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Abstract
This paper presents the results of the interpretation of a set of high- resolution 
seismic lines integrated with multibeam echosounder data acquired in a coastal 
area in the Northern Adriatic Sea. The aim of the study was to reconstruct the 
stratigraphic evolution of a late Quaternary sedimentary succession offshore 
the town of Bibione, North- Eastern Italy, by recognising the key unconformi-
ties, identifying the main depositional units, dating them and reconstructing the 
depositional environments in relation to relative sea- level variations. Specifically, 
four sedimentary units, separated by erosional unconformities associated with 
the development of deep channels, were identified and dated based on literature 
information. By interpreting the seismic data, sedimentary dynamics were re-
constructed and palaeoenvironments identified. The lower unit corresponds to 
a paludal environment, showing abundant gas seeps and accumulations (bright 
spots); the two intermediate units correspond to fluvial deposits, filling the deep 
incisions that characterise the bounding surfaces. Finally, the shallowest unit, 
bounded by a wave- ravinement surface incised by tidal currents, corresponds to 
the Holocenic progradation of the coastal wedge. In addition, several vertical gas 
chimneys were identified, ranging in width from a few metres to 20–30 m. These 
were present in all units, often reaching the sea floor. Finally, elongated mounds, 
about 300 m wide, at the sea floor were recognised. The bathymetric and seismic 
characteristics of these elongated bodies and their relationship to adjacent sedi-
mentary bodies suggest that they are probably methane- derived carbonate forma-
tions known as ‘Trezze’ or ‘Tegnùe’. These names recall the fact that the trawls 
of the local fishermen were often hindered (‘tegnù’ in the Venetian language) or 
even cut off by these formations.
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1  |  INTRODUCTION

The coasts of the northern Adriatic are characterised by 
the presence of marshlands and the much studied lagoons 
(Fontolan et  al.,  2007; Bondesan & Meneghel,  2004). 
These coastal sedimentary systems have evolved as the 
result of the balance between the sediments transported 
by the rivers and tidal inlets and the erosion caused by the 
sea. Furthermore, both the plain and the sea floor show 
a very low gradient (ca 0.4‰, Ronchi et  al.,  2018). Due 
to the cultural, historical and economic importance of the 
Venice lagoon and the Veneto- Friuli plain (North- Eastern 
Italy; see Figure 1 for the location), numerous studies have 
been carried out to reconstruct the geological evolution of 
the area. The northern Adriatic represents an excellent 
case to study the impact of a fast relative sea- level rise, 
both on the environment and on pre- historic human com-
munities (Fontana, 2006; Fontana et al., 2008). Given the 
current perspectives of a warming global mean tempera-
ture, understanding the effects of sea- level rise on a low- 
gradient plain is of interest for other areas showing similar 
features.

The oldest studies regarding this area mainly fo-
cussed on the post- Last Glacial Maximum (LGM) 
sedimentation (Gatto & Previatello  1974; Bortolami 
et al., 1977; Favero & Serandrei Barbero 1980), whereas 
more recent studies reconstructed the stratigraphic evo-
lution, commencing from an episode of aggradation 
that occurred during the Tyrrhenian period (Fontana 
et al., 2010b; Ghielmi et al., 2010; Ronchi et al., 2018). 
As in most other cases, the evolution of the continen-
tal shelf in this area is mainly influenced by Quaternary 
sea- level changes, so that the geomorphology of the area 
is the result of multiple glacial–interglacial cycles (Blum 
& Törnqvist,  2000; Breda et  al.,  2016). The main event 
that has been responsible for shaping the study area is 
the LGM, ca 20 ka BP, and the consequent sea- level drop 
and lowstand phase (Ronchi et  al.,  2021). During the 
LGM and the transition from the LGM to the Holocene, 
deep fluvial incisions developed in the study area 
(Ronchi et al., 2021). The importance of incised valleys, 
as they occur in the study area, has been investigated 
in several studies (Thomas & Anderson, 1989; Blum & 
Tornqvist, 2000; Blum et al., 2013; Ronchi et al., 2021). 
In fact, these incised valleys and their sedimentary in-
fills can provide important information regarding the 
environmental context of the past, covering a long pe-
riod of time. Specifically, their late Quaternary fills are 
often the only available source of information on the 
lowstand and transgressive phases of the continental 
shelf (Blum et al., 2013; Clement & Fuller, 2018; Ronchi 
et al., 2018, 2021).

This paper characterises the late Quaternary sedimen-
tary evolution of the succession offshore the coastal town 
of Bibione, Metropolitan City of Venice, Italy. The aim is 
to identify the sedimentary units and bounding surfaces, 
date them and reconstruct the depositional environments 
in relation to the available literature regarding adjacent 
areas. A plausible interpretation is proposed for some 
elongated bodies observed on the sea floor. To achieve 
this, high- resolution seismic data together with multi-
beam morpho- bathymetric data were acquired, processed 
and interpreted. The Bibione area has already been inves-
tigated in the past (Bondesan & Meneghel, 2004; Francese 
et al., 2014; Accaino et al., 2023), but these studies mostly 
focus on data acquired onshore. The offshore sectors have 
not been the subject of detailed prior study; this paper ad-
dresses this knowledge gap.

2  |  GEOLOGICAL SETTING

The investigated area is located 1.5 km offshore the town 
of Bibione Pineda (see Figure 1), 5 km west of the estu-
ary of the Tagliamento River, and the study area covers 

F I G U R E  1  (A) Regional context of North- Eastern Italy. The 
features outlined in the Geological Context section are indicated. 
The white rectangle indicates the area shown in (B). The figure 
was generated with Google Earth Pro on 9 April 2024. (B) 
Georeferenced map of the survey lines: the red lines indicate the 
location of the Boomer lines, while the white dashed rectangle 
indicates the location of the multibeam survey. The figure was 
generated with Google Earth Pro on 9 April 2024.
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an area of 3 km in a longitudinal direction and 3.5 km 
in a latitudinal direction. The Tagliamento River has 
an average annual discharge rate of 90 m3/s. However, 
the river catchment is subject to very high precipitation 
rates, among the highest in Europe (Borga et al., 2005), 
and it is also prone to extreme rainfall events that cause 
floods (Dallan et  al.,  2022). The maximum discharge 
rate with a recurrence time of 100 years reaches 4500 
m3/s (Surian & Fontana, 2017). Geologically, the study 
area represents the offshore part of the Veneto- Friuli al-
luvial plain (Fontana et  al.,  2010a), which is bounded 
to the north by the south- verging chain of the eastern 
Southern Alps and to the east by the NW- trending 
thrust belt of the Dinarides (Ghielmi et al., 2010; Ronchi 
et  al.,  2021). The main active faults are located along 
the mountain front and have caused major earthquakes 
(for a map of the main faults in the area, see figure 1 in 
Slejko et  al.,  1999; a more detailed assessment on the 
faults closest to the study area can be found in Anselmi 
et  al.,  2011). The plain occupies the upper part of the 
foredeep basin of the two chains and is subject to con-
siderable subsidence; Antonioli et  al.  (2009) estimate 
an average of 0.4 mm/a, which can, however, reach 
10 mm/a locally.

Of particular relevance to this study, the area lies 
in the Tagliamento megafan, which formed during 
the aggradational period corresponding to the LGM 
(29–19 ka BP; Ronchi et al., 2021). The sea- level falls to 
a low point at or about the time the LGM resulted in a 
regression of the coastline approximately 300 km to the 
south from its present- day position, along the Pescara–
Sebenico/Šibenik line, at the margins of the Meso- 
Adriatic depression (Pellegrini et  al., 2017; Fontana & 
Ronchi, 2019). Fontana et  al.  (2008) reconstructed the 
areal extent of the megafan to occupy 1200 km2. The 
megafan is characterised by an apical part, formed by 
coarser grained, relatively more permeable sediments, 
and a distal part, formed by finer grained, relatively less 
permeable sediments. At the boundary between the two, 
groundwater is forced to the surface, forming several 
minor rivers. These rivers, together with the branches 
of the Tagliamento, were responsible for the incision 
of the distal part of the megafan during the lowstand, 
which reached its climax during the LGM. During this 
same period, aggradation occurred by filling of the flu-
vial incisions, passing laterally to floodplain deposits. 
The regression of the coastline started at 19,600 ka BP 
and was a non- linear process, guided mostly by global 
climate and to a lesser extent by the retreat of the Alpine 
glaciers (Antonioli et al., 2009). Given the very low gra-
dient of the distal part of the megafan (ca 0.4‰, Ronchi 
et al., 2018), the marine transgression occurred rapidly. 
Three major steps in sea- level rise have been recognised: 

(i) 19.6 ka BP, (ii) 14.6 to 13 ka BP, when a rise of 25 m in 
1500 years occurred (Fontana & Ronchi, 2019) and (iii) 
11.7 ka BP (Asioli et al., 2001; Fontana et al., 2019). After 
this last step, at about 7.5 ka BP, the rate of sea- level 
rise slowed significantly and the position of the current 
coastline was reached 7.5–5 ka BP, leading to the sub-
mersion of the study area (Amorosi et al., 2008; Fontana 
& Ronchi, 2019). At the survey location, fluvial aggra-
dation therefore continued until that time. During the 
regression of the coastline, large lagoons, similar both 
in size and environment to those that can be seen today, 
were formed and the fluvial channels served as estuaries 
of the rivers, or as tidal channels and inlets.

3  |  METHODS

The marine seismic data were acquired using a Boomer 
system. This consists of an acoustic source made of an 
electro- dynamic transducer mounted on a catamaran 
frame, producing a theoretical minimum- phase wavelet 
with an amplitude spectrum between 400 and 4000 Hz. 
This source, suspended at a constant depth of 40 cm, pro-
duces a short impulse of energy every 0.5 s. The receiver 
consists of an array of hydrophones, the traces of which 
are stacked to reduce random noise. The streamer was 
kept as shallow as possible to avoid destructive interfer-
ence between reflected signals and multiple events from 
the air/water interface (ghost).

The boat towing the acquisition was travelling at a 
speed of 3 or 4 knots, so that the distance between traces 
was 0.8–1 m. In order to minimise the noise and the spatial 
filtering produced by the hydrophones array, the streamer 
was towed near the source with a 15 m longitudinal offset 
and a 3.5 m lateral offset (Baradello & Carcione, 2008).

The presence of only long- wavelength, low- 
amplitude sea waves ensured high- quality data and no 
tidal correction was necessary. Four lines which were 
considered to be the most significant are shown in 
Figures 2 and 3, the positions of which are indicated in 
Figure 1B.

In the same area where the boomer data were acquired, 
a survey using a multibeam echosounder was performed. 
The position of the survey is indicated by the white dashed 
line in Figure 1B; the resulting image is shown in Figure 4. 
The multibeam data have enabled a full coverage bathy-
metric map with a pixel size of 10 cm to be generated. This 
is achieved using 512 simultaneous beams, equidistant on 
the sea floor with a swath wide angle of 120–165°. The 
along- track resolution is directly determined by the speed 
of the vessel and the ping rate of the sounder, whereas the 
across- track resolution is determined by the nadir- depth 
and the angle of the swath. Both these resolutions are 
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4 |   DA COL et al.

lower than 10 cm. The data has been processed for tidal 
correction, removal of low- quality data points and gener-
ation of a data terrain model using the TELEDYNE PDS 
software.

4  |  RESULTS

4.1 | Units and bounding surfaces

Three seismic units (Units 1–3) were found in the upper 
part of all of the studied seismic profiles, both in lati-
tudinal and longitudinal directions (Figures  2 and 3, 

respectively). Each unit is bounded at its base by a chan-
nelised surface (S1–3). A relatively homogeneous seismic 
unit found below surface S1 is considered as the substrate 
(Unit S) of Units 1–3.

4.2 | Surface S1

Surface S1 separates Unit S (below) from Unit 1 (above) 
and corresponds to a relatively flat and gently seaward- 
inclined, high- amplitude reflector from ca 21 to 25 ms 
(TWT) (16.8–20 m) depth, considering a velocity of ap-
proximately 1600 m/s, a reasonable estimate for these 

F I G U R E  2  Interpreted seismic sections of the boomer data acquired in a latitudinal direction. The location of each line is indicated in 
Figure 1. For a description of the units and reflecting surfaces, see Section 4.
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   | 5DA COL et al.

shallow water- saturated sediments. Surface S1 is locally 
interrupted by composite V- shaped to U- shaped incisions 
up to 13 ms (TWT) (ca 10 m) deep (with respect to the ad-
jacent flat surface) and over 500 m wide.

4.3 | Surface S2

Surface S2 separates Unit 1 (below) from Unit 2 (above) 
and coincides with a relatively flat to slightly irregular, 

F I G U R E  3  Interpreted seismic sections of the boomer data acquired in a longitudinal direction. The location of each line is indicated in 
Figure 1. For a description of the units and reflecting surfaces, see Section 4.

F I G U R E  4  Results of the multibeam survey. See the dashed white rectangle in Figure 1 for the location of the multibeam survey.
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6 |   DA COL et al.

medium- amplitude to high- amplitude reflector from ca 
20 to 22 ms (TWT) (16–17.6 m) depth, interrupted by V- 
shaped incisions much less apparent than those associ-
ated with S1 (up to ca 3 m deep relative to the adjacent flat 
surface) and commonly developed in the same positions 
as in S1.

4.4 | Surface S3

Surface S3 separates Unit 2 (below) from Unit 3 (above) 
and coincides with a flat to irregular and gently seaward- 
inclined, medium- amplitude to high- amplitude reflec-
tor ca 17 to 21 ms (TWT) (13.6–16.8 m) depth, with 
associated isolated to composite V- shaped incisions up 
to ca 13 ms (TWT) (ca 10 m) deep (with respect to the 
adjacent flat surface) and up to 250 m wide. The deeper 
incisions may remove the underlying units, reaching 
Unit S. The relatively flat surfaces that separate the inci-
sions locally show altimetric variations of ca 4 ms (TWT) 
(ca 3 m).

4.5 | Unit S

The features of Unit S are mainly recognisable in the 
upper part of the seismic profiles due to the mask-
ing effect of multiples. The unit is composed of 
sub- horizontal to gently inclined and undulated low- 
amplitude to high- amplitude reflectors showing local 
irregularities and minor incisions no more than 1 ms 
(TWT) deep. Higher amplitude sub- horizontal to ir-
regular reflectors are locally evident; some segments 
of these reflectors can be classified as bright spots. 
The unit is crossed by several vertical pipes of variable 
width (from a few metres to 20–30 m), which blur or 
even whiten the signal.

4.6 | Unit 1

Unit 1, bounded by surfaces S1 and S2, ranges in thickness 
from less than 1 to ca 3 ms (TWT) in the flatter areas, but it 
is up to ca 15 ms (TWT) (up to 12 m) thick at the incisions on 
Unit S. Unit 1 is made up mostly of sub- horizontal to slightly 
undulate and gently inclined, low- amplitude to medium- 
amplitude reflectors, although the fillings of the incisions 
also contain irregularly inclined reflectors and a chaotic and 
locally transparent seismic facies. The vertical pipes cross-
ing Unit S continue in Unit 1, masking the signal and locally 
producing a pull- up effect above surface S1.

4.7 | Unit 2

Unit 2, bounded by surfaces S2 and S3, ranges in thickness 
from ca 1 to 5 ms (TWT) (0.8–4 m) thick, and its changes in 
thickness mainly depend on the incisions associated with the 
bounding surfaces. The unit is composed of sub- horizontal 
to slightly undulate and gently inclined, low- amplitude to 
medium- amplitude reflectors. Convex- up reflectors locally 
form ca 500 m wide dome- like structures with an irregular 
top, bounded above by surface S3. This is most evident in 
Line Bi_08_20 (see Figure  3). The vertical pipes crossing 
Units S and 1 continue in Unit 2, masking the signal.

4.8 | Unit 3

Unit 3, bounded by surface S3 below and by the sea-
bed above, ranges in thickness from ca 1 to 15 ms (TWT) 
(0.8–12 m), with the greater thicknesses at the incisions 
associated with S3. The unit exhibits a wedge shape in 
dip- oriented transects, where, not considering the filling 
of the incisions on S3, it markedly thins from proximal to 
distal locations. Relatively transparent, mainly concave-
 up reflectors characterise the incision fill, whereas gently 
seaward- inclined, low- amplitude to medium- amplitude 
reflectors downlapping surface S3 and the top of the fill-
ings of the incisions characterise the wedge- shaped part of 
the unit. The distal part of the seismic profiles is charac-
terised by dome structures on the seabed, ca 50 to 400 m 
wide and up to ca 3 ms (TWT) (2.4 m) high. The internal 
structure of these domes is not detectable due to the mask-
ing effect of seabed reflections. The vertical pipes crossing 
Units S, 1 and 2 continue in Unit 3 and above the sea floor, 
producing columnar gas flares up to 12 ms (TWT) (ca 10 m) 
high (see below).

4.9 | Gas- related features

The presence of shallow gas in all of the high- resolution 
seismic profiles (see Figures  2 and 3) is suggested by 
some gas- related features associated with signal anoma-
lies: vertical gas pipes, associated with an upward mi-
gration of fluids and characterised by a poor- amplitude 
chaotic facies produced by the disruption of seismic 
reflectors with local pull- up effects; bright spots, indi-
cating a fluid- charged sediment and characterised by 
high- amplitude and reverse polarity. Gas seeps from 
the sea floor are often associated with gas pipes. These 
seeps produce detectable amplitude anomalies known 
as flares.
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5  |  DISCUSSION

The features of Unit S resemble those of late Pleistocene 
continental deposits found below the Venice lagoon 
and in the adjacent marine area, mainly accumulated 
in alluvial plain to paludal environments (Zecchin 
et  al.,  2008, 2009, 2011, 2015). These settings are typi-
cally characterised by abundant gas seeps (vertical 
pipes) that are locally entrapped below more imperme-
able horizons consisting of peat beds and/or palaeosols 
(Zecchin et  al.,  2011), which appear as bright spots in 
seismic profiles.

Surfaces S1 and S2 probably correspond to surfaces 
of subaerial exposure, characterised by fluvial incisions 
(deeper in the case of surface S1) and adjacent interfluves 
that probably experienced paedogenesis (Posamentier & 
Allen, 1999; Zecchin et al., 2011). Units 1 and 2, therefore, 
are interpreted as fluvial deposits filling the incisions, 
passing laterally to floodplain deposits. The dome- like 
structures locally found in the upper part of Unit 2 are 
interpreted as aggrading channel- levee systems, a feature 
commonly observed in the late Pleistocene continental de-
posits of the northern Adriatic Sea (Zecchin et al., 2011; 
Tosi et al., 2017; Ronchi et al., 2023; Zecchin et al., 2024). 
Overall, the features of Units 1 and 2 are very similar to 
those of possibly coeval incised and infilled landforms 
found at similar depths below the sea floor in the north-
ern Adriatic Sea, south- west of the study area by Ronchi 
et al. (2018), which were dated between ca 28 and 20 cal. 
ka BP.

The wedge shape of Unit 3, observed in dip- oriented 
transects, is very probably the result of relatively recent 

progradation of the coastal wedge during Holocene time 
(Zecchin et al., 2008, 2015; Tosi et al., 2017). The deep in-
cisions characterising surface S3, therefore, could be the 
result of strong tidal flows producing tidal channels de-
veloped during the early Holocene transgressive phase 
(Ronchi et al., 2018) or tidal/inlet channels reworking older 
fluvial channels (Zecchin et al., 2009; Tosi et al., 2017). It is 
therefore inferred that the LGM surface developed at the 
top of Unit 2 and was later reworked by tidal currents and 
waves, producing tidal and wave- ravinement surfaces that 
sculpted the observed shape of surface S3. The S3 surface 
has also been identified along seismic lines acquired on 
land orthogonal to the shoreline (Accaino et  al.,  2023). 
The longitudinal lines Bi_07_20 and Bi_08_20 (Figure 3) 
are almost a continuation of such land lines, and conti-
nuity of the S3 surface from land to sea can therefore be 
inferred. Figure 5 shows an idealised evolutionary model 
of the studied succession from the pre- LGM (30 ka BP) to 
when the coastline reached the current position (ca 6 ka 
BP).

The considerable presence of gas in the analysed 
succession reflects what has been observed in the Plio- 
Quaternary sediments of the northern Adriatic Sea 
(Gordini et  al.,  2023). Analysis of the gas samples has 
shown that biogenic methane is the main component of 
gaseous emissions at the sea floor (Donda et al., 2019).

The presence of elongated mounds, up to 500 m long 
and 2.4 m high, can be clearly seen in the high- resolution 
seismic profiles (lines Bi- 02- 20 and Bi- 07- 20 in Figure 2) 
on the sea floor and in the morpho- bathymetry data, 
where they develop in a NW- SE direction (Figure 4). These 
morphological highs are interpreted as bio- concretioned 

F I G U R E  5  Evolutionary model of the studied succession shown with an idealised dip- oriented transect. (A) Subaerial exposure 
surface associated with river incision (surface S1) developed above alluvial plain sediments (Unit S) at ca 30 ka BP (see text). (B) After the 
accumulation of continental Unit 1 that filled older fluvial incisions, followed by the development of surface S2 and the accumulation of 
continental Unit 2, the LGM surface developed at the top of the latter. (C) The Holocene transgression led the formation of a shallow lagoon 
incised by tidal channels and inlets, which truncated all older units. (D) The Holocene highstand phase was characterised by the seaward 
progradation of the coastal wedge, which blanketed all previously accumulated deposits.
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8 |   DA COL et al.

rocky build- ups grown on cemented sand bars, known 
as ‘Tegnue’ or ‘Trezze’ in the northern Adriatic Sea (Tosi 
et al., 2017). The ‘Tegnue’ are localised at a depth between 
10 and 40 m and can exhibit up to 3 or 4 m of positive local 
relief above the surrounding sea floor. Typically, they are 
located 2–17 km from the coast and at depths between 8 
and 22 m (Zecchin et al., 2015; Minelli et al., 2021; Gordini 
et  al.,  2023). The early lithification of sand, which rep-
resents the substrate of the build- ups, can be related either 
to the interaction between salt water and fresh submarine 
groundwater (Tosi et  al.,  2017) or to gas seeps (Donda 
et al., 2013, 2019; Gordini et al., 2023).

6  |  CONCLUSIONS

The information provided by the surveys presented in 
this work is consistent with the known geology of the 
area, adding new information about the Quaternary sedi-
mentary succession in an area of the northern Adriatic 
Sea that has not been the subject of prior investigation. 
Specifically, similar features to those found by Ronchi 
et  al.  (2018) were found, including deep incised valleys. 
Thanks to the analogies found with this work, which in-
cluded laboratory analyses of core samples to date the 
sediments, an estimate of the age of the surfaces and units 
identified in the seismic lines has been supposed.

The presence of several gas chimneys seeping to the 
sea floor, as well as small formations including trapped gas 
(‘bright spots’), is noted. Such gas, most probably of bio-
genic origin, can also reach the sea floor via gas chimneys, 
which are clearly visible on the seismic sections.

In order to investigate formations on the sea floor, 
boomer data were integrated with multibeam data. The 
domes found in both datasets appear to be of signifi-
cant size, and their location and extension are consistent 
with those of the ‘Tegnue’, rocky outcrops typical of the 
Northern Adriatic.

As for the method here presented, the Boomer data 
appear to have excellent resolution and penetration capa-
bilities for these shallow waters and sediment type, and 
its integration with the multibeam data are an excellent 
tool to detect the gas chimneys and the rocky outcrops 
(‘Tegnue’) on the sea floor.
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