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A B S T R A C T

Cellular automata are simple discrete deterministic rules that can however produce different, from simple
to very complex, dynamics, and it would be useful to have a criterion to classify their behaviour. Here, we
argue that the investigation of surface growth as described by the cellular automata provides a quantitative
method to classify them. To this aim, the growth behaviour of cellular automata describing pure growth has
been analysed. The automata fall into three classes: a first class is formed by the rules where the surface
width saturates, and includes also rules that display Family-Vicsek scaling. A second class is constituted by the
rules where the surface width grows indefinitely, which we call the dendritic-growth class. Finally, some rules
belong to the non-growing class. A quantitative analysis shows a finer sub-division in clusters, some of which
are close to known models of growth, while others do not have any counterpart in the literature. This work
demonstrates the capabilities of deterministic cellular automata to describe a large variety of growth regimes,
and suggests that their growth behaviour may be also used as an effective tool for their classification.
1. Introduction

Cellular automata (CA) are discrete deterministic algorithms that,
using simple rules, are able to produce a variety of different behaviours,
from periodic to chaotic. It would therefore interesting to be able
to classify them according to their behaviour, also because cellular
automata are ubiquitous in science and technology. The basic idea
was developed by von Neumann [1], and it is attractive for its ability
to simulate systems of interacting entities with simple rules, which
may however generate complex and unpredictable behaviour. Some
of them, such as Conway’s Game of Life [2], were used as models of
biological processes. More recently, cellular automata have been shown
to quantitatively reproduce pattern growth in real systems, such as
lizard skin [3,4], mussel beds [5], and tumours [6]. It was demon-
strated that specific CA have the capability of reproducing complex
behaviours implementing a Universal Turing machine [7]. Finally, a
cellular automaton is used in the scientific package Mathematica to
generate pseudo-random numbers. Despite their seeming simplicity,
they are known to display a large variety of behaviours, from periodic
to chaotic.

Cellular automata display a wide variety of behaviours, and for this
reason, it is desirable to find a way to classify them according to these
differences. Surprisingly, a complete classification of cellular automata
has been accomplished only for the case where the space is one dimen-
sional (1D). Wolfram classified the 1D CA in four classes, depending
on their long-time behaviour [8]. Such classification does not exist in
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higher dimensions. Moreover, we note that this classification is very
qualitative, distinguishing only whether the initial patterns evolve into
(1) stable, homogeneous patterns; (2) oscillating patterns; (3) pseudo-
random or chaotic patterns; and (4) complex patterns. Classification is
therefore one of the main open problems in the study of cellular au-
tomata [9]. A more quantitative approach used the roughness exponent
of the spatio-temporal configurations of 1D CAs, but only managed to
distinguish the class (4) from the others [10].

Here we address the problem of investigating and classifying the
behaviour of a set of 2D CA (pure-growth cellular automata), and we
argue that a more quantitative classification can be obtained, based on
the growth behaviour of starting configurations with randomly filled
sites on the lattice. This combines the various behaviours of determin-
istic rules with the random fluctuations in the initial conditions. This
situation mimics growth processes in physics, chemistry and biology,
and allows to put CA in the broader context of models of growth that
have played a great role in the last decades.

Moreover, this approach is relevant also for the study of growth pro-
cesses. Growth processes are ubiquitous in nature, and regard systems
as diverse as surfaces and interfaces in materials [11,12], nanoparti-
cles [13], colonies in ecology, bones and tissues in biology [3], and
water droplets in atmospheric science. Different growth mechanisms
can lead to different morphologies of the involved entities, and this
affects their interaction with the environment in a crucial way: in mate-
rials, rough surfaces result in increased friction and enhanced chemical
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reactivity; malignant tumours have more often irregular shapes than
benign tumours. Correspondingly great is the interest in understanding
and controlling these growth processes. Several models have been
developed that are able to reproduce growth processes in a universal
fashion, but limited to certain regimes. Interestingly, models that differ
in their microscopic mechanisms may lead to the same long-time and
long-distance behaviour, as described by the critical exponents of time
and length dependence. They belong then to the same universality
class. Only a few universality classes are known. Among models of
growth, the Kardar-Parisi-Zhang [14] and the Edwards-Wilkinson [15]
models belong to different universality classes, and physically corre-
spond to different limiting regimes of growth. In cases of correlated
noise, one can have a whole continuum of critical exponents, as in
Ref. [16], where they were able to have the roughness exponent 𝛼
continuously changing from 0.5 to 1, and the growth exponent 𝛽 from
1/3 to 1. It is rare and difficult to produce a model with an entirely
different long-time and long-distance behaviour by modification of the
known models. Here we show that a particular class of deterministic
and discrete algorithms, known as cellular automata, contains members
that cover a broad range of critical exponents, and therefore represent
entirely different universality classes from one another, and from the
known ones. This is intriguing because it provides a whole new play-
ground for the description of growth processes and, moreover, it does
so with a family of deterministic algorithms. Summarizing, we study
the growth behaviour of a family of cellular automata, and in doing so
we both provide a classification of cellular automata, and we show the
power of cellular automata for the description of different regimes of
growth.

More in detail, we have investigated a family of 2D cellular au-
tomata on a square lattice, and analysed the growth of surfaces from an
initial random seed. This provides a classification scheme of the rules in
term of their growth behaviour, namely in three classes, which we call
the saturating class, the dendritic-growth class, and the non-growing
class. Several automata belong to the first class and display a saturation
of the surface width. Some of these also follow the Family-Vicsek
scaling [17], which in itself is an unexpected finding. However, we also
identified a behaviour where the surface width is unbound, and grows
indefinitely. This behaviour mimics dendritic growth, and therefore we
call this the dendritic-growth class. For some rules, the surface does
not grow at all (non-growing class). Moreover, analysis of roughness
exponent and growth exponent shows that each of the first two classes
has a further sub-division in clearly separated clusters, thus providing
a fine structure to the classification. These results suggest that the
classification of cellular automata according to their growth behaviour
is quantitative, robust, and useful. We propose that this classification
scheme could be applied more generally to cellular automata. Finally,
these findings demonstrate that cellular automata provide a unified
framework for the investigation of a wide variety of growth regimes.

2. Methods

A (1+1) model of growth has been considered, on a two dimensional
square lattice with Moore neighbourhood. Each site on the lattice
has two possible states, as it can be empty or full (occupied). The
Moore neighbourhood includes the 8 neighbouring sites in the square
lattice. With this neighbourhood, the number of occupied sites in the
neighbourhood ranges from 0 to 8, Fig. 1a . A useful way to represent
these CAs is then shown in Fig. 1b, for the case of rule 5: an empty cell
becomes full if and only if it has either 1 or 3 full neighbouring cells.
The CA itself is indicated by a number deduced from the rule, using
powers of 2: since in this rule the cell becomes full only with 1 or 3
neighbours, it is indicated as rule 5: 21−1 + 23−1 = 1 + 4 = 5. This is
analogous to Wolfram’s nomenclature [8], and it is unambiguous.

The system is in (1+1) dimensions, in the sense that the sur-
face is extended in one direction, and grows in the perpendicular
direction [18–20]. The initial configuration consists in a flat surface
2

Fig. 1. (a) Schematic view of a Moore neighbourhood on a square two-dimensional
lattice surrounding site ‘c’. The Moore neighbourhood used in this study includes the
central site ‘c’ and 8 surrounding sites. (b) Schematic view of the rule 5. The scheme
indicates how the rule operates when the site ‘c’ is empty (first row) and when it is full
(second row). In the shown case the red filled circles indicate that the empty cell gets
filled when the number of occupied neighbours is equal to 1 and 3. Full sites always
remain full, as shown in the second row, because we consider pure-growth rules. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 2. Schematic view of surface identification in a 1+1 growth model. The wavy
black area represents the state of full (occupied) sites at time t for the CA. At any
given time the state of CA another cellular automaton (DCA) is initialized on a opposite
row denoted by red plus symbols and propagates in all directions (red arrows) until
it is stopped by the surface of CA state. The surface (red solid line) can therefore be
determined by DCA. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

perturbed by a random set of points. The initial seed consists of a first
full layer and a second layer where each site is full with probability
0.5. Starting from these initial configurations, the state of the system
was evolved deterministically with outer-totalistic pure-growth rules.
The outer-totalistic rules are those whose dynamics depends only on
the occupation of the central site and the number of occupied sites in
the neighbourhood, i.e. in the 8 adjacent sites (Moore neighbourhood).
The pure-growth rules are the rules that do not allow a filled site to
become empty during the dynamics. In a 2D square lattice there are
256 such rules, and they have all been considered here. Clearly, the
total number of rules on a square lattice with a Moore neighbourhood
are many more, exactly 229 = 2512 ∼ 10154. They are not only too many
to be studied computationally, but, also, most of them represent cases
with no symmetry, which are physically difficult to justify. For this
reason, we have chosen to limit this work to the full class of outer-
totalistic pure-growth rules. A diagnostic cellular automaton (DCA),
is used to find the surface. In short, the DCA is initialized in a non-
occupied area above the surface of the CA state at a given time and it
propagates in all the directions until it is blocked by the occupied sites
of the CA state, Fig. 2. This allows to label the sites of the CA as surface
sites. Notice that this definition allows for overhangs, at difference from
solid-on-solid models.

In Fig. 3 rule 4 and 36 are shown. In rule 4 an empty site is
filled at the next iteration when only 3 surrounding sites are occupied
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Fig. 3. Examples of single realizations of CA evolution for the rule 4 in cluster 3, of the dendritic-growth class (a), and rule 36 in cluster 2, of the saturating class (b). The top
diagrams schematizes the rules. In case of void site (upper row indicated by empty black circle on the left) the site is filled in the next iteration if any 3 over 8 surrounding
sites are already filled (rule 4) and for rule 36 the central site is filled if 3 or 6 surrounding sites are filled at previous step. The diagrams indicate also that if the site is filled
(second row marked with filled black circle) for any occupation of the surrounding the site remains filled. To avoid interactions with the boundary conditions the statistics are
computed only in the central region (L = 2500) limited by the vertical horizontal lines shown in both panels. The horizontal coloured lines represents the surface computed after
50 iteration (green), 500 iterations (yellow) and 1250 iterations (cyan). The corresponding roughness exponent 𝛼 is reported. Upper and lower plots are symmetric with respect
to 𝑥-axis; the surface is shown in the lower part at several numbers of evolution steps, with different colours to distinguish them. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
(occupation level 3). In rule 36 an empty site is filled at the next
iteration when 3 or 6 surrounding sites are occupied (occupation level
3 or 6). The evolution of the model state, according to the specific
rule, is done iterating the application of the rule in each site of the
domain simultaneously, therefore the time step is discrete. The sim-
ulations were performed using an open source Fortran-90 code. The
model internally computes state and surface evolution. The domain
is composed of 5000 × 5000 cells, the system was propagated for
1250 steps. To avoid effects from the cell borders, all quantities were
calculated only for the central 2500 cells (L = 2500). The choice of L is
mainly based on computational resources available. We tested L = 5000
to be able to perform approximately 500 ensemble members. For a
selected rule, rule 20 (see below for more details), we performed a
test with L = 20000 but the number of members was limited to 10
for the limits in computational resources. We would like to stress that
this test, as well as the scaling tests reported in the Results section
show that the considered sizes are enough to reach convergence and
support our conclusions. For a representative subset of rules, we have
run more realizations to investigate the statistics of the rule and its
sensitivity to the initial conditions. Most rules behave unspectacularly
in this respect. For the interesting cases reported in the main text, 512
runs with different random seeds were performed. Critical 𝛽 exponents
were calculated over the first 50 temporal iterations for all the 512
simulations. Mean values of 𝛽 parameters and corresponding standard
deviations are reported in the section below.

The main considered quantity is the surface width, W, and its
dependence on length and time. W is defined as

𝑊 (𝐿, 𝑡) = ⟨

1
𝐿 ∫

𝐿

0
(ℎ(𝑥, 𝑡) − ℎ(𝑡))2𝑑𝑥⟩1∕2 (1)

To identify the universality class of a rule, the Family-Vicsek scaling
relation [17] was employed:

𝑊 (𝐿, 𝑡) ∼ 𝐿𝛼𝑓 ( 𝑡
𝐿𝑧 ) (2)

where f is a function such that f(u) ∝ u𝛽 for u ≪ 1 and f ∝ constant for
u ≫ 1, t is the time, and L the length. 𝛼, 𝛽, and z = 𝛼∕𝛽 are the critical
exponents, and models with the same critical exponents belong to the
same universality class. In a model following the Family-Vicsek scaling
relation, W first grows with time as t𝛽 , then it saturates. At large times,
W ∝ L𝛼 .
3

3. Results

In Fig. 3, we show the results of the dynamics for two representative
rules, namely the rules 4 and 36. Rule 4 fills an empty cell if it has 3
filled neighbouring cells, rule 36 fills an empty cell if it has either 3 or
6 filled neighbouring cells. The surface is shown as a continuous line
after 50 iterations (green), 500 iterations (yellow), and 1250 iterations
(cyan). The cells that are filled after 2500 iterations are shown as
black spots in the graph. The evident difference in ‘smoothness’ of the
surface, which can be seen with naked eye, can be made quantitative
by the analysis of the surface width and its behaviour: rule 4 does not
display any saturation of the surface width 𝑊 , which continues to grow
indefinitely, while for rule 36 the width saturates to a finite value. Even
though 𝑊 continues to grow indefinitely in rule 4, still the roughness
exponent converges to a finite value. Similar considerations were made
for all the rules.

The 256 non-trivial outer-totalistic pure-growth rules in (1+1) di-
mensions considered here can be classified in 3 main classes, according
to the observed growth behaviour: (a) rules showing a saturating
behaviour; (b) rules with indefinite growth of the surface width W; (c)
non-growing rules. Roughness exponent 𝛼 and the growth exponent 𝛽
for 32 representative rules from classes 𝑎 and 𝑏 are shown in Fig. 4,
together with the most representative models of surface growth. As
shown in Fig. 4, the rules clearly group in clusters: the rules belonging
to the same cluster have very similar exponents, clearly separated
from the other clusters in the 𝛼-𝛽 plane. The clusters represent a finer
structure of classification with respect to the classification in classes.
Some rules have the same exponents for obvious reasons (for example,
they differ only by their behaviour when all 8 neighbours are full), in
other cases the equivalence of behaviour could have not been foreseen
without explicitly simulating the rule dynamics. Before discussing more
in detail the results shown in Fig. 4, we proceed to comment on the
different classes separately.

3.1. Saturating class

The rules belonging to this class display a long-term saturation of
the surface width: there is initially a transient, non-universal behaviour,
followed by a regime where the surface width W ∝ t𝛽 , and finally by
saturation to a limiting value, characterized by the roughness exponent



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 185 (2024) 114997P. Lazzari and N. Seriani
Fig. 4. (a) Critical exponents of the surface growth of (1+1) cellular automata (CA), together with the critical exponents of some known models. 𝛼 is the roughness exponent; 𝛽 is
the growth exponent. Red squares: critical exponents from 512 realizations of each CA. The bars represent the standard deviations of 𝛼 and 𝛽. Each cluster is marked with a number
labelling rules with similar behaviour. Clusters 1, 2, 6, 8 and 9 belong to the saturating class, while the clusters 3, 4, 5, 7 belong to the dendritic-growth class. The rules composing
each of the nine clusters are detailed in the SI. Black circle: Edward-Wilkinson model; black square: quenched Edward-Wilkinson model; black rhombus: Kardar-Parisi-Zhang model;
black triangle down: quenched Kardar-Parisi-Zhang model; solid dark green line: models with correlated noise from Ref. [16]; black triangles up: other continuum classes (see SI).
(b) Composition of each cluster with the corresponding rules numbers. The rule numbers in bold is represented with a schematic of the rule function, for example Cluster 1 is
composed by rules 1, 65, 129, 193 and rule 1 is displayed. The full representation of all rules grouped by clusters is reported in the SI. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
𝛼, W ∝ L𝛼 , where L is the size of the system. Clusters 1, 2, 6, 8, and 9
belong to this class. Moreover, cluster 9 has the more stringent feature
of displaying dynamic Family-Vicsek (F-V) scaling: the dynamic F-V
scaling of W appears when, normalizing the ordinate and the abscissa
by 𝐿𝛼 and 𝐿𝑧, all W curves for different L collapse to a single one,
as shown in Fig. 5. The appearance of Family-Vicsek (F-V) scaling
is the first unexpected result of this work: F-V scaling was originally
derived for continuum models with stochastic dynamics, while here
discrete models with a deterministic dynamics are considered. The
other clusters do not provide evidence of a clear collapse of scaled
growth curves , see SI where we show the scaling plot for a represen-
tative rule for each cluster. In particular cluster 1 shows a collapse for
short characteristic lengths, up to L = 625, while for L = 1250, 2500
there is an underestimation of the scaled W at saturation. Cluster 2,
6 and 8 do not show collapsing curves at all. Clusters have different
exponents from one another, i.e. they represent different universality
classes. Cluster 9 is closest to Edward-Wilkinson and Kardar-Parisi-
Zhang universality classes in the 𝛼-𝛽 plane, but the analysis of the
exponents extracted from several starting seeds suggests that the differ-
ence is statistically significant (see SI). The other clusters lie far from
any known universality class.

For each cluster, the fractal dimension can be calculated from the
roughness exponent 𝛼 as d𝑓 = 2 − 𝛼 [21], giving d𝑓 = 1.81, 1.62, 1.47,
1.82 and 1.57 for the clusters 1, 2, 6, 8, and 9, respectively.

3.2. Dendritic-growth class

A second class of rules offers an intriguing behaviour: the rules do
not follow the saturating behaviour of the first class because the surface
width W continues to grow indefinitely, following a behaviour observed
only in non-linear differential equations for dendritic growth. However,
even in these cases, W still initially grows as t𝛽 , and the roughness
exponent converges to a finite value with time, so that a well defined 𝛼
can be calculated and well describes the limiting behaviour of the rule
at long times. Also rules from this class are therefore reported in Fig. 4.
As for the saturating class, also the rules from the dendritic-growth
class clearly group in clusters: clusters 3, 4, 5, and 7 belong to this
class. By inspection of the CA configurations during the simulations, the
reason for the peculiar behaviour of this class has been identified in the
presence of ‘pits’, i.e. of local configurations on the surface that do not
grow at all, and are invariant under the rule dynamics. This ensures that
they continue to exist indefinitely, and that remain at the same height
(or depth), while the rest of the surface keeps growing. The formation
4

of these pits depends on the rule, and they have a finite density on
the surface. Their contribution dominates W, and the result is that W
diverges with time. A simple model of surface growth with non-growing
pits shows that W will be linear in the height of the growing part of the
surface, i.e. W will be dominated by the height difference between the
advancing front and the (static) bottom of the pits (see the SI).

Also in this class, most of the clusters of rules are far from any
known universality class. Cluster 7 is close to the line given by a family
of models for spatially correlated ballistic deposition from Ref. [16].
In any case, since these CA do not obey Family-Vicsek scaling, their
behaviour had to be regarded as fundamentally different even if the
exponents coincided.

The clusters 3, 4, 5, and 7 have fractal dimensions of 1.52, 1.31,
1.28, and 1.34, respectively. The fractal dimensions of the surfaces from
the dendritic-growth class are lower than those from the Family-Vicsek
class, as the corresponding roughness exponents 𝛼 are higher.

3.3. Non-growing class

Class 𝑐 contains the rules where growth stops after few steps, or does
not take place at all. This is because the growth conditions are never
realized at the surface (for example, the rule where the cell gets filled
only if it has 8 full neighbours). These cases are trivial and have not
been analysed further (see SI).

3.4. Connection between rule and exponents

The analysis of the rules in terms of critical exponents identifies
nine clusters of rules, belonging either to class 𝑎 or class 𝑏. Within each
cluster, the rules behave in a very similar way. Here we analyse the
connection between the rule (i.e. which numbers of filled neighbours
activate growth) and the behaviour of the CA in terms of critical expo-
nents. The clusters 1-6 show 𝛽 higher then 0.5 and large variability in
terms of 𝛼. Clusters 1 to 6 are characterized by growing when only one
surrounding site occupation level is met in the range 1-3. For example,
cluster 1 contains the rule 1 that activates growth when only one
surrounding site is occupied. Moreover, the differences among clusters
1-6 are controlled by response to occupation levels 6-7. The remaining
clusters, 7-9, show lower 𝛽 with variable 𝛼. Cluster 7 activates growth
when 2, 4, 7 surrounding sites are filled. Rules generating cluster 8
are similar to the ones in cluster 1 but involve also occupation levels
5 or 6. Cluster 9 is composed by all the rules that grow with 3 or 5
occupation levels and any configuration for occupation higher than 5.
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Fig. 5. Family-Vicsek scaling over the average of ten randomly initialized realizations of rule 20 (cluster 9) on a domain of size 20000. Time evolution of the surface roughness
W for 8 different characteristic lengths (L = 78, 156, 312, 625, 1250, 2500, 5000, 7500) shown with different temporal sampling: every step (panel a) every 10 steps panel (c)
and every 100 steps (panel e). Normalized plots sampling every step (panel b) every 10 steps panel (d) and every 100 steps (panel f) are reported. The corresponding parameters
are growth exponent 𝛽 = 0.21 ± 0.02, roughness exponent 𝛼 = 0.43 ± 0.01 and dynamic exponent z = 2.04. Red scatter dots are the W from simulation members before averaging.
It has to be noticed that clusters from the saturating class (clusters 1,
2, 6, 8, 9) tend to have a smaller 𝛼 with respect to the clusters from
the dendritic-growth class (clusters 3, 4, 5, and 7). Still, clusters from
the two classes can be quite close in the plane: cluster 2 is closer to
cluster 3 than to any other cluster. Cluster 9 and 7 are quite close to
theoretical models obeying the Family-Vicsek scaling.

3.5. Bifurcations

As described in the Methods section, for the interesting rules we ran
512 realizations to investigate the statistics of the rule and its sensitivity
to the initial conditions. While most rules behave unspectacularly in
this respect, a noticeable behaviour is seen in the rules in cluster 2
and 7. There, as shown in Fig. 6, a bifurcation behaviour is observed
for W as a function of time. Some realizations fall into the long-
term steady state from the start, while others follow a high-W branch.
The two clusters belong to different classes: cluster 2 belongs to the
saturating class, while cluster 7 belongs to the dendritic-growth class.
This is reflected in the long-term fate of the branching: in cluster 2, the
realizations that follow the high-W branch(es) tend to decay into the
low-W steady state, so that at long times the low-W prevails. This is
reflected in the fact that the standard deviation of 𝛼 is low for cluster
2, but it is huge for cluster 7 (see Supporting Information). Indeed, in
cluster 7 the branching is permanent, i.e. it exists also in the steady
state. In cluster 7 this behaviour is related to the emergence of singular
structures, triggered by specific combinations of the initial conditions,
that are conserved with time. Still, even in this case, the variability
of the dynamic exponent of a rule is limited, to the point that the
dynamic exponents of different rules are different from one another at
a statistically significant level.

4. Discussion

The present work offers insight on two issues: the classification of
cellular automata, and the capabilities of cellular automata as models of
growth. Regarding classification, the investigation of growth behaviour
provides an elegant, flexible, and quantitative way to classify the
5

CAs considered here: it clearly distinguishes three main classes: the
saturating class, the dendritic-growth class, and the non-growing class.
As suggested also by Fig. 3 and by the Supporting Information, the
difference in behaviour among the three classes is striking to the point
that visual inspection of the growing interface already gives a clear
idea about the class the rule belongs to. Then, quantitative analysis
providing the roughness exponent and the growth exponent of each rule
makes it possible to identify the fine structure of the classification, with
each of the two first classes displaying a further division in clusters, as
shown in Fig. 4. This classification is quite robust as the differences in
exponents among the clusters are considerably larger than statistical
errors and fluctuations arising from the random nature of the initial
seed or the numerical analysis to extract the exponents. Moreover,
we argue that a similar analysis could be performed also on other
cellular automata beside those of pure growth considered in this work;
therefore, this classification has the potential to become a universal tool
for classification of cellular automata, also for other dimensions. This
goes however beyond the scope of the present work.

At the same time, the exponents also provide a picture on how clus-
ters of cellular automata describe growth regimes that are completely
different from one another, in the sense that they represent distinct
universality classes of growth. The search for novel universality classes
is an active field of research, specially in non-equilibrium physics [22],
and for this reason it is interesting to discuss the relation between the
present CAs and existing theoretical models and experimental systems,
for which critical exponents have been determined.

The main models for surface growth in (1+1) dimensions are re-
ported in the 𝛼 − 𝛽 plane in Fig. 4. Some of the CAs considered here
appear also to be close to known models of growth. Cluster 9 from the
saturating class lies close to the Edward-Wilkinson model (𝛼 = 0.5 and 𝛽
= 0.25), but the difference appears to be statistically significative (see
Supporting Information). Beside this, also the universality class com-
prising the quenched KPZ [23] and the directed percolation depinning
model [24–26] (𝛼 ∼ 0.633 and 𝛽 ∼ 0.633 [23]) is relatively near to
some of our CAs, but also in this case the difference is statistically
significative (see Supporting Information). Finally, our cluster 7 (of the
dendritic-growth class) falls on the 𝛼-𝛽 line drawn by the models with
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Fig. 6. Evolution of W for the rule 74, for 512 different realizations of the seed, plotted with different temporal sampling: every step (panel a) every 10 steps (panel c) and every
100 steps (panel e). The W histograms at 50, 500, 1250 iterations are shown in panels (b), (d), (f) respectively. The branches of low W and high W are clearly visible. This rule
belongs to the cluster 7, of the dendritic-growth class.
correlated noise from Ref. [16] (Fig. 4). In this respect, it should be
also noted that, apart from cluster 9, the clusters that appear close
to, but distinct from, these known universality classes all belong to
the dendritic-growth class and not to the saturating class like the
theoretical models mentioned above, which reinforces the idea that,
while lying near in the 𝛼 − 𝛽 plane, they truly represent fundamentally
separate classes.

Experimentally, the (1+1) dimensions employed in the current work
correspond to a number of experimental situations, like domain growth
in nematic liquid crystals [27,28], the growth of domains in magnetic
thin films, like those relevant for magnetic memories in recording tech-
nologies [29–33], and paper burning [34,35]. Depending on the nature
of the interfaces and external driving provided, interfaces growing in
nematic liquid crystals was experimentally shown either to belong to
the KPZ universality class in (1+1) dimensions [27], or to display
𝛼 ∼ 0.4 and 𝛽 ∼ 0.2 [28], in agreement with the Allen-Cahn (Model A)
class; this lies interestingly close to some of our cellular automata (see
Fig. 4), namely to our cluster 9 (of the saturating class). Also in this
case, the differences are statistically significative. In magnetic domain
walls in thin films, several experiments found values of 𝛼 = 0.66-
0.81 [29–33]. Varying temperature and applied electric field, Rapin
et al. found a wider range 𝛼 = 0.5-0.8 [22], and a dynamic exponent
z = 0.21. The burning and the flame fronts in paper burning belong
to the KPZ universality class in the slow-burning regime [34], but the
burn front display 𝛼 = 0.88 at small scale and high burning speed [35].

In continuous linear models, such as E-W, scaling can be derived by
simple operations on the corresponding partial differential equations.
Even for the non linear models (e.g. KPZ in 1D) renormalization tech-
niques can be used to derive the scaling exponents. In the present case
among the 32 selected rules it seems difficult to predict by analytic
means 𝛼 and 𝛽 according to the specific features of the rule. More-
over the deterministic nature of CA has a particular effect: singular
structures generated for specific combinations of the random seed can
induce complex unexpected behaviour [36] as in the present case
for rule 74 where bifurcations on W roughness are observed. Similar
behaviour seems difficult to reproduce with continuous models. The
lack of noise in the dynamics preserves the singular structures of
deterministic discrete rules.
6

5. Conclusion

Cellular automata are simple deterministic discrete rules that can
lead to a wide range of behaviours, from simple to very complex, and
it would therefore be useful to have a criterion to classify them on the
basis of their behaviour. Here, we have considered cellular automata of
pure growth and analysed surface growth in (1+1) dimensions as de-
scribed by their dynamics. With respect to surface growth, the cellular
automata can be classified in three classes: the saturating class of CAs,
characterized by saturation after initial growth (which includes also
rules obeying the dynamic Family-Vicsek scaling), the dendritic-growth
class of CAs displaying indefinite growth of the surface width, and the
non-growing class. For each of the first two classes, consideration of
the critical exponents 𝛼 (roughness exponent) and 𝛽 (growth exponent)
lead to a sub-division in clusters. This fine structure is immediately vis-
ible in the graphical representation of the classes in the 𝛼-𝛽 plane. We
argue that this classification criterion is quantitative and robust, and
could therefore be useful also beyond the family of cellular automata
considered in the present work.

Moreover, this work shows that cellular automata are an attractive
tool to reproduce natural phenomena that display a comparable wealth
of regimes. One such phenomenon is growth, which is ubiquitous,
being present in systems from plankton colonies, through living cells,
tumours, cities, to materials, surfaces, and nanoparticles, and which
have regimes from regular to dendritic. In the 𝛼-𝛽 plane, some of
the rules are near to known universality classes, such as those of the
Edward-Wilkinson and the quenched Kardar-Parisi-Zhang models, or to
experimental data, e.g. for domain growth in magnetic thin films, while
others fall in regions where no other data exist.

This underlines the richness of the phenomenology produced by the
deterministic cellular automata, their potential for the study of growth
phenomena, and their growth behaviour as a possible tool for their
classification.
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