-""cH3 

Table 5.2: Crosslinkers Used 

5.3.2 Preliminary Characterization by SEM 

The first characterization of the obtained structures has been carried out 

using SEM. It was therefore possible to assess the microstructure of the 

scaffolds, with respect to the overall porosity, the pore size and the 

interconnectivity of the pores. The crosslinked structures were compared 

with a scaffold prepared by freeze-drying a not-crosslinked solution of chitlac 

used as reference materia!. The following pictures showed two progressive 

magnification of the sa me portion of the scaffolds (lOOx on the upper part of 

the picture, 400x on the lower), in order to focus the aspect of the 

microstructure at two different levels of organization. 
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The SEM analysis of not-crosslinked chitlac scaffold (Fig. 5.4), obtained by 

freeze-drying a 2% aqueous solution of chitlac, showed a highly porous 

structure, with interconnected and randomly oriented pores. 

The drawbacks of this structure were related to the lack of covalent 

crosslinks being the scaffold actually a "frozen" transient network, whose 

structure would be preserved only in the dry state. 

Fig. 5.4: Freeze-dried not-crosslinked chitlac scatto/d (2%). 
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The structures produced with 1,4 butanediol diglycidyl ether (BDGE) as 

crosslinking agent (Fig. 5.5) showed a tightly packed surface, while images 

taken from a transversal piane of the cylindrical samples presented a very 

regular structure, characterized by high porosity and by the presence of 

interconnected pores. The average pore size was 100 1-1m, inside the range 

suggested as optimum for the infiltration and attachment of chondrocytes 

(Agrawal and Ray, 2001). 

Fig. 5.5: Scaffold of chitlac 2%/ crosslinked with BDGE 1%. 

110 



CHAPTER5 
JD Scaffolds Based on Crosslinked Chitlac 

Dimethyl suberimidate (DMS) crosslinked chitlac scaffolds (Fig. 5.6) were 

characterized by an extremely regular texture throughout the enti re samples. 

Porosity of the structure was definitely high as was the interconnectivity of 

the pores. Pore size ranged from 20 to 50 1-Jm. 

Fig. 5.6: Scatto/d of chitlac 2%, crosslinked with DMS 0.5%. 
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Diethyl squarate (DES) has been already used in literature as crosslinker of 

chitosan. The observed structure (Fig. 5.7) was highly variable throughout 

the different parts of the samples, and the mai n consequence was a different 

pattern of porosity and pore size. The lack of a uniform pattern in the texture 

of the DES crosslinked scaffolds made it difficult to identify average pore size 

and generai features of the samples. 

Fig. 5. 7: Scaffold of chitlac 2%, crosslinked with DES 1%. 
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The preliminary characterization of the different samples with SEM allowed to 

visualize the mai n characteristics of the structures obtained with the different 

crosslinkers used (Table 5.3). These experiments were fundamental to 

assess the microstructural features of the scaffolds and to define the protocol 

of crosslinking of the structures themselves. The structures produced with 

the use of BDGE showed pore size range inside that suggested (Agrawal and 

Ray, 2001) as optimum for celi infiltration and attachment. The DMS 

crosslinked scaffolds were characterized by the highest porosity and pore 

interconnectivity. However, its pore size would be perhaps too low to be 

used as support matrix for celi delivery, if a final purpose is its application in 

cartilage tissue repair protocols. 

Crosslinker SEM PoreSize Interconnectivity 

BDGE low 

DMS 20-50 J.Jm high 

DES variable lo w 

Table 5.3. Summary of the pre/iminary SEM characterization of the crosslinked scaffolds. 
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A further set of experiments was performed to assess the stability as well as 

the ability of water uptaking of the synthesized 30 structures (Fig. 5.8). In 

order to mimic the conditions of a physiological environment these 

measurements were carried out in phosphate buffer solution (PBS) at pH 7.4. 

It is of paramount importance for a scaffold intended to be used in tissue 

engineering protocol to maintain its shape and mechanical stability for a time 

long enough to let the cells seeded on it synthesize a sufficient amount of 

extracellular matrix components. Indeed, specific biologica! and mechanical 

properties of scaffolds are required if to restore the physiological functionality 

of the damaged cartilage is the final purpose. 

The preliminary results of these experiments (not reported) showed that the 

scaffolds produced using DMS and DES as crosslinker were not stable 

enough with re-hydration. These scaffolds, whose structure characterization 

(SEM) in the dry state produced promising results, were therefore discarded 

for the use in biologica! tests. The main issue was that the structures were 

unable to retain their shape when immersed in the PBS solution with a 

consequent dissolution of the loosely crosslinked polymer in a time not 

compatible with any application. 

Attention was focused on the scaffolds produced by crosslinking chitlac with 

BDGE. These structures exhibited the ability of uptaking a great amount of 

aqueous medium, while maintaining their shape and a certain mechanical 

stability. 
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PBS 
swelling 

) 

Fig. 5.8: Pictures of dry and wet scatto/d made of chitlac crosslinked with BDGE (4% of 

crosslinker). Swelling in PBS. 

In order to i m prove mechanical properties of the scaffolds, it was decided to 

increase crosslinking density by increasing the concentration of the 

crosslinking agent. Hence, swelling experiments were performed on 

structures obtained by using 2% and 4% of BDGE. The time dependent 

swelling behaviours of BDGE-crosslinked chitlac scaffolds in PBS (pH 7.4) at 

room temperature are given in Figure 5.9 and Figure 5.10. 

o p 

Swelling Behaviour 
2% BDGE crosslinked scaffold 

3000 .---~-.---~---.---~---.--~--.-~----.~-.-----, 
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ro 2ooo 
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Q) 

~ 1000-tt------ -----------i 
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Fig. 5.9: Swelling behaviour of 2% BDGE-crosslinked scaffo/ds. 
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Swelling Behaviour 
4% BDGE crosslinked scaffold 

i!' • T T 
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,. 
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time (min) 

Fig. 5.10: Swelling behaviour of 4% BDGE-crosslinked scaffolds. 

Swelling behaviour data are the average of three trials. The reticulated 

structures showed to uptake a rather high amount of solvent reaching an 

equilibrium swelling ratios of 1880% and 2590% for the structures 

crosslinked with 2% and 4% of BDGE, respectively. These results were 

rather unusual, since generally an increase of the number of inter-chain 

linkages is expected to occur on increasing crosslinker concentration. The 

increased rigidity of the network reduces its swelling ability. The swelling 

equilibrium was reached very quickly for both the crosslinker concentrations, 

less than 20 minutes were necessary for the wet weight to get stable. 

Standard deviation was extremely low for the 4°/o BDGE samples, in 

comparison with the results obtained with 2%, indicating a higher variability 

for the samples produced with the lower amount of crosslinker. Since the 

scaffolds were already highly porous, water uptake did not significantly affect 

the volume of the scaffolds. 
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Having these scaffolds shown a high water uptaking ability as well as a 

satisfactory chemical stability a further characterization by SEM was 

performed (Fig. 5.11). These analysis were undertaken to assess the possible 

consequences of the use of a larger amount of BDGE on the overall porosity 

and on the pore size of the 3D structures. 

Fig.5.11: SEM of chitlac scaffolds crosslinked with BDGE (2% of crosslinke~ 100x and 4% of 

crosslinke~ 100x; in the box on the right: particular of a pore, 4% of crosslinke~ 400x). 

A porous structure was in ali cases ascertained, whatever the concentration 

of the crosslinker used (2% or 4%). It has been shown that the pore size 

was more variable than previously found, ranging from 20 to 100 1-1m, but a 

satisfactory degree of pore interconnectivity was maintained. An additional 

observation was that the global appearance of the structure using a 

crosslinker concentration of 4% was more regular. 
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5.3.4 Chondrocyte-seeded Scaffolds 

Following the results obtained from the swelling experiments and SEM 

characterization, scaffolds obtained by crosslinking of chitlac with 4% BDGE 

were chosen as testing materia! for celi seeding and further biologica! 

i nvestigation. 

The effects of the scaffolds on primary cultures of porcine chondrocytes is of 

fundamental importance to assess their biocompatibility in vitro as well as to 

verify that the bioactive stimuli already exhibited by the polymer in solution 

(Donati et al., 2005) is here maintained. 

Chondrocyte-seeded scaffolds were cultured for a period of 6 weeks. At 

defined time intervals the celi proliferation was assessed with the Alamar 

Blue™ method whereas the matrix synthesis and celi morphology was 

investigated with the SEM. 

5.3.5 SEM Analysis of Chondrocyte-seeded Scaffolds 

The scaffolds were analyzed after fixation with 2.5% glutaraldheyde at 

different time intervals, at l, 3 and 15 days after celi seeding. 

Day 1 (Fig. 5.12) 

Cells were attached to the surface of the polymeric structure. 1t was possible 

to observe cellular processes interacting with the chitlac scaffold. The celi 

morphology was rounded, as expected from completely differentiated 

chondrocytes. The cells were not spread on the surface, so it was possible to 

exclude any dedifferentiation of the cells towards a fibroblast-like phenotype. 

After only 24 hours from the seeding celi aggregates were present. 
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Fig. 5.12: chondrocyte-seeded BDGE-crosslinked chitlac scatto/d, 1 day after seeding. 

As demonstrated previously by our group (Donati et al., 2005) lactose-

modified chitosan was capable to induce celi aggregation. This feature was 

observed on the three dimensionai scaffolds as well, clearly suggesting the 

maintenance of specific bioactivity also after the BDGE-crosslinking 

procedure. 

Day 3 (Fig. 5.13) 

After 3 days of culture, cells were stili attached on the scaffolds, the 

presence of aggregates was observed and it was possible to identify the 

synthesis of newly formed fibres surrounding the aggregates. 

These 3D scaffolds turned then out to be able to maintain the differentiation 

of the chondrocytes (round morphology) and to trigger the synthesis of 

components of the extracellular matrix. 
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Fig. 5.13: chondrocyte-seeded BDGE-crosslinked chitlac scatto/~ 3 days after seeding. 

Day 15 (Fig. 5.14) 

The size of the celi aggregates was increased after 15 days of culture, as it 

was increased the amount of the fibres surrounding the cells. 

Fig. 5.14: chondrocyte-seeded BDGE-crosslinked chitlac scatto/~ 15 days after seeding. 
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At this time point a mesh of fibres is completely surrounding the cells 

attached to the scaffold. A large extent of newly produced matrix was 

present over each celi aggregate. 

In conclusion, SEM demonstrated that the BDGE-crosslinked chitlac scaffolds 

had many positive features as structures to be used in cartilage tissue 

engineering protocols: 

- The polymer used as building block and the three dimensionai 

microstructure were able to maintain the differentiation of the 

chondrocytes seeded on the scaffolds. There were no fibroblast-

like cells spread on the surface of the construct. 

- Chitlac maintains the capacity of inducing chondrocyte 

aggregation, as it was previously demonstrated for the polymer 

dissolved in solution and hence it was possible to identify, 24 hours 

from the seeding, the presence of large aggregates whose size 

increased with time culture. 

- Cells seeded on the scaffolds were stimulated to synthesize 

components of the extracellular matrix. 3 days after seeding it was 

already possible to identify fibres surrounding the celi aggregates; 

15 days after the seeding the cells were completely surrounded by 

a dense mesh of newly synthesized matrix. 

5.3.6 Celi Proliferation 

To perform celi proliferation assay on the scaffolds, it was essential to 

determine a calibration curve to correlate the fluorescence value resulting 

from the reduction of the Alamar Blue™ reagent with the related number of 

cells. A known number of chondrocytes, ranging from 5 x 103 to 2 x 105 was 

plated and analyzed with the Alamar Blue™. The measured fluorescence 
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intensity values were linearly least-square fitted and the calibration curve 

obtained (Fig. 5.15). 

600 .....---.----..---.---r--r-"C"""al'-l-"ib,.....ra...,t*"io"'-;-n__,C;-""u..,.,rv=;e_,_,fo"T""r--'l'C=h-ron,..,d.._ror=,cvt~4eS 
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Fig. 5.15: catibration Curve for chodrocytes with the A/amar Blue ™. 

Making use of the above reported curve, it was easy to determine the exact 

number of cells present on the scaffolds as a function of ti me culture. 

The scaffold were seeded with 3.5 x 105 chondrocytes and the proliferation 

was assessed after 3 days, 11 days, 22 days and 44 days. 

The fluorescence value obtained on the first measurement at day 3 after 

seeding corresponded to a number of cells of 1.2 x 105• Unfortunately, this 

data showed that the seeding protocol adopted was not completely efficient, 

resulting in a partial delivery of the initially seeded cells on the scaffold. In 

fact, a large amount of cells growing attached to the bottom of the well, 

away from the scaffolds could be easily visualized by optical microscope 

(data not shown). Then, to avoid any interference from the cells growing 

without being attached to the scaffolds, the structures were moved in a new 

multi-well plate before each Alamar Blue™ measurement. 
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In the following 3 weeks an increase in the celi number on the scaffolds was 

observed, with the total number of chondrocytes reaching 2.65 x 105
• The 

last analysis, performed 6 weeks after the seeding, showed a substantially 

unchanged number on cells on the scaffolds. 

In conclusion, a better seeding protocol should be prepared, in order to 

deliver the desired number of cells on the scaffold, avoiding them to fall 

away from the structure or pushing them on it. 

Alamar Blue assay 

350 
rn,..n,••nn.~ .. c seeded scaffolds 

250 -t---+--+---1-- ! 
B c 

~ .. CII 
o 150 -+···-··· ····+ ---·-
:::11 = 100 

50 

5 10 15 20 25 40 45 50 

days 

Fig. 5.16. Celi proliferation on chondrocyte-seeded scaffolds. 

Days Fluorescence Cei/Number 

3 115 120000 

11 175 175000 

22 268 265000 

44 273 270000 

Table 5. 4: Celi number from A/amar Blue ™ assay. 
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In this chapter, three different crosslinking agents were evaluated as 

crosslinking agents in order to produce three-dimensional scaffolds based on 

lactose-modified chitosan. 

The structures synthesized using BDGE, DMS and DES were initially 

characterized with SEM in order to evaluate the microstructure of the 

scaffolds, with respect to the overall porosity, pore size and pore 

interconnectivity. The scaffolds produced with BDGE had an average pore 

size of 100 ~m, those crosslinked with DMS a pore size ranging from 20 to 

50 ~m and a high porosity and interconnectivity. DES-crosslinked structures 

showed a more variable structure, with a random pattern of porosity and 

pore size. A set of swelling experiments was performed to assess the fluid 

uptake and the stability of the scaffolds. 

Although swelling results were rather unusual, the 3D structures produced 

with BDGE were the only ones stable enough to retain their shape and size 

with re-hydration. Having ascertained the swelling properties as well as 

chemical stability of the BDGE-cross linked scaffolds, attention was focused 

on this particular scaffold to carry out the biologica! tests. 

Primary cultures of porcine chondrocytes were seeded on the scaffolds and 

cultured for 6 weeks. Celi morphology and matrix synthesis were assessed 

with the SEM while the celi proliferation was investigated by the Alamar 

Blue™ method. 

SEM analysis showed that the BDGE-crosslinked chitlac scaffolds were able to 

maintain the chondrocyte phenotype, as demonstrated by the spherical 

shape of the cells attached on the structures. The formation of celi 

aggregates was demonstrated after 24 hours from the seeding as it was 

possible to identify the presence of newly formed fibres surrounding the 
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aggregates (from day 3 of culture), with the formation of a mesh of matrix 

inglobating the cells at day 15 after seeding. 

Alamar Blue™ assay disclosed the low initial efficiency of the seeding method 

used. However, Alamar Blue™ assay clearly showed that the celi number 

increased in the first three weeks of cultures and then remained stable for 

the following three weeks. 

In conclusion, the BDGE-crosslinked chitlac scaffold turned out to be a very 

promising biomaterial that coupling biocompatibility with specific biologica! 

activity could likely be used in protocols for cartilage tissue engineering. 

Further characterization of the produced matrix is needed in order to 

qualitatively, as well as quantitatively, determine the synthesizing activity of 

the chondrocytes. 
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The overall objective of this study was the utilization of a lactose-modified 

chitosan (chitlac) in cartilage tissue engineering. Chitosan is a cationic 

polymer that has been extensively used in biomedica! sciences, mainly for its 

several disclosed properties: it is biocompatible, biodegradable, easy to 

manufacture and of low cost. 

Many chitosan-based scaffolds have been tested in vitro as delivery systems 

for chondrocytes, to be applied in cartilage tissue engineering protocols. 

As far as the lactose-modified chitosan (chitlac) is concerned, it has been 

shown that, as solubilized polymer, it is able to maintain chondrocyte 

differentiation and to induce celi aggregation, resulting in the formation of 

nodules of considerable size. Moreover, the ability of the polymer to trigger 

the synthesis of specific markers (type II collagen and aggrecan) of ECM of 

the articular cartilage tissue has been reported as well. 

The first ai m of this work, was to investigate the hydrodynamic properties of 

the lactose-modified polymer in comparison with those of the native 

chitosan. From the intrinsic viscosity determination and rheology data it 

turned out that lactose branching accounted for a more dense coiling 

conformation assumed by chitlac chains with respect to the parent chitosan. 

The influence of chitlac on the viscoelastic properties o hyaluronic acid (HA) 

was also addressed. HA is the polymer responsible for the viscoelastic 

properties of the synovial fluid and the main agent in viscosupplementation 

formulation. 

Steady state shear viscosity data as well as oscillatory dynamic spectra 

obtained for blends containing chitlac and HA, both of comparable chain 

length (chitlac-LMW HA mixtures), indicated that a stabilizing effect was 

exerted by the presence in the mixed polymer matrix of lactose-branched 
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chains. Indeed, an unexpected synergistic effect on Newtonian viscosity as 

well as an increase in the elastic response were observed for these HA-

chitlac transient networks. Rheological measurements for chitlac-HMW HA 

mixtures highlighted that the rheological behaviour of the mixtures was 

essentially governed by the high molar mass HA component. For the chitlac-

HMW HA blends, the wide difference in contour chain length between HA 

and chitlac likely accounted for the high amount of chitlac required to reduce 

the viscoelastic properties of a HA-based transient network. 

30 chitlac-based scaffolds were prepared, their chemical stability as well as 

biocompatibility and bioactivity toward chondrocyte cells investigated. The 

prepared scaffolds were able to maintain the bioactive properties shown by 

the polymer in solution. Indeed, they were able to maintain chondrocyte 

differentiation, to induce celi aggregation and to stimulate extracellular 

matrix synthesis. 

As shown here chitlac displays rather interesting properties which could be 

exploited in cartilage tissue engineering protocols. Its hydrodynamic 

behaviour and intrinsic bioactivity, coupled with the already demonstrated 

viscoelastic properties of hyaluronic acid, would be of extreme interest for 

the development of new formulation for viscosupplementation treatment of 

osteoarthritis. 

The preliminary results from the physico-chemical and biologica! 

characterization of crosslinked scaffolds based on chitlac are promising for a 

future application in the field of cartilage regeneration. 

Further development of these scaffolds would be represented by the 

preparation of chitlac-based interpenetrated networks, where the additional 

polymer (for instance hyaluronic acid) would favourably contribute in terms 

of mechanical and bioactivity properties. 
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The present study speci fically ai m ed at preparing an d characterizing semidilute binary polymer mixtures of alginate 
and chitlac which might find an application in the field of celi encapsulation. A polyanion, alginate, and a polycation, 
a lactose-modified chitosan, were mixed under physiological conditions (p H 7.4 and N aCI 0.15) andata semidilute 
concentration avoiding associative phase separation. The mutuai solubility was found to be dependent on the 
charge screening effect of the added NaCl salt, being prevented below 0.05 M NaCI. A comparison with the 
behavior ofthe po\yanion (alginate) under the same experimental conditions revealed that both the viscosity and 
the relaxation times of the binary polymer solutions are strongly affected by the presence of the polycation. In 
particular, the occurrence of electrostatic interactions between the two oppositely charged polysaccharides led to 
a synergistic effect on the zero-shear viscosity of the solution, which showed a 4.2-fold increase with respect to 
that ofthe main component ofthe solution, i.e., alginate. Moreover, the relaxation time, calculated as the reciproca! 
of the criticai share rate, markedly increased upon reducing the alginate fraction in the binary polysaccharide 
solution. However, the formation of the soluble complexes and the synergistic effect are reduced upon increasing 
the concentration of the l: l electrolyte. By containing a gel-forming polyanion (alginate, e.g., with Ca l+ ions) 
and a bioactive polycation ( chitlac, bearing a ,8-linked o-galactose ), the present system can be regarded as a first 
step toward the development of biologically active scaffold from polysaccharide mixtures. 

Introduction 

Polysaccharides have been extensively used fora wide variety 
of applications encompassing food science (as thickeners, 
stabilizers, fat substitute, and taste release systems) and bio-
(medical)technology ( articular viscosupplementation 1- 4 and celi 
therapy5- 7 above ali). In particular, the latter has gained an 
increasing attention in the scientific community, and numerous 
applications of alginate, hyaluronan, and chitosan for tissue 
engineering and celi encapsulation have been proposed.8•9 

Besides the interest elicited by natura! polyelectrolytes when 
considered singularly, it is generally agreed that their mixing 
could lead to complex biomimetic systems resembling the 
biologica! milieu of entangled macromolecules, commonly 
termed as Extracellular Matrix (ECM), that embeds cells 
providing for adhesion and proper biomechanical signaling. 
Moreover, the simultaneous presence of different polysaccha-
rides is expected to induce notable variation of the overall 
physicochemical properties of the system. In fact, i t has been 
established that the solution properties of biopolymer mixtures 
can be qui te different from those of the pure components, 10•11 

due to their synergistic interactions. 12- 17 

Alginate and chitosan are a polyanion and a polycation, 
respectively, easily isolated from natura! sources. The former 
polysaccharide is produced by marine brown algae and bacteria 
and consists of 1-4 linked ,8-o-mannuronic acid and u-L-
guluronic acid arranged in different types ofblock-wise patterns. 

* Corresponding author: Te!: +39 040 558 2403, Fax: +39 040 558 
3691, e_mail: idonati@units.it. 

+ University of Trieste. 
l Norwegian University of Scìence and Technology (NThlJ). 

At variance, chitosan is obtained from chemical deacetylation 
of chi ti n, the main component of the exoskeleton of crustaceans, 
and is composed of 1-4 linked ,8-o-glucosamine units with 
some residua! 2-acetamido-2-deoxy-{3-o-glucosamine groups 
randomly distributed along the polymer chain. When considering 
the possibil ity of preparing solutions containing both such 
oppositely charged polysaccharides, it should be kept in mind 
that the use of pH values above ~6 is prevented by the 
precipitation of highly deacetylated chitosans. 18 For a similar 
reason (gelation/precipitation of alginate ), the use of p H values 
lower than ~3 has to be avoided. This implies that when alginate 
and chitosan solutions are mixed, the contemporaneous presence 
of negative charges on the polyanion (alginate) and positive 
charges on the polycation ( chitosan) leads to associative phase 
separation which cannot be suppressed by adding l: l electro-
lytes, as usual for mixtures of oppositely charged polysaccha-
rides.l9 In fact, tbc intrinsic lack of mutuai solubility between 
these two polysaccharides has been exploited to reinforce and 
to contro! the permeability of calcium alginate capsules in the 
field of celi microencapsulation.20·21 The latter has emerged as 
a feasible approach for the production of insulin-producing 
biorectors for the treatment of type I-diabetes. 22 

However, the analysis of the main features of the two 
polysaccharides as such might sprout the idea that a soluble 
combination of the two systems could be beneficiai for many 
applications. In fact, alginate has been extensively studied for 
its ability to form stable gels, under cell-friendly conditions, 
when in contact with solutions containing the proper divalent 
cation (such as calcium).7•23 On the other hand, chitosan is a 
biodegradable biopolymcr with intcresting antimicrobial and 
hcmostatic propertics.24 Moreover, the prcscnce of amino 
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groups on the polymer backbone renders highly deacetylated 
chitosans particularly appealing candidates for the development 
of a bioactive biomaterial through the insertion of celi specific 
ligands such as oligosaccharide sequences. As an example, the 
introduction of /3-linked D-galactose moieties (as the non-
reducing end in lactitol) on the chitosan backbone led to an 
engineered polysaccharide, named chitlac, granted of both 
biologica! significance25•26 and complete solubility at neutra! p H. 

Prompted by these considerations, the possibility ofpreparing 
binary polymer solutions by using the two oppositely charged 
polysaccharides, namely alginate and chitlac, was explored. In 
the present paper, the flow properties of the binary polymer 
solutions were analyzed by means of a rheological approach 
and the results compared with those displayed by the single 
polymeric components considered separately. In particular, the 
presence of a synergistic effect on the viscosity and on the 
relaxation time ofthe binary polymer solution, as a consequence 
of the inter-polysaccharide electrostatic interactions, was as-
sessed. 

Materials and Methods 

Sodium alginate isolated from Laminaria hyperborea stipe, LF l 0/ 
60 (FG = 0.69; FGG = 0.56; Mw = 1.3 x 105), was provided 
by FMC Biopolymers (Norway). Chitlac (1-Deoxylactit-1-
ylchitosan (CAS registry number 85941-43-1), Mw approxi-
mately 1.5 x l 06) sample was prepared according to the 
procedure reported elsewhere.25 N-(2-Hydroxyethyl)piperazine-
N'-(2-ethanesulfonic acid) sodium salt (HEPES) and poly+ 
lysine (PLL) were purchased from Sigma Chemical Co. (St. 
Louis, MO). Sodium chloride was from Aldrich Chemical Co. 
(Milwaukee, WI). 

Binary Polymer Solution. The preparation of the binary polymer 
solution was accomplished by mixing different amounts of a l% (w/ 
V) solution of chitlac with a 3% (w/V) solution of alginate under 
vigorous stirring. Binary polysaccbaride mixtures containing different 
alginate weigbt fractions ('V Alg refers to the binary polymer composition) 
were therefore obtained. Tbe polymer solutions were prepared in the 
presence of 0.15 M sodium cbloride maintaining a constant HEPES 
concentration (IO mM, pH 7.4). In addition, tbe mixing ofthe alginate 
and chitlac solution was also attempted at pH 5.5 in the presence of 
NaCl (0.15 M) and at pH 7.4 without additional 1:1 electrolyte. 

Photon Transmission Intensity (Transmittance) Measurements. 
The transmittance of the binary polymer mixtures containing alginate 
and chitlac was measured at different wavelengtb values (namely 480 
nm, 520 nm, and 600 nm, respectively) with a Cary4E UV-visible 
spectrophotometer. For comparison, the transmittance of each of the 
two oppositely charged polysaccharides was determined. 

1H NMR Spectroscopy. The 'H NMR spectra were recorded al 90 
oc with a Bruker Advance DPX 400 spectrometer with the chemical 
shifts expressed in ppm downfield !rom the signa] of 3-(trimethylsilyl)-
propansulfonate. The binary polymer solution, at a total concentration 
of0.2 g/L, was treated following the procedure reported by Grasdalen,27 

and the pH was adjusted to approximately 7 prior to analysis. 
Viscosity Measurements. Reduced capillary viscosity was measured 

at 25 °C by means of a Schott-Gerate A VS/G automatic apparatus and 
an Ubbelohde type viscometer. For the polysaccharides used in the 
present study, the intrinsic viscosity ([r7]) values were determined by 
analyzing the polymer concentrati an dependence of the reduced specific 
viscosity V/spie) an d of the reduced logarithm of the relative viscosity 
(In IJ,.k) by use ofthe Huggins (eq l) and Kraemer (eq 2) equations, 
respectively: 

(l) 
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ln(tlrel) [ ] k"[ ]2 --= rJ - Yf c 
c (2) 

where K and K' are the Huggins and Kraemer constants, respectively. 
Rheological Measurements. Rheological measurements were per-

formed on a Stress-Tech general-purpose rheometer (Reo logica instru-
ments AB, 22363 Lund, Sweden) using a cone-plate geometry (50 mm 
radius, l 0 ). The solutions of alginate, chitlac, and the different binary 
polymer mixtures were loadcd on the plate of the rheometer, and the 
viscosities at different shear rates were obtained by means of steady-
state measurements. Two replicate measurements were performed for 
cach sample. The complcx viscosity (17*) and the storage (G') and loss 
(G") moduli of the binary polymer solutions were recorded in thc 
frequcncy range 0.01-50 Hz (maximurn strain <3%). Ali the measure-
ments were pertòrmed at 25 °C. 

Results and Discussion 

(a) Binary Polymer Solutions from Oppositely Charged 
Polysaccharides. In order to study the behavior of a semidilute 
binary polymer mixture of alginate and chitlac, a 2% (wN) 
solution with an alginate weight fraction (1/JAig) of 0.75 was 
considered.28 First, the possibility of preparing such a mixture 
containing the two oppositely charged polysaccharides under 
semidilute conditions avoiding extended coacervation/precipita-
tion was asscssed. As reportcd in Figure la (column A), a 
complete miscibility between alginate and chitlac was achieved 
under physiological conditions, i.e., in the presence of N aCl 
0.15 M and at pH 7.4. Moreover, it was noted that both neutra! 
pH and the presence ofa sufficient amount ofadded salt (NaCl) 
are required to guarantee the mutuai solubility ofthe oppositely 
charged polysaccharides. In fact, the transmittance ofthe binary 
mixture dropped when the pH of the solution was lowered to 
5.5 (Figure la column B): it can be reasonably correlated with 
the simultaneous increase of charge density on the chitlac 
component of the mixture and the decrease on the alginate one. 
Similarly a decrease of the concentration of the added salt in 
the binary polymer mixture induced an associative phase 
separation (Figure la column C) due to (i) a net entropie gain 
by the counterions ofthe polyelectrolytes upon phase separation 
and (ii) a reduction of the charge screening effect between the 
polyelectrolyte chains (i.e., increasing the Debye length, K- 1, 

defined as the distance over which the electrostatic field of an 
ion extends with appreciable strength, being K2 oc l). The use 
of p H = 7.4 and the presence of a 1: l clectrolyte at 0.15 M 
concentration did not, per se, imply the mutuai miscibility of 
oppositely charged polyelectrolytes. In fact, Figure l a (column 
D) reports the decrease in transmittance detected upon replacing 
chitlac with poly-L-lysine (PLL) in the binary polymer solution. 
This result was not surprising, since the polycation PLL has 
been extensively reported to stabilize calcium-alginate gel beads 
through the formation of coacervates on the surface of the 
negatively charged bead in the so-called "coating" process.29•30 

Therefore, an active role of the bulky N-lactit-1-yl groups of 
chitlac in hampering polyanion-polycation extended associa-
tions at neutra! pH can be preliminarily proposed. 

The effect of l :l electrolytes on the solubility of the binary 
mixture was further assessed by reducing the overall concentra-
tion of NaCl in the solution. In ali the cases reported, the 
reduction of NaCI was compensated by the addition of a 
nonionic solute (mannitol) to attain isoosmolar conditions. As 
seen from Figure lb (column C), a minimum concentration of 
0.05 M of N aCl is required to allow for the mutuai solubility 
of the two polysaccharides. 
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Figure 1. (a) Relative transmittance (%, 600 n m) of a binary polymer 
solution containing alginate (1.5%) and chitlac (0.5%) in (A) NaCI 0.15 
M, HEPES 10 mM, pH 7.4; (B) NaCI 0.1 5 M, pH 5.5; (C) HEPES 10 
m M pH 7.4; (D) relative transmittance (%, 600 nm) of a binary polymer 
mixture containing alginate (1.5%) and poly-L-Iysine (0.5%) in NaCI 
0.15 M, HEPES 10 mM, pH 7.4. (b) Relative transmittance (%) of a 
binary polymer solution containing alginate (1.5%) and chitlac (0 .5%) 
in (A) NaCI 0.15 M, HEPES 10 mM, pH 7.4; (B) NaCI 0.1 M, mannitol 
0.1 M, HEPES 10 mM, pH 7.4; (C) NaCI 0.05 M, Mannitol 0.2 M, 
HEPES 10 mM, pH 7.4; (D) NaCI 0.025 M, Mannitol 0.25 M, HEPES 
10 mM, pH 7.4. (To = trasmittance ofthe alginate solution considered 
separately). 

The binary solution containing both alginate and chitlac was 
characterized by means of 1H NMR analysis (Figure 2b) which 
revealed, in addition to the signals assigned to the polyanion 
(Figure 2a), the presence of a doublet centered at around 4.55 
ppm, arising from the side-chain galactose moieties on chitlac. 
I t is noteworthy that the NMR signals of the anomeric protons 
of alginate in the binary polymer mixture sample ha ve not been 
altered, under the experimental conditions used for the analysis, 
by the presence ofthe polycation. In fact, the diadic composition 
calculated for the alginate in the binary polymer mixture (Fo 
= 0.67; Fao = 0.55) correlates very well with pure alginate 
sample (Fa= 0.69; Fao= 0.56). Since the anomeric protons 
of the in-chain sugar residues of chitlac are shifted upfield at 
pH 7.4 (spectrum not reported), no interference of such signals 
in the anomeric region of the spectrum was detected. 

(b) Alginate Solutions in the Semidilute Regime. An 
analysis ofthe mai n rheological properties of semidilute alginate 
solutions has been considered as preliminary to the investigation 
of any synergistic interaction of alginate with chitlac in the 
polymer mixture. T o this end, the specific viscosity of al gina te 
solutions was measured under the same conditions used for the 
preparation of the binary polymer mixture (i.e., N aCI 0. 15M; 
HEPES l O mM; p H 7.4 ). Figure 3 reports the dependence of 
"f/sp on the coi! overlap factor, CAJg[T/], for alginate in both dilute 
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Figure 2. 1H NMR spectra of (a) alginate and of (b) the binary 
polymer mixture of alginate (1 .5%) and chitlac (0.5%). The additional 
peak at around 4.55 in part b can be assigned to the anomeric proton 
of the tJ-galactose moieties in chitlac. 
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Figure 3. (•) Dependance of the specific viscosity on the coil overlap 
factor for alginate in NaCI 0.15 M, HEPES 10 mM, pH 7.4 . ('"··) 
Theoretical dependance calculated on the basis of eq 4 ([!]]Aig = 
5.44dUg; k ' = 0.353 as determined from eq 1 in dilute conditions; c 
= C.19). lnset: magnification of the main figure in the semidilute 
regime. The linear regression (- -) of the experimental data in the 
latter concentration regime gave R 2 = 0.987 and a slope of 3.1 . 

and semidilute regimes. CAJg is the specific concentration of 
alginate, expressed in the units of ([T/ ])-1. The measurements 
of T/sp have been perforrned with a capillary viscometer for 
CAJg[T/] values below 4, while a rotational rheometer (steady-
state conditions) was used for solutions with a higher polymer 
concentration. In the latter case, the zero-shear viscosity, T/r=o, 
was extrapolated from the T/ - y dependence by means of the 
so-cal!ed Cross equation.31 ,32 

In the semidilute condition, i.e., for a coi! overlap factor 
higher than 4,33 the specific viscosity of the polysaccharide 
solutions was found to scale with the polymer concentration 
according to T/sp oc CA1l 1 (Figure 3 inset). The latter value is 
somewhat lower than expected for a semidilute entangled 
system, i.e. T/sp oc c 1514, but it is in good agreement with the 
value already reported in literature, i.e. , ~3.3,33 thus supporting 
the validity ofthe experimental data. In the same concentration 
regime, the relaxation time, TrcJax (TrcJax = lli'cr where Ì'cr = 
0.8jlo34) scaled as Treiax oc CAJgl.8, thus substantially in good 
agreement with the value expected for a semidilute entangled 
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Figure 4. Dependance of the viscosity (17) on the shear rate (Ji) for 
(O) alginate (1.5%), (&) chitlac (0.5%) and (•) their binary mixture 
(final concentration: alginate 1.5% and chitlac 0.5%; 1/JAig = 0.75) in 
NaCI 0.15 M, HEPES 10 mM, pH 7.4. 

systcm, i.c. 'l'~ c312• For sakc of comparison, a scaling law of 
'Z'rc!ax oc c2·2 was found in thc case of hyaluronan.35 

It has bccn rcportcd that in thc case of hyaluronan36 the 
experimental trend of the specific viscosity can be reproduced 
by means ofthe four-term equation resulting fi-om the tnmcated 
form of the exponential expression derived by Martin: 

17sp = {[rJ]c)/'[q]c (3) 

which reads 

where [17] and k' are the intrinsic viscosity and the Huggins 
constant, respectively, of the polysaccharide, and c is the 
polymer specific concentration. Along this line, eq 4 was used 
to calculate the Y}sp- (CAig[rJ]} relationship for alginate under 
the above-reported experimcntal conditions. A good agreement 
between the experimental data and thc theoretical curve (Figure 
3) was obtained, hence demonstrating the feasibility of this 
approach. 

(c) Addition of Chitlac: Synergistic Effect on Viscosity. 
The possibility ofpreparing binary polymer solutions containing 
a polyanion (alginate) and a polycation (chitlac) does not per 
se imply the complete lack of interaction between the two 
oppositely charged macromolecular species. On the contrary, 
the viscosity of a binary polymer solution (alginate weight 
fraction, 1/JAlg = 0.75: alginate concentration = 1.5%(w/V), 
chitlac concentration 0.5% (w/V)) (Figure 4) is about 4.2-fold 
higher than that exhibited by the main component ofthe mixture 
when considered separately, i.e., the 1.5% alginate solution. 
Taking into consideration the rather low viscosity displayed by 
a 0.5% solution of chitlac, it seems safe to allocate this 
synergistic effect on the viscosity of the binary system to the 
presence of interactions of electrostatic origin between the two 
polysaccharides. The latter statement is confirmed by consider-
ing the zero-shear viscosity ofthe same binary polymer solution 
in the presence of a higher concentration of added salt, namely 
NaCI 0.75 M, where the ratio between the viscosity ofthe binary 
system and that of the main component of the mixture, i.e., 
alginate, decreases from 4.2 to 3.1 (not reported). Once more, 
the increase of sodium chloride screened the electrostatic 
interactions between alginate and chitlac and reduced the entropy 
gain driving the formation of inter-polyelectrolyte complexes. 
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Figure 5. Dependance on the alginate weight fraction (1/lAig) of the 
difference between the experimentally measured (1/sp•xP) and theoreti-
cally calculated (1/splheor) specific viscosities of the binary polymer 
solution of alginate and chitlac. The latter was calculated on the basis 
of eq 5 assuming no interaction between the two polymeric compo-
nents of the mixture ([1/]chillac = 3.49dUg; K = 0.488 as determined 
from eq 1 in dilute conditions). Solvent: NaCI 0.15 M, HEPES 10 
mM, pH 7.4. The line has been drawn to guide the eye. 

In view of the very good agreement between the experimental 
data and the theoretical predictions (as calculated from eq 4) 
achieved for the viscosity of alginate solutions in semidilute 
conditions (see Figure 3), a similar approach was used to predici 
the specific viscosity of the binary mixture of alginate and 
chitlac, 17spthcor, on the basis of the relative concentration of the 
two polysaccharides: 

theor = [ ]theor(C +C . )e"'h""'[qJlh""'(CA,.+c,,") rJ sp rJ Aig ch1t (5) 

w h ere 

(6) 

cf>i being the weight fraction of the i-th components of the 
mixture (alginate or chitlac) and [q]; its intrinsic viscosity. 

Under the assumption that no interaction is occurring between 
the two oppositely charged polysaccharides, the Huggins cross-
coefficient reads: 

ktheor = "'\' cp .k. L.J Il 
(7) 

with ki the Huggins coefficient of the i-th component of the 
mixture considered separately in the same solvent and at the 
same temperature. 

Figure 5 reports the dependence of the difference between 
the experimental, 17spcxp, and the theoretical zero-shear viscosity, 
17spthcor, on the alginate weight fraction in the case of binary 
polymer mixtures of alginate and chitlac. It should be noted 
that, in the 1fJ AJg-range explored, the higher is the fraction of 
chitlac in the binary polymer solution (and consequently the 
lower the fi-action of alginate present), the higher is the deviation 
in the zero-shear viscosity from the value expected assuming 
no interactions between polymers (according to eq 5). Titis result 
provided additional confidence on the interpretation of the 
synergistic effect on the viscosity of these binary polymer 
solutions as due to electrostatic interactions between the positive 
charges on the polycation and the negative charges on the 
polyanion. Moreover, the monotonic increasing curve reported 
in Figure 5 suggests that in the soluble complexes formed 
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Figure 6. Verification of the Cox-Merz rule for the binary polymer 
solution containing alginate (1.5%) and chitlac (0.5%) in NaCI 0.15 
M, HEPES 10 mM, pH 7.4: (•) dependance of the viscosity (r,) on 
the shear rate (y) and (L») dependance of the complex viscosity (r,*) 
on the angular velocity (w). 

betwecn alginate and chitlac, the polycation is likely to induce 
the aggregation of severa! al gina te chains, thus forrning a highly 
dynamic micronetwork in solution, with an overall negative 
charge.37 I t is important to note, however, that the forrnation of 
the electrostatic interactions between the macromolecules and 
the relevant increase in viscosity did not lead to the forrnation 
of aggregates or microgels on a large scale. In fact, i t was found 
that the Cox-Merz rule38 held in the case ofthe binary polymer 
solution, as reported in Figure 6. 

The synergistic effect arising from the interaction between 
the polycation and the polyanion was quantified in the case of 
a binary polymer solution containing 1.5% (w N) alginate and 
0.5% (wN) chitlac in NaCI 0.15 M. Under the assumption that 
no interaction between the two polymeric components of the 
mixture occurs, the zero-shear viscosity predicted by eq 5 is 
approximately 198 mPa·s (equa! to that of a !.95% (wN) 
alginate solution). Conversely, the zero-shear viscosity cxtrapo-
latcd for the actual binary mixture (1/JAig = 0.75) was found to 
be approximately 407mPa·s, corresponding to the zcro-shcar 
viscosity of a ~2.45% alginatc solution (Figure 3 inset). 1t 
therefore seems likely to conclude that the electrostatic contacts 
between the oppositely charged polyelectrolytes fonncd (large) 
soluble complexes which span over a relevant portion of the 
volume of the solution. The ensuing increase of viscosity 
corrcsponds to a "virtual" increase of the total polymer 
concentration of approximately ~0.5% (w N). 

A further insight into the main features ofthe binary polymer 
mixture of alginate and chitlac was achieved from the analysis 
of the viscosity (17)-shear rate y dependence (Figure 4). In 
particular, in the case of the binary polymer mixture, a more 
pronounced shear-thinning behavior was detected, with respect 
to the pure alginate solutions, directly implying a notable effect 
on its relaxation time. In fact, Figure 7 shows that by reducing 
the fraction of alginate (and its concentration) in the binary 
polymer solution (and consequently increasing the fraction of 
chitlac), a nonlinear increa5e ofthe relaxation time ofthe system 
was measured. Conversely, a linear decrease of Trciax was found 
for pure alginate solutions with (decreasing) concentration 
equaling the total polymer concentration present in the binary 
polymer mixtures (and then with constant 1/JAig = 1). Numeri-
cally, the relaxation time of the binary polymer solution (rrclax 
~ 83 ms) containing the two oppositely charged polysaccharides 
(1/JAig = 0.75, alginate concentration 1.5% (wN), chitlac 
concentration 0.5% (w N)) resulted to be approximately l order 
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Figure 7. (•. bottom x-scale) Dependance ofthe relaxation lime <relax 
(rrelax = 1/Jicr where i'cr = 0.8Jio34) on the alginate weight fraction 1/JAig 
in the case of binary polymer solutions of alginate and chitlac (having 
the total polymer concentration reported as CA;g + Cchit). (O, top 
x-scale) Dependance of the relaxation lime, <relax. of alginate solutions 
on the concentration, with alginate concentrations equaling the total 
polymer concentrations of the binary systems. The lines have been 
drawn to guide the eyes. 

0.75 .---.--.---.--.---r----r----r-~---, 

0.70 
...... 

0.65 .• 
'O;' 0.60 .. e::, 0.55 
i 

l" 
0.50 

ai 
0.45 11!1·' 

0.40 • 
4 10 

days 
Figure 8. (e) Zero-shear viscosity (t~r~o)-storage lime relationship 
for the binary polymer mixture (final concentration: alginate 1.5% and 
chitlac 0.5%; 1/JAig = 0.75; T= 25 °C). Solvent: NaCI 0.15 M, HEPES 
10 mM, pH 7.4. The line has been drawn to guide the eye. 

ofmagnitude higher than that ofan alginate solution (~3.6 ms) 
of equa! total polymer concentration (i. e., 2% )- Once more, this 
behavior is explained by considering the presence, in the 
semidilute binary polymer solution, of soluble polyanion-
polycation complexes which, by fastening polymer chains 
through electrostatic interactions, likely hamper (to some extent) 
their molecular motions hence accounting for the higher time 
required by the system to relax after the application ofthe stress. 

The characterization so far reported has been perforrned on 
freshly prepared solutions. However, a preliminary screening 
of the effect of time on the properties of the mixtures has also 
bcen carried out In particular, it was noted that the zero-shcar 
viscosity increascd upon storing the binary polymer mixture 
(1/JAig = 0.75) at room temperature (Figure 8). Far from being 
conclusive, this observation seemed to point at the possibility 
of rearrangements on the soluble complexes which occur on 
long time-scales and induce further aggregation ofpolysaccha-
ride chains. In ali the cases, however, the fonnation of networks 
on a large scale was not detected, since the Cox-Merz rule 
stili applied to the 9-day-stored binary mixture (data not 
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reported). However, further analyses are needed to confirrn the 
latter observation. 

Conclusions 

The use ofpolysaccharide mixtures to develop Extracellular 
Matrix (ECM)-like systems enabling celi embedding and tissue 
engineering is a current challenge for biomaterial engineering. 
In this sense, key aspects such as the polymer miscibility and 
the presence of synergistic effects on the overall physical 
properties of the mixture have to be properly addressed and 
explored fora successful tìnal outcome. Two main contributions 
deserve to be stressed based on the results of this study: 

(i) The miscibility between the polyanion alginate and the 
polycation chitosan is achieved, under the proper experimental 
conditions, when a bulky and highly hydrophilic side-chain 
moiety, namely lactitol, is introduced onto the latter. 

(ii) The presence ofnegative charges on one polysaccharide 
and of positive charges on the other one leads to interpolymer 
electrostatic interactions which induce the forrnation of soluble 
complexes and account for a notable increase of both viscosity 
and relaxation time of the binary polymer solution (i.e., 
synergistic effect). However, the (likely) transient and dynamic 
nature of the electrostatically based network di d no t induce large 
scale aggregations nor microgel forrnation. 

It is worth mcntioning that in the prcscnt case thc choicc of 
polymeric materials for the binary mixture overcomes stringcnt 
physicochemical considerations (i.e., solubility and nct charge). 
In fact, by containing at the same ti me a bioactive (chitlac) and 
a ionotropic (alginate) polysaccharide, the binary polymer 
solution presented here might be a very appealing candidate 
for the development of an engineered semi-IPN hydrogel 
obtained under cell-friendly conditions. Along this line, the 
semidilute mixture of alginate and chitlac described in this paper 
is currently under study for the development of a bioactive 
scaffold for articular chondrocytes encapsulation with potential 
applications in cartilage reconstructive surgery.28 In addition, 
from the standpoint of a polymeric solution, a synergistic effect 
on the viscosity could be of interest in ali those applications in 
which one single polysaccharidic component does not provide 
for adequate viscoelastic properties. 
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