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plays an important role in the solubility, toxicity, bioavailability, mobility and distribution of pollutants.
Therefore, OM is a key component in the local and global carbon cycle. About 12,000 articles containing
organic matter in the title were published during the past decade, with a continuous increasing number
each year (ISI Web of Science). Although this topic was widely explored and its interest has significantly
increased, some limitations remain. These limitations can be technical (e.g., pre-treatment processes,

g?g:g?\:gj' organic matter low-resolution instrument, data.handling) and can be rela.ted to the cur.rent apprgach, In this }'evievy, we
Particulate organic matter first present the current strategies and tools to characterize the organic matter in the aquatic environ-
Carbon cycle ment, then we tackle several aspects of current characterization limitations. Finally, we suggest new
Carbon sources perspectives and priorities of research to improve the current limitations. From our point of view,
Biogeochemistry simultaneous studies of particulate and dissolved OM fractions should be prioritized and multi-

disciplinary approach, creation of databases, controlled experiments and collaborative works should
be the next targets for future OM research priorities.
© 2019 Elsevier Ltd. All rights reserved.

Contents
1. Introduction .
2. DOM and POM in the aquatlc envuonment

3. Source tracking .. e
3.1.  Stable 1sotope ratlos
3.2. Biomarkers .
33. Compoundspec1ﬂc1sotopeanaly51s(CSlA)
34. Optlcalpropertles
4.  Structural characterization ........
4.1. Size exclusion chromatography techmques .
4.2. Pyrolysis—gas chromatography-mass spectrometry (Py GC MS)
4.3. Fourier-transform infrared spectroscopy (FTIR) ..
44. Nuclear magnetic resonance spectroscopy (NMR) .
4.5. High-resolution Fourier transform ion cyclotron resonance mass spectrometry(FT ICR MS)
5. Limitations of the actual methods and aPPrOAChES ... ........iiiu ittt ettt ettt e e e et et et et et e e
6.  Future directions and NEW PeISPECLIVES . . .. ...ttt ettt te et e et e et e e e et et e e et e ettt e e e e e e e e e et e et ie s
6.1.  Standardization and databases .........
6.2. Laboratoryexperlmentmcontrolledcondltlons.................................................,..........,..........,............

WLOoWWOADDDDDUTULA WWWWNN

* Corresponding author.
E-mail  addresses:  morganederrien@sejong.ac.kr, mderrien@gmail.com
(M. Derrien).

https://doi.org/10.1016/j.watres.2019.114908
0043-1354/© 2019 Elsevier Ltd. All rights reserved.


mailto:morganederrien@sejong.ac.kr
mailto:mderrien@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.watres.2019.114908&domain=pdf
www.sciencedirect.com/science/journal/00431354
www.elsevier.com/locate/watres
https://doi.org/10.1016/j.watres.2019.114908
https://doi.org/10.1016/j.watres.2019.114908

2 M. Derrien et al. / Water Research 163 (2019) 114908

6.3. Holistic approach ...............

6.3.1.  Satellite remote sensing and DIO-0PtiCS .. ... ...ttt ettt et e e e e
6.3.2.  Neural NetWOTK analysis .. ... .uinini ittt ettt et ettt et ettt et e e e e e
6.3.3.  NUumerical MOAEliNgG ... ...ttt ittt ettt et e ettt et e e e e e et e e e e e e

7. Conclusion ........

Declaration of COMPELING INMEEIEST .. ...ttt ettt ettt ettt e ettt et et et et et e e et e e et e et e e e e e e et et e e e e e e e e ie e e
Ve €8 0177 T=Ta Fed ' U 31 Y
S (53 =3 Lo PPt

10
10
. 10
11
1
1

1. Introduction

Organic matter (OM) refers to the largest reactive reservoir of
carbon-based compounds on Earth, with a total amount of carbon
of ~3200Pg C through the 3 environments e.g., soils (1600 Pg C),
sediments (1000 Pg C), and the ocean (685 Pg C) (Bianchi, 2011;
Hedges, 1992). OM present in the environment is introduced either
naturally or anthropogenically. Natural OM is generated by the
breakdown and degradation of organisms through various biolog-
ical and physical natural processes involving hydrosphere,
biosphere, and geosphere (Sillanpaa, 2014). Anthropogenic OM, on
the other hand, is introduced in the environment through human
activities and by-products, e.g., sewage (Guo et al., 2010) and, litter
and through degradation of microplastics (Romera-Castillo et al.,
2018). Aside of its role as a source of carbon, OM is also actively
involved in a wide range of ecological functions being a source of
energy for microbes in soil and aquatic food web and a byproduct of
biological metabolism (Jiao et al.,, 2010; Thurman, 1985). It also
plays important roles in the solubility, toxicity, bioavailability,
mobility and the distribution of pollutants via binding with heavy
metals and/or persistent organic pollutants (POPs) (Deb and
Shukla, 2011; Farrington and Takada, 2014; Hedges, 2002;
Romera-Castillo et al., 2018). Therefore, OM is a key component in
local and global carbon cycle and small changes in its size, pro-
portion and dynamics can potentially impact a large number of
biogeochemical processes and/or systems such as carbon storage,
CO; release and coupling of terrestrial and marine systems (Cole
et al., 2007; Tranvik et al., 2009) with several consequences on
climate, aquatic life and global habitability (Folger, 2008; Lal et al.,
2008; Lehmann and Kleber, 2015; Schuur et al., 2015; York, 2018).
In this sense, the understanding of the carbon cycle from local to
global scale is currently one of the major conundrums in the fields
of environmental sciences and biogeochemistry.

In aquatic environments, OM is defined as a heterogeneous
mixture of particles and molecules having variable physical (e.g.
size and porosity) and chemical (e.g. functional group content and
solubility) properties (Baldock et al., 2004). It is operationally
divided into 2 fractions based on filter pore size: dissolved organic
matter (DOM: <0.2/0.45/0.7 um) and particulate organic matter
(POM: >0.2/0.45/0.7 um). Exchanges between both forms are easy
and regulated by mechanisms such as adsorption/desorption, ag-
gregation/dissolution, dissolution/precipitation, etc.; and can be
mediated by photochemical processes and biological activity (He
et al, 2016a, 2016b; Perdue and Ritchie, 2003; Zimmermann-
Timm, 2002). Moreover, the amounts and the characteristics of
the OM are greatly influenced by biogeochemical processes such as
photochemical and biological degradation. Understanding the OM
dynamics in aquatic environments and its role in local and global
carbon cycles implies a study at various structural level and from
diverse perspectives (Summons, 1993). A wide range of techniques
are used to characterize the OM based on bulk chemical properties
with general parameters (e.g., measurement of dissolved and par-
ticulate organic carbon concentration, DOC, and POC) to deep

insights into the molecular setup of DOM via advanced tools (e.g.
the characterization via Fourier-transform ion cyclotron mass
spectrometry) (Dittmar and Stubbins, 2014). The OM can be studied
by using two different approaches: source tracking, which gives
information on sources, and molecular characterization, which
gives detailed structural information (e.g., class compounds, func-
tional groups, and elemental formula). Within the first approach
we can find techniques such as stable isotopes ratios (Lambert et al.,
2011), biomarkers (Derrien et al., 2017c), compound-specific iso-
topes analysis (Schmidt et al., 2004), and spectroscopic character-
ization by measuring UV-absorption (Helms et al., 2008) and
fluorescence (Coble, 1996; Murphy et al., 2014a, 2013; Stedmon
et al,, 2003). Within the molecular characterization techniques,
we can find size exclusion chromatography coupled with organic
and/or nitrogen organic detector(s) (Huber et al., 2011), pyrolysis
gas chromatography mass spectrometry (Jeanneau et al., 2015),
homo and hetero-correlated multidimensional nuclear magnetic
resonance spectroscopy (Hertkorn et al, 2013), and Fourier-
transform ion cyclotron mass spectrometry (Sleighter and
Hatcher, 2007).

Despite numerous studies in the last decades, the OM dynamics
in aquatic environments and the DOM-POM interactions as well as,
at a bigger scale, its role in local and global carbon cycles are still
poorly understood. Various reasons can be found to justify this gap
in understanding/knowledge. One of these is related to inherent
problems affecting the analysis due to the nature of the sample
(low concentration, salt occurrence, heterogeneity, complexity,
sensitivity to physical and chemical properties) and/or to the lim-
itations of the techniques (price, accessibility, sample preparation,
sensitivity, fraction targeted, etc.). Another critical point is that
DOM and POM fractions are mostly investigated separately and
only a few studies consider both (Dhillon and Inamdar, 2013; He
et al., 2016¢; Lambert et al., 2017; Osburn et al., 2015, 2012;
Roebuck Jr. et al., 2018; Thibault et al., 2019). Lastly, it can also be
explained by the difficulties in linking the results of the OM char-
acterization to the mechanisms and dynamics of the OM. More
effort should be made to improve the current strategy for the
characterization of the OM and its dynamics. In this framework, the
aims of this paper were: 1) to present the current strategies and
briefly summarize the tools used to characterize the OM in aquatic
environment (i.e., source tracking and molecular characterization
techniques), 2) to raise the current issues limiting our ability to
clearly understand the dynamics of the OM at local and global
scales and, 3) to suggest new perspectives and priorities of research
to improve the current limitations.

2. DOM and POM in the aquatic environment

Organic matter comprises a large number of molecules
belonging to many classes of compounds (e.g., polysaccharides,
amino acids, humic substances, lignin, cellulose, peptidoglycan,
protein, saturated and unsaturated hydrocarbons, tannins, aro-
matic compounds), and with different polarity (hydrophobic,



M. Derrien et al. /| Water Research 163 (2019) 114908 3

transphilic, and hydrophilic) (Antony et al., 2017; Hawkes et al.,
2018; Kellerman et al., 2015; Leenheer and Croué, 2003; Sandron
et al., 2015; Volkman and Tanoue, 2002). It represents a complex
mixture which also varies widely according to the environment, the
geography, the time, and the depth in the water column
(McCallister et al., 2018; Mopper et al., 2007). Although the organic
matter is commonly divided into the dissolved (DOM) and partic-
ulate (POM) size fractions, there is a size continuum where the
colloidal forms (marine gels) are the link between the two pools
(Orellana and Leck, 2015). These colloidal forms can aggregate and
disassemble shifting between the dissolved and particulate form.
The size of the molecules is also one of the factors that determine
the reactivity and turn over time of OM in the natural environment,
e.g. it affects bacterial uptake (Amon and Benner, 1996). The
complexity of OM and of the processes affecting it results in a large
variability in its reactivity. A reactivity continuum model was pro-
posed by Boudreau and Ruddick (1991) and it is still used to have
the most realistic description of OM decomposition in different
environments (Aumont et al., 2017; Garcia et al., 2018; Manzoni
et al.,, 2012; Mostovaya et al., 2017). Sources of OM are multiple
and diverse, which greatly increases its complexity. These sources
are usually classified as allochthonous or autochthonous. The nat-
ural allochthonous sources, coming from outside the aquatic
environment, include materials from land (e.g., vascular plants,
leaves, root exudates and soils) as well as from the atmosphere (e.g.,
dust storms), and from hydrocarbon seeps at the seafloor. Apart
from that, anthropogenic activities play important role as
allochthonous OM sources with input from e.g., organic fertilizers,
effluents from wastewater treatment facilities, treated ad/or un-
treated sewage, industrial wastewaters, black carbon from fires and
fossil fuel, oil spills and, ultimately, leached from plastic (Carstea
et al, 2016; D’Sa et al., 2016; Derrien et al., 2015; Jaffe et al,,
2013; Romera-Castillo et al., 2018). Autochthonous OM, produced
within water bodies, derives from aquatic biota (e.g., algae, bacteria,
plankton, macrophytes, and nekton), and is produced by both
autotrophic (Romera Castillo et al., 2010; Thornton, 2014) and
heterotrophic organisms at all trophic level (Derrien et al., 2018a;
Steinberg et al., 2004; Tulonen, 2004) as well as by viruses through
viral lysis. At the same time, both DOM and POM can be removed
and/or transformed and can play an important role on the overall
biogeochemical cycles and microbial loop within the aquatic
environment (Asmala et al., 2018; Avila et al., 2019). They can be
removed by aquatic organisms and used for biomass synthesis or
for respiration, the latter producing CO;. As OM is subject to
photochemical processes that can affect DOM and POM properties,
it acts as an important photosensitizer, mediating the production of
carbon dioxide (CO;), carbon monoxide (CO) and other dangerous
reactive oxygen species causing oxidative stress to living organ-
isms, at the same time that it can also degrade toxic compounds
preventing exposure to the biota (Vione et al., 2014). These pro-
cesses affecting both fractions are variable in time and space and
often controlled by environmental parameters (e.g. temperature,
pH, salinity), increasing their variability. Moreover, exchanges
mechanisms between the two pools (from DOC to POC and vice
versa) are highly important and need to be considered. Fig. 1
summarizes the main processes affecting DOM and POM
described in this paragraph (Amon and Benner, 1996; Estapa and
Mayer, 2010; Grey et al.,, 2001; Hansell and Carlson, 2015; He
et al,, 2016a; Hein et al., 2003; Heitmann et al., 2007; Jiao et al,,
2010; Jin et al., 2006; McCarthy et al., 2007; Ogawa et al., 2001;
Porcal et al., 2015; Romera Castillo et al., 2010; Salonen and
Hammar, 1986; Smith et al., 2015; Steinberg et al, 2004,
Thornton, 2014; Tulonen, 2004; Weston et al., 2006; Wolf et al.,
2018).

3. Source tracking
3.1. Stable isotope ratios

Carbon has two stable naturally-occurring isotopes: 2C
(98.89%) and'>C (1.11%). Physical, chemical or biological processes
in natural environments can lead to changes in the isotopic
composition due to a difference in atomic mass between 2C and
13C. For instance, according to the types of plants (e.g., C3, C4 or
crassulacean acid metabolism (CAM)) and/or their specific photo-
synthetic paths, the isotopic ratios may subject to change. C3 plants
present values of carbon isotopic composition 8'3C (ratio of stable
isotopes 13C/1?C reported in parts per thousand (per mil, %o),
measured via an elemental analyzer coupled with an isotope ratio
mass spectrometer (EA-IRMS)) between —33 to —24%o, while the
values range from —16 to —10%o for C4 and between —20 and —10%o
for CAM. Stable carbon isotope ratios are widely used and consid-
ered as one of the most effective ways to track both the sources
(e.g., allochthonous versus autochthonous) and the transformation
processes of OM in the environment (Amiotte-Suchet et al., 2007;
Benner et al.,, 1997; Lambert et al., 2011; Meyers, 1994; Toming et al.,
2013). Previously, most of the studies were focused on 8'3C analysis.
Nowadays, this is often combined with the analysis of stable ni-
trogen isotope ratios 3!°N to prevent some existing overlaps with
the single use of the 5'3C tracer (Barros et al., 2010; Berto et al,,
2013; Cloern et al., 2002; Derrien et al., 2018a; Gao et al., 2012;
Ogrinc et al., 2005). In addition to these measurements, isotopic
mixing models, based on isotopic mass balance equation (Phillips
et al.,, 2005; Phillips and Gregg, 2003), can be used to estimate
the contributions of OM sources in multi-source watershed context
or during storm events (Derrien et al., 2018a; Yang et al., 2015; Yu
et al,, 2019).

3.2. Biomarkers

Molecular biomarkers (e.g., targeted organic compound
analyzed by gas chromatography coupled with mass spectrometry
(GC-MS)) provide a powerful tool to identify the origins of OM and
the associated biogeochemical processes, and thus to reconstruct
environmental changes in the environment. To date, lignin-phenol
(i.e., lignin), plant pigments (i.e., chlorophylls and carotenoids),
carbohydrates, proteins, and lipids have been most widely used as
biomarkers to identify OM sources (Bianchi et al., 1995; Bianchi and
Canuel, 2011; Hedges, 1992; Meyers and Ishiwatari, 1993; Saiz-
Jimenez and De Leeuw, 1986). Among those, lipids have the high-
est potential as molecular markers for marine (Berge and
Barnathan, 2005; Christodoulou et al., 2009; Prahl et al., 1994;
Volkman, 1986), coastal (Canuel, 2001; Wakeham et al., 2002;
Wakeham and Beier, 1991; Yoshinaga et al., 2008), estuarine sys-
tems (Carreira et al., 2011; Hall et al., 2006; Laurcillard and Saliot,
1993; Mudge and Norris, 1997; Zimmerman and Canuel, 2001),
and inland environments (Derrien et al., 2015; Jaffé et al., 1995;
Jandl et al., 2005; Pisani et al., 2013), covering diverse OM sources
(e.g., allochthonous, autochthonous sources and anthropogenic
inputs) (Derrien et al., 2015; Zimmerman and Canuel, 2001), due to
the characteristics of ubiquity, diagenetic and chemical stability,
and their extreme structural diversity. The accuracy if the assign-
ment of the OM sources via this approach is helped by the use of
compounds ratio and the application of multivariate statistical
tools. Derrien et al. (2017c) have recently presented a detailed re-
view of the lipid biomarkers and their use.

3.3. Compound-specific isotope analysis (CSIA)

CSIA refers to the measurement of the isotopic signatures
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Fig. 1. Scheme showing the processes (e.g. sources, sinks, and transformations) affecting DOM and POM in the aquatic environment (red arrows = sources, black arrows = sinks,
blue arrows = transformation processes). The dotted line represents the pathway of the recycled inorganic nutrients back into the cycle. 'Romera Castillo et al. (2010), 2Thornton
(2014), 3Steinberg et al. (2004), “Tulonen (2004), >Amon and Benner (1996), 0Ogawa et al. (2001), 7Jiao et al. (2010), 8Grey et al. (2001), °Salonen and Hammar (1986), '%in et al.
(2006), "McCarthy et al. (2007), *Porcal et al. (2015), *Wolf et al. (2018), "Estapa and Mayer (2010), ®Weston et al. (2006), '®Heitmann et al. (2007), 7Smith et al. (2015), *®He et al.
(2016), Hansell and Carlson (2015), 2°Hein et al. (2003). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

(typically, the stable isotopes of carbon, hydrogen, oxygen, nitrogen
or sulfur) of individual compounds from a complex environmental
mixture via GC-combustion-isotope ratio mass spectrometry (GC-
C-IRMS). This approach can provide information about source dif-
ferentiation (e.g., origin and fate of organic matter in both extant
and fossil environment) (Evershed et al., 2008), reaction pathways
in the environment, including biodegradation and abiotic degra-
dation, and help for forensic applications as environmental reme-
diation decision or monitoring remediation processes on polluted
sites (Elsner and Imfeld, 2016; Schmidt et al., 2004).

CSIA was first applied to the ¢'3C analysis of hydrocarbons in
crude oils and refined products to reduce the variability of source
pools and identify the sources of individual compounds or groups
of compounds in complex mixtures (Bianchi and Canuel, 2011;
Hayes et al.,, 1990; Simoneit, 1997). Then, it has subsequently been
extended to other biogenic elements (e.g., nitrogen and hydrogen)
(Batista et al., 2014; Chikaraishi and Naraoka, 2003; Lichtfouse,
2000) and a variety of biochemicals (amino acids, carbohydrates,
lipids, and lignin phenols) (Alewell et al., 2016; Pearson et al., 2001)
and organic contaminants (e.g., polycyclic aromatic hydrocarbons
PAH, polychlorinated biphenyls PCB, benzene, toluene, ethyl-
benzene BTEX etc.) (Elsner and Imfeld, 2016; Schmidt et al., 2004).
The power of this technique lies in the differential fractionation of
individual compounds especially when it is used in combination
with already known chemical biomarker to identify the origin of
the organic matter in all environments (Amelung et al., 2008;
Bendle et al., 2007; Cooper et al., 2015; Tolosa et al., 2013).

3.4. Optical properties

The absorbance and fluorescence properties of DOM have been
defined as “optical markers” comparable to traditional biomarkers

(Stedmon and Nelson, 2015). UV—visible absorption and fluores-
cence have been widely used to characterize the colored and
fluorescent sub-fractions of DOM: CDOM and FDOM, respectively
(Coble, 2007; Helms et al., 2008; Wiinsch et al., 2017).

The CDOM component absorbs light mainly in the ultraviolet
(UV) and blue regions of the electromagnetic spectrum (Bricaud
et al.,, 1981). The absorption coefficients at selected wavelengths
(ay), are used for different purposes. The most common is the azs4,
which is calculated to estimate CDOM content (Del Vecchio and
Blough, 2004; Weishaar et al., 2003). The asso and ag40 are used
due to their strong correlation with lignin (Spencer et al., 2009b;
Stedmon et al., 2011a) and application to ocean color remote
sensing (Siegel et al., 2005), respectively. A series of indices have
been also widely applied using absorption coefficients, to gain in-
formation on the average molecular weight (the ratio between
a250 and a365, E2:E3, (Peuravuori and Pihlaja, 1997); the spectral
slope ratio—Sr (Helms et al., 2008),) and the aromaticity of the
molecules (specific ultraviolet absorption at 254 nm, SUVAj3s4
(Weishaar et al., 2003),) and on the tracking of terrestrial com-
pounds (spectral slope between 275 and 295 nm, S»75.295 (Fichot
and Benner, 2012),).

The FDOM is the fraction of CDOM, which can emit fluorescence
after absorbing UV—Visible light. The spectral characteristics of
FDOM can be investigated by using excitation-emission wavelength
pairs (e.g. in situ probes), single emission spectra, synchronous
spectra, and three-dimensional excitation-emission matrices
(EEMs). Moreover, the combination EEMs with parallel factor
analysis (PARAFAC) (Fig. 2) allows to distinguish between different
groups of fluorophores (components), such as humic-like, re-
elaborated humic-like (also called microbial or marine humic-like)
and protein-like (Fellman et al., 2010; Ishii and Boyer, 2012;
Murphy et al., 2014a; Stedmon and Bro, 2008). A set of indices have
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Fig. 2. Scheme presenting the procedure for the PARAFAC analysis of fluorescence EEMs. Modified from Gongalves-Araujo et al. (2016); Murphy et al. (2013); Stedmon and Bro

(2008).

been also developed by using the ratio of the fluorescence intensity
at specific wavelengths, or wavelength ranges, mainly to distin-
guish between autochthonous and allochthonous DOM sources,
and to assess the degree of humification of DOM (Gabor et al., 2014;
Huguet et al., 2009; McKnight et al., 2001; Zsolnay et al., 1999).
Both, fluorescence component distribution and optical indices
have successfully been applied to investigate the chemical
composition, identify the sources of DOM and track the involved
biogeochemical processes in many aquatic environments such as
wastewaters, rivers, groundwaters, lakes, seas, and oceans (Fichot
et al,, 2013; Gongalves-Araujo et al., 2016, 2015; Inamdar et al,,
2011; Jaffé et al., 2014; Lambert et al., 2016; Retelletti Brogi et al.,
2019, 2018; Stedmon et al., 2011b; Yamashita et al., 2013; Yang
et al., 2014). Due to their low cost, rapidity, and sensitivity, the
very limited sample pre-treatment required, and thanks to the
development of user-friendly tools to treat the data (Murphy et al.,
2013), these techniques are now considered as a popular,
powerful, and standard tool for DOM characterization. Their wide
application on an exponentially increasing number of studies
allowed for gaining information on OM composition and its related

environmental processes on a global scale, which would take much
longer time and effort if done with more complex and time-
consuming techniques.

4. Structural characterization
4.1. Size exclusion chromatography techniques

The liquid chromatography coupled to organic carbon and ni-
trogen detectors (LC-OCD-OND) is basically a size exclusion chro-
matography coupled to 2 online detectors (OCD and OND) (Huber
et al.,, 2011). This method uses a purified mobile phase (a phos-
phate buffer) and a chromatographic column (a weak cation ex-
change column on polymethacrylate basis) able to separate the OM
according to the molecular weight (Huber et al., 2011). Nowadays, it
is recognized to be an attractive technique providing for direct
qualitative and quantitative information on the OM (molecular
weight fractionation and DOC and DON concentrations) (Allpike
et al.,, 2007; Her et al., 2003, 2002; Huber et al., 2011; Retelletti
Brogi et al., 2018; So et al,, 2017; Yan et al., 2012). Five defined
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size fractions can be identified and quantified including bio-
polymers (BP, >10kDa), humic substances (HS, approximately
1 kDa), building blocks (BB, 300—500 Da), low molecular weight
acid and neutrals (LMW A/N, <350 Da) (Huber et al., 2011; Magbool
etal., 2017). Nowadays, this technique is mainly applied to track the
natural organic matter in drinking water and/or to study mem-
brane fouling issues (Baghoth et al., 2011; Kennedy et al., 2005;
Rosenberger et al., 2006; Zheng et al., 2014). It is also becoming a
preferred choice to characterize organic matter from natural envi-
ronments (Dittmar and Kattner, 2003; Hutchins et al., 2017; Penru
et al., 2013; Retelletti Brogi et al., 2018; Villacorte et al., 2015) as the
molecular weight of the organic matter strongly affects reactivity in
the natural ecosystems (Yan et al., 2012). It has also been suggested
that, since it detects the ays4 coupled with the different size frac-
tions, it can give a hint on the chemical composition of CDOM
(Stedmon and Nelson, 2015). One advantage of this method is that
the samples do not need any pre-treatment and its strength is
enhanced when coupled with other techniques (e.g. optical prop-
erties (Baghoth et al, 2008; Penru et al., 2013);) allowing to
investigate the properties of the specific size fractions.

4.2. Pyrolysis—gas chromatography-mass spectrometry (Py-GC-
MS)

Py-GC-MS is a method of chemical analysis in which natural and
synthetic biopolymers present in the sample are heated to
decomposition to produce sub-units, i.e. low-molecular-weight
molecules that are then separated by gas chromatography and
detected using mass spectrometry (Leenheer and Croué, 2003;
Matilainen et al., 2011).

This technique is not the most used for the characterization of
the molecular composition of the OM, however it represents an
interesting option for obtaining detailed structural information on
the components of natural organic matter, as well as on humic
substances for both DOM and POM and also to assess the preser-
vation/diagenesis and provenance of sediment organic matter (Carr
et al.,, 2010; Derenne and Nguyen, 2014; Greenwood et al., 2012;
Iwai et al., 2013). Lately, Jeanneau et al. (2018) demonstrated the
suitability of this molecular analysis to apportion the sources of
POM in river.

4.3. Fourier-transform infrared spectroscopy (FTIR)

FTIR is probably one of the most commonly used spectroscopic
tool, after fluorescence spectroscopy, for the analysis of either liquid
or solid natural OM (NOM) samples (Artz et al., 2008; Derenne and
Nguyen, 2014; Dick et al., 2003; Giovanela et al., 2004; Haberhauer
et al., 2000; Parolo et al., 2017; Tremblay et al., 2011). This spec-
troscopy exploits the fact that molecules absorb frequencies that are
characteristics of their structure, e.g. vibrational characteristics of
their chemical bonds. The resulting absorption is a unique finger-
print of compounds, allowing the identification of functional groups
(Matilainen et al., 2011). Transmission spectroscopy through a
sample-KBr pellet is the oldest and most commonly used method in
NOM studies. Alternatively, reflectance spectroscopy as attenuated
total reflectance (ATR) and diffuse reflectance infrared Fourier
transform (DRIFT) have been preferentially used as it represents a
more robust, reliable and non-destructive technique and generates
higher reproducibility than the former one (Simonescu, 2012).

Although this technique presents the advantage of being
applicable to both DOM and POM fractions, nowadays, it is rarely
used by itself and preferentially combined to other techniques (e.g.
NMR, fluorescence) to endorse the interpretation of the results
related to changes during biochemical mechanisms and/or to
control the quality and efficiency of the water remediation

processes (Magbool et al., 2017; Rodriguez et al., 2016).
4.4. Nuclear magnetic resonance spectroscopy (NMR)

NMR has been extensively used for decades to characterize the
structure of the molecules in OM as it provides a detailed picture of
its molecular architecture (Barron and Wilson, 1981; Hertkorn
et al., 2016, 2013; Kogel-Knabner, 1997; Konstantinov et al., 2013;
Matilainen et al., 2011; Wong et al., 2002; Zhong et al., 2011).
Briefly, NMR is a physical phenomenon in which nuclei in a mag-
netic field absorb and re-emit electromagnetic radiation. It can be a
very selective technique, distinguishing among many atoms within
a molecule or collection of molecules of the same type but which
differ only in terms of their local chemical environment. NMR can
be done on both solid and liquid-phase samples (Matilainen et al.,
2011; Mopper et al., 2007) and commonly performs for the nuclei of
atoms 'H, 3C, and >N (Minor et al., 2014). Traditionally, 1 dimen-
sional (1D) NMR was used to characterize the OM. However, over
the past decade, NMR has been used in two (2D) or multidimen-
sional configuration as they represent a more appropriate tech-
nique to characterize complex organic compounds (Hertkorn et al.,
2013; Kaiser et al., 2003; Zhong et al., 2011). Detailed information
on the use of NMR to characterize OM can be found in Mopper et al.
(2007) and Matilainen et al. (2011).

4.5. High-resolution Fourier transform ion cyclotron resonance
mass spectrometry (FI-ICR MS)

FT-ICR MS has emerged as a reliable tool for the in-depth mo-
lecular characterization of complex mixtures as DOM. Over the last
decade, FT-ICR MS had the prevailing position for the chemical
characterization of DOM at the molecular level and for all the en-
vironments including lakes, seas/oceans, estuary, wetlands, soils,
rivers and even ice cores (Bae et al., 2011; Chen et al., 2011; Derrien
et al,, 2017a, 2017b; Gonsior et al., 2013; Kujawinski et al., 2002; Li
etal.,, 2019; Lu et al., 2016; Mopper et al., 2007; Retelletti Brogi et al.,
2018; Sleighter and Hatcher, 2008).

Coupled with electrospray ionization (ESI), this technique pro-
vides the necessary resolution to determine with high accuracy
hundreds to several thousand ions with an m/z range typically from
200 to 1000 Da. Furthermore, due to the high mass resolution and
accuracy (less than 0.5 ppm), the elemental formulas are assigned
with a high level of confidence (Repeta, 2015; Stubbins and Dittmar,
2014). As ESI-FT-ICR-MS analysis generates a large amount of data,
the empirical formula data are commonly categorized in 6—8 main
class of compounds (e.g., lipids, proteins, carbohydrates, unsatu-
rated hydrocarbons, lignins and/or carboxyl-rich alicyclic mole-
cules (CRAM), tannins, and condensed aromatic compounds)
according to their H/C and O/C ratios (e.g., van Krevelen diagram).
Some indices related to the degree of unsaturation (DBE: double
bond equivalent index) and/or the aromaticity of the formulae (Al
or Alpeq: modified aromaticity index) have been also developed
(Hockaday et al., 2009; Hodgkins et al., 2016; Ohno et al., 2010).
Comparison of samples at this molecular specificity scale allowed
for the identification of specific classes of compounds according
their sources or ways of production (Koch et al., 2005; Koch and
Dittmar, 2006) and also, more recently, to highlight the extreme
isomeric complexity in the DOM across aquatic environments
(Hawkes et al., 2018). Nowadays, this technique is likely considered
as the most powerful tool that can be used to characterize the
structures and the molecular properties of the DOM.

5. Limitations of the actual methods and approaches

A large fraction of uncertainty on OM composition is related to
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inherent problems affecting its analysis such as (i) low concentra-
tion (e.g., seawater 0.4—1mgL~'): in water with a much higher
amount of inorganic compounds that can negatively affect chemi-
cal analysis or the low abundance of some compounds (Minor et al.,
2014; Stubbins and Dittmar, 2014); ii) extreme diversity and het-
erogeneity of compounds, of their chemical properties, and of their
molecular weights, which complicates isolation and analysis ap-
proaches (Hertkorn et al., 2008; Sandron et al., 2015); and (iii) the
difficulty in extracting unbiased material during isolation or con-
centration processes (Matilainen et al., 2011; Mopper et al., 2007).
Although notable advances have been done in this last decade to
improve the sample pre-treatment, instrument resolution and
analytical capabilities of the equipment (McCallister et al., 2018),
most of the highly sensitive techniques still present some in-
conveniences (technical issues and prohibitive cost) in addition to
the difficulties related to data handling compared to the elemental
techniques. For instance, the analysis of the stable isotope ratios
does not require much pre-treatment but it will give only one value
which relates to the source of the organic matter while the more
advanced techniques such as FT-ICR MS analysis will provide
thousands of formulas often not allowing for a full understanding
or interpretation of the data.

Besides these issues related to the nature of the samples, it is
very important to raise the question related to the representa-
tiveness of the studied fraction and/or sub-fractions. Over the past
decades, tremendous efforts have been made to quantify, analyze,
and characterize the OM, but we are still facing these issues. Bulk,
POM, DOM, FDOM or even CDOM are different OM fractions, which
can be studied with the techniques previously introduced. CDOM
and FDOM are widely investigated since their analyses are cost-
effective, relatively quick and non-destructive. However, this opti-
cal approach is limited to colored and fluorescent OM. What per-
centage of bulk OM or even of the DOM does that represent? For
example, recently Hawkes et al. (2019) analyzed online the size
distribution with HPSEC-UVDAD (high-pressure size exclusion
chromatography coupled with UV—Vis diode array detector) and
the molecular mass via ESI-MS of different DOM samples. They

Size (m) 1

observed a clear discrepancy between the two methods and
showed that an important pool of organic matter having a strong
UV absorbance showed no ESI-MS signal. These results demon-
strate that there is a substantial distinction in DOM samples be-
tween what is optically active and what is efficiently ionized by ESI.
Hence, is targeting only a specific sub-fraction suitable to under-
stand mechanisms at a larger scale? Then, most of the OM studies
were focused on DOM or POM fractions separately. This approach is
questionable. Is it the most insightful approach to understand the
dynamics of the OM in the aquatic environment? The interactions
between both fractions happen continuously and sometimes very
fast. They also change in time due to the biotic and abiotic factors; it
is a dynamic system. Therefore, focusing studies on only one OM
fraction has several limits, thus simultaneous studies should be
prioritized. Of course, studies integrating simultaneous DOM and
POM characterization would induce other issues. As shown in Fig. 3,
most of the techniques of OM characterization cannot be directly
applied to both fractions. Techniques such as isotopes, biomarkers
or Py-GC-MS can be applied on DOM fractions after a process of
freeze-drying plus desalination in the case of salted water. These
pre-processes require a large amount of sample (~1L or more ac-
cording to the concentration) and may cause OM modification
(Repeta, 2015). There are also some techniques (i.e. fluorescence),
which can be performed on POM after extracting the DOM from it
(i.e. water or solvent extraction), assuming it is representative of
the whole POM fraction. However, the representativeness of this
extract was never explored or tested. Indeed, this limitation cannot
be neglected, especially when recent studies highlight the potential
failure of representativeness of these extracts (Derrien et al., 2018a;
Yu et al., 2019).

These observations, finally, lead to an ultimate question. How
can we link all the various and diversified collected data to the basic
understanding of OM dynamics in the aquatic environment? OM is
studied at various structural level and from diverse perspectives
(Fig. 4). Elemental analysis as DOC or POC concentrations or stable
isotope help estimate the flux of carbon or identify the sources of
the organic matter. One can thus understand mechanisms of
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Fig. 3. A diagram presenting the most commonly used analytical tools to characterize organic matter in the aquatic environment and their applicability with respect of the fraction
e.g., dissolved and particulate. (*: Analyses of the POM fraction can be performed on the extracted DOM from the POM; **: Analyses of the DOM fraction limited to large amounts of
samples and after the freeze-drying process). The dashed line represents a change in size scale.
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Fig. 4. A representation of the chemical structural level from atomic to macromolecular level and the analytical tools presented in this study.

transport. By contrast, a molecular approach will give information
on the state of the material (maturity, lability, aromaticity, fresh-
ness, etc ...), diagenetic effects or geological changes (Summons,
1993). It is clear that a complementary approach is necessary, but
linking all the information together is probably the biggest chal-
lenge we have to solve, in order to achieve a full understanding of
the aquatic organic matter dynamics and at a larger scale, the
carbon cycle. So far, few recent studies have attempted to combine
source tracking methods and molecular characterization tech-
niques with a preference for fluorescence and FT-ICR-MS (Stubbins
etal,, 2014; Wagner et al., 2015; Wiinsch et al., 2018a). Although the
work of Wagner et al. (2015) has given a good correlation between
the results of both techniques, the question of the representative-
ness of the fluorescence fraction is still pending. Newly, Thibault
et al. (2019) published a multi-compartment (e.g., DOM, POM,
and bulk fractions) study in which they applied complementary
analytical approaches including bulk (elemental and isotopic
composition) and structural (solid state 3C NMR) analyses. This
strategy allowed them to irrefutably demonstrate each OM pool has
its own properties and dynamics. Challenges are still up but similar
approaches need to be preferentially applied for the better
understanding.

6. Future directions and new perspectives

After describing the inherent issues related to the techniques
applied for characterization of the aquatic OM and/or its nature, in
this last paragraph, we attempt to suggest some approaches that
would be worthwhile to explore more in the future.

6.1. Standardization and databases

Some of the previously mentioned analytical techniques require
the choice of different instrumental settings and samples prepa-
ration. However, these different choices may sometimes affect the
final measurement of the samples making difficult a comparison of
the results between different studies. Two symbolic examples are
the processing and data treatment of the fluorescence EEMs and
the FT-ICR MS coupled with ESI.

The results of fluorescence measurements depend on several
factors such as instrumental settings (slits, scan speed, internal
instrument biases) and phenomena like inner filter effect

(exceeding a certain concentration will result in a decrease of the
fluorescence signal and the modification of the emission spectrum).
These factors can be controlled and normalized to be comparable
between different studies during post-measurements data treat-
ment. However, some of these data treatments vary according to
different studies. For example, some authors correct the inner-filter
effect during data treatment whereas others dilute the samples
according to the absorbance at 254 nm (azs4), but there is no
agreement on the limit of the ays4 value for the dilution (Hur et al.,
2008; Miller et al., 2010; Ohno, 2002). Moreover, some authors
present the data in Raman Units (RU) whereas others use Quinine
Sulfate Units (QSU). The latter is however doubtful because
different studies report different methods or do not give details on
the QSU conversion (Ferretto et al., 2017; Lgnborg et al., 2010;
Romera-Castillo et al., 2014; Yamashita et al., 2010; Yao et al., 2011).

The first step for FT-ICR MS is solid phase extraction (SPE) and,
according to the method used, the extraction efficiency can vary (Lv
et al., 2016; Repeta, 2015; Stiicheli et al., 2018; Wiinsch et al.,
2018b). Dittmar et al. (2008) summarized the different methods
used to extract DOM for FT-ICR MS analysis, highlighting the
different retention properties of the most commonly used sorbents.
Then, FT-ICR MS is mostly used with electrospray ionization ESI
including both negative and positive modes. The results of positive
and negative ESI can overlap, but differences are still present
(Repeta, 2015). For example, Hertkorn et al. (2013) compared both
modes of ESI for FT-ICR MS analysis on ocean DOM samples from
the surface to deep depths. The results showed a preferential
detection of carbon-rich (62%) and oxygen-depleted (~26%) ions in
positive mode compared to the negative mode (~50% and 36—42%,
respectively) in the assigned molecular formulas. They generally
observed a larger number of assigned molecular compositions in
positive mode than in negative mode. On the other hand, negative
mode ESI seems to be more sensitive towards acidic functional
groups (Solihat et al., 2019). Higher discrepancies are inevitably
observed with different ionization sources such as atmospheric
pressure ionization (APPI) or atmospheric pressure chemical ioni-
zation (APCI) due to their inherent selectivity for specific types of
molecules (Hertkorn et al., 2008; Solihat et al., 2019). Hence, the
selectivity and the matrix sensitivity of the ionization sources
represent an issue which needs to be considered and refined with a
standardization of the method (Derrien et al., 2018b; Mopper et al.,
2007).
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These examples highlight the need for a standardization of
sample preparation, analytical methods, and data treatment.
Standardized data processing tools are already available for fluo-
rescence EEMs treatment and were improved during the last few
years. The newest drEEM tool developed by Murphy et al. (2014a)
allows for the correction of EEMs by doing blank subtraction,
Raman (or quinine sulfate) normalization, instrumental bias
correction, and inner filter correction producing comparable data
from different instruments and instrumental settings (Murphy
et al., 2010). Similarly, a standardized method to prepare and
measure the samples and/or treat the data after measurements
should be prepared for all the techniques that might have these
issues in order to improve the quality of the data and the com-
parison of different studies.

On top of that, the creation of online databases of published data
would allow for a big step forward to improve data comparison and
interpretation. For instance, a database of published fluorescence
components (obtained by coupling EEMs with parallel factor
analysis) has been created (Murphy et al., 2014b) and allows
calculating the percentage of similarities between the published
spectra. More recently, Leefmann et al. (2019) developed a new
browser-based software tool for processing high resolution mass
spectrometry data with the option to export the final data report
and to compare with previous datasets. These kinds of databases,
similarly to libraries used in chromatography and mass spectra
analyses, would help a faster interpretation of the results, if pre-
viously reported, and increase the coherence between different
studies with similar results.

The standardization of the methods and creation of databases
will benefit especially those techniques, such as FT-ICR MS, that
produce big datasets that are currently only partially exploited.

6.2. Laboratory experiment in controlled conditions

As previously highlighted, the factors regulating DOM and POM
in the aquatic environment are several and variable in time and
space. The analysis of samples from natural environments provides
a snapshot of the OM in a specific place (either at a small or large
scale) at a specific time. However, according to the parameters
chosen, it is not always possible to identify the processes that lead
to the observed dynamics/characteristics and extending these ob-
servations to a larger spatial and/or temporal scale is challenging.
Setting up a laboratory experiment can help in identifying the ef-
fects that certain factors have on OM dynamics/properties. Exper-
iments carried out under controlled conditions can be split into two
categories according to the main purpose: 1) to study a single factor
by isolating its effects, and 2) to study the combined effect of
multiple factors. Many experiments studying the effect of a single
factor have already been carried out for DOM. For instance, incu-
bation experiments to study microbial degradation of OM have
been carried out by removing the effect of autotrophic activity (by
filtration and dark incubation) and grazers (by filtration) (Asmala
et al., 2014; Logue et al, 2016; Raymond and Bauer, 2000;
Retelletti Brogi et al., 2015); photodegradation experiments to
study the effect of UV radiation were carried out by removing the
microbial communities (by poisoning) (Porcal et al., 2004; Spencer
et al., 2009a). A step forward would be at this point to put more
efforts in planning experiments that consider the concurrent effect
of more factors. Some good examples can be already found.
Whitehead et al. (2000) set up a mesocosm experiment in 1500 L
volume tanks and studied the combined effect of phytoplankton,
biological activity, irradiation and water mixing on DOM properties.
More recently, Osterholz et al. (2015) carried out an experiment, in
10 L volume bottles, to study the microbial production of refractory
DOM. For this purpose, the authors took account of phytoplankton

abundance and species, microbial abundance and DNA, and nutri-
ents concentration (simulating an upwelling). Lastly, D'Andrilli
et al. (2019) performed a small-scale microcosm incubation
experiment to isolate temporal patterns of C processing (i.e.,
respiration and total C utilization) for 3 different OM sources. The
combination of several parameters measured in two recent incu-
bation experiments highlighted the complexity of DOM production
and consumption in a coastal environment and in particular
showed that the composition of autochthonous DOM was mainly
controlled by nutrient availability and the characteristics of the
initial bulk DOM rather than the phytoplankton community [Har-
aguchi pers. comm.]. These studies demonstrated that the combi-
nation of biological and chemical techniques allows for linking the
different factors such as time, DOM sources, biological activity, UV
radiation, and to have a hint of the effects of these combined factors
that is more similar to what is happening in a natural environment.
By contrast, few studies were focused on the POM fraction and most
of them investigated its degradation under different conditions of
bioturbation (Navel et al., 2012; Sun and Dai, 2005) or minerali-
zation processes (Guenet et al., 2014). The laboratory experiments
should also be realistic and, consequently, resemble as much as
possible to the natural environment. Planning an experiment that
resembles the natural environment is challenging because is not
possible to reproduce and consider all the factors controlling the
OM dynamics. However, when planning an experiment, it is
fundamental to think about size and time scale. How much the size
of the experiment can be related to the natural environment? If we
want to relate the results of a laboratory experiment to the envi-
ronmental processes, the experiment should have an appropriate
size scale. For instance, it could be difficult to relate the results of an
experiment conducted in 200 mL bottle to what really happens in
the aquatic environment. Big size experiments would be preferable
for this purpose. This should be analogously considered for the time
scale. For how long the experiment will keep the original condi-
tions? During the experiments, we can observe changes that do not
happen in the natural environment. Nutrients get depleted, oxygen
is consumed, the biological community can change due to the
experimental conditions, and many others. Appropriate measures
should be considered to either keep the original conditions (e.g.
nutrient supply, aeration) or terminate the experiment once the
conditions are too different from those observed in the natural
environment.

6.3. Holistic approach

Nowadays, we have at our disposal a wide range of advanced
and high-frequency analytical techniques in the field of biogeo-
chemistry to characterize the organic matter. However, because the
dynamics and the behavior of the organic matter are intimately
linked to the biomass, the topography, the hydrology and the
ecology of the environment, a full understanding requires a holistic
approach and a collaborative work with all these fields of expertise.
Below are presented, from our point of view, the most promising
holistic approaches.

6.3.1. Satellite remote sensing and bio-optics

A complementary approach to expand the spatial and time scale
of the study of OM distribution is the use of bio-optical sensors
designed for applications in remote sensing and autonomous
oceanographic platforms. The retrieval of particulate matter (PM)
and CDOM at the ocean's surface from satellite observations has
been getting more attention in the latest years and allows to have a
synoptic view of OM dynamics on a global scale (Ahn et al., 2001;
Caoetal., 2018; Kutser et al., 2015; Le et al., 2018; Loisel et al., 2002;
Nelson and Siegel, 2013; Wozniak et al., 2016; Zhu et al., 2014).
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However, the currently operating ocean color algorithms for
retrieving CDOM and PM have shown poor performances, espe-
cially in high-CDOM waters, such as coastal zones and the Arctic
Ocean (Aurin and Dierssen, 2012; Gongalves-Araujo et al., 2018;
Siegel et al., 2005). Moreover, it has been recently highlighted the
importance of combining satellite remote sensing with numerical
hydrodynamic modeling that can, for example, link physical pro-
cesses and the distribution and transport of water constituents in
the coastal environments (D’Sa and Ko, 2008; Joshi et al., 2017).
Along with that, the incorporation of bio-optical sensors with
channels for CDOM and PM into oceanographic autonomous plat-
forms (gliders, moorings, autonomous underwater vehicles, ice
tethered profilers, etc.) has emerged as the state-of-the-art moni-
toring tools in the past decades as they allow for sampling also over
the water column and despite of sun light coverage and weather
conditions. Those sensors do not only provide highly resolved
spatial CDOM coverage over the water column (Laney et al., 2014;
Niewiadomska et al., 2008; Seegers et al., 2017), they also gather
large datasets for improving the current ocean color algorithms.

6.3.2. Neural network analysis

Collaborative work with the bioinformatic community can un-
deniably be of high profit and it should be one of the directions of
our future research. Indeed, using computational tools will greatly
help the interpretation of the voluminous and complicated data-
sets. For instance, Longnecker and Kujawinski (2016) applied neural
network analysis to their FT-ICR-MS spectra. The combination of
both tools helped them identify new potential building blocks of
organic compounds in deep sea and to highlight the importance of
the dissolved organic sulfur components in this kind of environ-
ment. Recently, Zark and Dittmar (2018) have concluded the major
component of DOM is molecularly indistinguishable after a
meticulous comparison of the structural fingerprint of individual
molecular formulae in fresh and sea waters. One of the hypotheses
to explain this observation was the results of a cascade of degra-
dation processes or common synthetic pathways, which lead to the
formation of a universal pool of molecules regardless of the origin
or the history of the material. This novel insight in this study
directly affects the understanding of long-term turnover of DOM
and ruins the idea of universality of mechanisms. Another example
would be Peleato et al. (2018) who applied the neural networks to
their PARAFAC data. The combined approach allowed them to
identify the relations between fluorescence regions and the disin-
fection by-product formation facilitating, therefore, the prediction
of their formation. A similar approach could be used to predict
organic matter reactivity. Combining computational tools like
neural networks to this kind of large and similar data set might
improve and certainly help interpret what is observed in the
aquatic environment. It would also generate new findings and
contribute to re-think and re-built our understanding of the OM
dynamics as it is illustrated by the few studies that applied this kind
of approach.

6.3.3. Numerical modeling

Another approach will consist of coupling analytical approaches
and numerical modeling to acquire a more detailed picture of the
dynamics of the aquatic OM. Modeling approaches can be per-
formed at different scales: (i) large scale such as catchment to
regional scale, (ii) ecosystem scale and (iii) microcosmic scale. They
require collaborative and interdisciplinary work with hydrologist/
hydrogeologists, ecologists, biologists, and modelers. At catchment
scale, developed models are based on a coupling between hydro-
logical and biogeochemical approaches (Fabre et al., 2019; Futter
et al., 2007; Kim et al.,, 2007; Nakayama, 2017a). These kinds of
models such as the Integrated Catchments Model for Carbon INCA-

C (Futter et al., 2007) or National Integrated Catchment-based Eco-
hydrology NICE-BGC (Nakayama, 2017a) or the Soil and Water
Assessment Tool hydrological model SWAT (Fabre et al.,, 2019)
mainly simulate the horizontal and vertical organic carbon fluxes in
a carbon budget framework. For instance, they were applied to
various environment to assess the inter-annual and seasonal DOC
dynamics in mixed catchments (Futter et al., 2011; Nakayama,
2017b; Oni et al., 2012), to estimate the lateral DOC exports (de
Wit et al., 2016) or even both horizontal and vertical carbon
fluxes (Nakayama, 2017a) or to estimate the DOC, POC and sedi-
ment transfer at daily timescale (Fabre et al., 2019). Recently,
Nakhavali et al. (2018) implemented the Joint UK Environment
Simulator JULES (model used to evaluate the global C cycle and its
role in the Earth system) (Le Quéré et al., 2015) in order to provide a
model able to represent the DOC processes (JULES-DOCM) from the
land to the river (e.g., model integrating a representation of DOC
production in terrestrial ecosystems based on the incomplete
decomposition of organic matter, DOC decomposition within the
soil column, and DOC export to the river network via leaching). At
the ecosystem scale, the models target the response of the living
organisms to the surrounding parameters and they are generally
called General Ecosystem Model (GEM) (Fitz et al., 1996). They have
been widely applied for terrestrial ecosystems to simulate the soil
organic matter cycling (Campbell E. and Paustian, 2015; Li-xia and
Jian-jun, 2003; Schmidt et al., 2011). They are also used, to a lesser
extent, in the aquatic environment. Most of them were used to
simulate vertical dynamics of the biomass, nutrients, detritus, and
dynamics of elements including carbon (Fitz et al., 1996; Mann
et al, 2014; Prokopkin et al, 2010; Schmittner et al., 2005).
Models at the microcosmic scale are commonly used to charac-
terize and simulate the interactions between DOM and POM (He
et al, 2016a and references therein). Most of them are only
focused on individual DOM-POM exchange mechanisms. One of the
options to overcome this limitation will be to develop the exergy
theory (Dewulf et al., 2008) in order to establish a unified model
that combines all the DOM-POM exchange mechanisms and will
fully simulate the exchange behaviors as suggested by He et al.
(2016a).

The ideal case would be to simulate any single microcosmic
interaction at a global scale, taking account of all the processes
involved in the aquatic environment. Therefore, research dedicated
to this complementary, multidisciplinary approach should be
expanded, in particular with respect to linking processes operating
at a molecular scale to those operating at the global scale (Jansen
et al., 2014). All the aforementioned modeling approaches pre-
sented still require improvements. Two directions could be simul-
taneously taken to overcome all the limitations related to their
processes of elaboration and/or their uses. First, the calibration of
the models requires to be supported with a higher amount of field
data. Creating a database of the standard measurement in the field
including chemical, physical, hydrological and ecological data over
the world would greatly facilitate the establishment of accurate
models at the global scale. Another direction might be to focus our
efforts on the microcosmic scale model supported by laboratory
experiments e.g., microcosm and mesocosm experiments to fully
characterize the interactions between DOM and POM (see above)
and implement this microcosmic/mesocosmic models into models
at a larger/global scale.

7. Conclusion

Organic matter is a key component in the local and global car-
bon cycle and the understanding of this cycle is currently one of the
major conundrums in the fields of environmental sciences and
biogeochemistry. Although the organic matter topic was
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extensively explored over the last decades, several research gaps
still need to be filled and improvements and/or new ideas are
required. Future studies should be done at various structural levels
and from diverse perspectives. Simultaneous studies of both par-
ticulate and dissolved OM fractions should be prioritized. Likewise,
multi-disciplinary approaches, creation of databases and collabo-
rative works should be the future OM research priorities.
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