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S U M M A R Y 

On-site earthquake early warning (EEW) systems represent an important way to reduce seismic 
hazard. Since these systems are fast in providing an alert and reliable in the prediction of 
the ground motion intensity at targets, they are particularly suitable in the areas where the 
seismogenic zones are close to cities and infrastructures, such as Central Italy. 

In this work, we use Gradient Boosting Regressor (GBR) to predict peak ground acceleration 

(PGA), and hypocentral distance ( D ) starting from P -wave features. We use two data sets of 
waveforms from two seismic sequences in Central Italy: L’Aquila sequence (2009) and the 
Amatrice–Norcia–Visso sequence (2016–2017), for a total of about 80 000 three-component 
waveforms. We compute 60 different features related to the physics of the earthquake using 

three different time windows (1 s, 2 s and 3 s). We validate and train our models using the 
2016–2017 data sets (the bigger one) and we test it on the 2009 data set. 

We study the performances of GBR predicting D and PGA in terms of prediction scores, 
finding that the models can well predict both targets even using 1 s window, and that, as 
e xpected, the results improv e using longer time windows. Moreov er, we perform a residual 
analysis on the test set finding that the PGA can be predicted without any bias, while the D 

prediction presents a correlation with the moment magnitude. 
In the end, we propose a prototype for a probabilistic on-site EEW system based on the 

prediction of D and PGA. The proposed system is a threshold-based approach and it releases 
an alert on four possible levels, from 0 (far and small event) to 3 (close and strong event). 
The system computes the probability related to each alert level. We test two different set of 
thresholds: the Felt Alert and the Damage Aler t. Fur ther more, we consider the lead time (LT) 
of the PGA to distinguish between useful alerts (positive LT) and Missed Alerts (MA). In 

the end, we analyse the performance of such a system considering four possible scenarios: 
Successful Alert (SA), Missed Alert (MA), Overestimated Alert (OA) and Underestimated 

Alert (UA). We find that the system obtains SA rate about 80 per cent at 1 s, and that it 
decreases to about 65 per cent due to the increase in MA. This result shows how the proposed 

system is already reliable at 1 s, which would be a huge advantage for seismic prone regions 
as Central Italy, an area characterized by moderate-to-large earthquakes ( M w 

< 7). 
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 I N T RO D U C T I O N  

n the framework of natural phenomena, earthquakes are one of
he most impressive. Large earthquakes have a strong impact on
ociety: many human lives are loss due to these catastrophic events
nd modern society is se verel y af fected b y the enormous damages
C © The Author(s) 2023. Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License (
permits unrestricted reuse, distribution, and reproduction in any medium, provided
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hat they cause in the hit areas, where economic losses can easily
each the order of billions of euros. 

Now adays, real-time seismolo gy is one of the most ef fecti ve ac-
ions to mitigate seismic risk by decreasing the exposure of people
nd targets to the potentiall y destructi ve ef fects of an earthquake
Satriano et al. 2011 ; Picozzi et al., 2013 ). In particular, the pro-
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gresses in real-time seismic data processing and fast telemetry have 
allowed the development of Earthquake Early Warning Systems 
(EEWSs; Kanamori 2005 ). These systems are aimed at detecting 
and characterizing in real-time the size of an earthquake and at pro- 
viding a rapid alert notification of the ongoing event to vulnerable 
targets in the vicinity of the source region, only using information 
extracted from the first seconds of the available seismic waveforms 
(Wu & Kanamori 2005 b, Wu & Zhao 2006 ; 2008 ). 

The first idea of such a system dates back to 1868 by D .J . Cooper 
(Cooper 1868 ), which proposed the introduction of an alert system 

after the earthquake of magnitude 7 that strongly damaged the city 
of San Francisco. While Cooper’s idea has never been implemented, 
nowadays there are few operating, or under testing, EEWSs around 
the world, such as in Japan, USA, Italy and Mexico (Espinosa- 
Aranda et al. 2009 ; Zollo et al. 2009 ; Allen & Melgar 2019 ; Allen 
et al. 2019 ; Cremen & Galasso 2020 ). EEWSs use independently 
or combine different strategies for extracting different pieces of in- 
formation about the earthquake and the ground motion at different 
sites by exploiting extended seismic networks or single-station sys- 
tems (Hoshiba et al. 2008 ; Zollo et al. 2014 ; Colombelli et al. 2015 ; 
Picozzi et al. 2015a , 2015b , 2015c ; Caruso et al. 2017 ; Festa et al. 
2018 ; Spallarossa et al. 2019 ; Song et al. 2022 ). 

In this work, we focus on the on-site EEW approach, which con- 
sists of single seismic station, or a small array of sensors, placed 
directly or nearby a target site (Satriano et al. 2011 ). Typically, on- 
site EEWSs extract information from the analysis of P waves to 
predict the ground motion intensity at targets (Brondi et al. 2015 ; 
Caruso et al. 2017 ; Iaccarino et al. 2020 ). EEW on-site systems can 
provide faster alerts at target sites for small hypocentral distances 
with the respect to EEWS operating at regional scale (Satriano et al. 
2011 ). Fur ther more, predictions of regional EEW systems are ham- 
pered by the uncertainties of ground motion prediction equations, 
which is larger than the one of empirical models relating the P 

w aves and S w aves ground motion predictions of the ground motion 
intensity at the target (Bindi et al. 2011 ; Spallarossa et al. 2019 ). 
For this reason, on-site EEW systems are generally considered to 
provide more reliable predictions of the ground motion intensity at 
targets than regional ones. 

A key issue of EEWS is the amount of time available for alerting 
a target site before it is hit by destructive seismic waves. Clearly, 
the greater the alerting time, the greater the ef fecti veness of the 
remedial measures aimed at protecting the target itself. We indicate 
as ‘lead-time’ the time interval between the arri v al of the S -wave 
and the alert time, both measured at the target. Obviously, the lead- 
time depends on the distance between the target and the hypocenter 
(Satriano et al. 2011 ). 

So far, EEW studies have been mostly based on features extracted 
from limited signal windows (e.g. 1, 2 or 3 seconds) of the P waves, 
assuming inner relationships between these features and the strong 
motion parameters. Many studies use the maximum amplitude of 
the P -wave displacement, P d , to predict the Peak Ground Velocity, 
PGV, (Wu & Kanamori 2005 b; Zollo et al. 2010 ; Caruso et al. 2017 ). 
Brondi et al. ( 2015 ) proposed the Integral of squared Velocity, IV 

2 , 
measured on a 3 s P -wave window as a proxy for predicting both 
PGV and the Housner intensity, I H (Housner 1952 ), with this latter 
commonly used in seismic engineering for damage assessments. 
Caruso et al. ( 2017 ) proposed an EEWS that combines P d and 
predominant period ( τ c ) to predict PGV, magnitude and a distance 
classification. 

Now adays, the de velopment of automatic learning algorithms, 
such as artificial intelligence and machine learning, can give us the 
chance to optimize the extraction of information from the data. This 
can further pave the way to new lines of investigation to refine well- 
established techniques or introduce innov ati ve approaches. In the 
last decades, new techniques have been proposed by many authors in 
seismology using machine and deep learning to study earthquakes 
in real-time. Many authors proposed the use of deep-learning tech- 
niques on waveforms to provide phase picking, earthquake location, 
magnitude and earthquake characterization (Zhu & Beroza 2019 ; 
Mousavi & Beroza 2020 ; Mousavi et al. 2020 ; Kuang et al. 2021 ; 
M ünchmeyer et al. 2021 ). Other authors prefer to use seismic fea- 
tures extracted from waveforms to directly insert physics principles 
within the models. Among others, B öse et al. ( 2012 ) used a neu- 
ral network (NN) to predict magnitude, distance and PGV using 9 
P -wave features measured from one station and considering pro- 
gressive time windows. Ochoa et al. ( 2018 ) used Support Vector 
Machine Regressor on 25 real-time features to predict magnitude 
using 5 s, 10 s and 15 s. Fur ther more, M ünchmeyer et al. ( 2020 )
used gradient boosting on 6 features, automatically corrected by 
distance, to predict magnitude. Hsu & Huang ( 2021 ) used a Con- 
volutional Neural Network on 3 s of P waves both in time and 
frequency domain to predict PGA in an on-site EEW framework 
using data from single station. Iaccarino et al. ( 2021 ) compared the 
results of different machine lear ning reg ressors on 9 features com- 
puted at different time windows from in-building data to predict 
structural Drift in real-time. 

In this work, we explore the feasibility of using machine learning 
regression as a tool for the real time prediction of the hypocentral 
distance (hereinafter, D ) and the peak ground motion acceleration 
(hereinafter, PGA or ground motion intensity) considering as input 
features extracted from P waves time windows. We use a big data 
set of waveforms from two seismic sequences happened in Central 
Italy, the 2009 L’Aquila sequence and the 2016–2017 Central Italy 
sequence. It is important to note that the Italian context is character- 
ized by seismogenic zones placed close to cities and infrastructures. 
Therefore, despite the seismicity is characterized by moderate-to- 
large earthquakes ( M w < 7), it can cause huge human and economic 
losses. These characteristics make this area particularly suitable for 
an on-site EEW system. 

Once we derive and discuss the performance of models connect- 
ing the P waves information to the distance and the ground motion 
intensity, we also test the on-site predictions within a framework 
of a prototypal, probabilistic alert system to be implemented in an 
on-site, threshold based EEWS. 

2  DATA  S E T  

Our analysis is based on a data set generated using the RSN-Picker2 
(Spallarossa et al. 2014 ; Scafidi et al. 2018 ), which includes a chain 
of modular iterative algorithms (i.e. an automatic phase detector, a 
picker and a locator) aimed at improving recall, precision and ac- 
curacy of automatic picking and location procedures for a real-time 
monitoring of earthquakes and nontectonic events. To be consistent 
with the Italian official seismic catalog, the information about earth- 
quake locations is extracted from the INGV (National Institute for 
Geophysics and Volcanology) bulletin (see Data and Resources). 

The source parameters (i.e. seismic moment, moment magnitude, 
local magnitude, seismic radiated energy) are estimated using fea- 
tures extracted directly from waveforms (Picozzi et al. 2017 ; Bindi 
et al. 2018 ; Spallarossa et al. 2021a ). They are provided together 
with the ground motion intensity by the service RAMONES—
Rapid Assessment of MOmeNt and Energy Service—(Spallarossa 
4
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t al. 2021b ), which exploits raw data retrieved from the Eu-
opean Integrated Data Archive (ORFEUS-EIDA, https:// www.
rfeus-eu.org/data/eida/ ) and the Italian Civil Protection, DPC
 http://ran.protezionecivile.it/EN/index.php; Gorini et al. 2010 ),
trong motion network. Most of the traces in the data set are recorded
y accelerometers ( ≈80 per cent), while the remaining by velocime-
ers. The stations belong to the INGV national seismic network and
o the RAN-Italian strong motion network (see Data and Resources).

Our data set is in time made by two subsets: i) the first includ-
ng 375 events (with M w in the range [1.8; 6.3]) recorded at 217
ifferent stations (more than 10 600 three-components waveforms)
rom 2009 (hereinafter, we will refer to this set as S09); the other
ncluding 840 events (with M w in the range [1.8; 6.5]) recorded
t 605 different stations (more than 69 000 waveforms) from the
eriod between January 2016 and September 2019 (hereinafter, we
ill refer to this set as S1619). In the end, we select only data with

ypocentral distance lower than 150 km because further data would
e useless for EEW purposes considering the Italian seismicity. 

The data set S1619 is dominated by earthquakes of the 2016–
017 Central Italy seismic sequence (F ig. 1 a), w hich includes three
ain events: the M w 6.0, 24 August 2016, Amatrice event (orange

tar); the M w 5.9, 26 October 2016, Visso earthquake (yellow star);
nd M w 6.5, 30 October 2016, Norcia earthquake (red star). The data
et S09 is instead mainly formed by the seismic sequence related to
he M w 6.1, 4 April 2009, L’Aquila earthquake (Fig. 1 b, red star). 

Since S1619 is significantly larger than S09, we will use the
ormer as training set, while S09 is used as testing set. 

Although the two relative main sequences are geo graphicall y sep-
rated, with S09 that is slightly southernmost than S1619, the two
egions belong to the same extensional sector of the Apennines, and
herefore the earthquakes have similar characteristics (e.g. hypocen-
ral depth, focal mechanism). 

Fur ther more, we divide S1619 in two subsets, S1619 T (80 per
ent) and S1619 V (20 per cent). The first one is the proper training
et, while the other is the validation set that we use for the tuning
f the machine learning (ML) techniques. The splitting is done us-
ng the Scikit-Learn function ‘train test split’ in Python (Pedregosa
t al. 2011 ) and stratifying data by the station magnitude (the mag-
itude computed using the ground motion amplitude measured at
he seismic station). In Suppor ting Infor mation Fig. S1 , we show
he distributions of station magnitude, distance and PGA H for the
hree data sets. From the latter figure, we can see that the majority
f data refer to events with magnitude ≤ 4 and D ≤50 km. 

 M E T H O D  

.1 Features 

e analyze the waveforms belonging to the two data sets to extract
eatures (Table 1 ) that will then be used as input for the ML regres-
or. The features are calculated considering the signal in different
omains: in displacement, D ( t ), velocity, V ( t ), and acceleration, A (t).
e estimate 15 features, some of them derived from the analysis

f signals recorded on the vertical component, Z, others from the
orth and east components, N and E. Moreover, we also estimate
eatures from the geometrical mean of the horizontal components
hereinafter indicated as H). Hence, we have in total 60 features that
e compute at three different time windows 1 s, 2 s and 3 s. 
We think each feature to be connected to the source physics

n different ways. As example, the peak amplitude values from P
aves (P d , P v and P a ) are directly linked to the peak amplitudes
n S waves. The signal-to-noise ratios (SNR a , SNR v and SNR d )
re linked both to the peak amplitude and the quality of the signal.
he latter are useful features because the ML regressor does not
now a priory the data quality. The integral quantities (IA 

2 , IV 

2 ,
D 

2 A rms , V rms , D rms and CAV) are closely related to the energy
adiated during the rupture processes, while τ c and τ p are related
o the dominant frequencies within the earthquake signals, and thus
rovide indications on the events’ size. These latter parameters are,
n fact, often used in EEW applications to predict the magnitude
f the event, sometimes in combination with P d (Wu & Kanamori
005 b; Zollo et al. 2010 ; Caruso et al. 2017 ). 

.2 Tar g ets 

e explore the capability of the set of features listed in Table ( 1 ) to
redict the target parameters D and PGA, having in mind to apply
hem for an on-site, threshold based EEWS. 

For the hypocentral distance, D , we follow the classic approach
sed in Ground Motion Prediction Equation (GMPE) studies by
redicting the logarithm of D , log 10 D (Bindi et al. 2011 ). Following
gain Bindi et al. ( 2011 ), we compute the PGA as the geometrical
ean of the horizontal components (PGA H ) as follows, 

P G A H = 

√ 

P G A N · P G A E (1) 

Where PGA N and PGA E are values for the North and East com-
onents, respecti vel y. In the end, we aim to predict lo g 10 PGA H . 

Our choice of the target parameters (i.e. log 10 D and log 10 PGA H )
s moti v ated b y the idea, and past experiences in EEW (e.g. Caruso
t al. 2017 ; Iaccarino et al. 2020 ; Mousavi & Beroza 2020 ), that
eatures extracted from the P waves vertical component of ground
otion carry information useful to rapidly estimate the distance and

xpected ground shaking. 
It is important to note that both D and the PGA H determination are

ot linear problems, despite being a reasonable assumption in many
ases. As matter of fact, there are multiple factors that concur in
he non-linearity: 1) The magnitude of the event influences not only
he amplitude of the waveforms but also the frequency content;
) The frequency content also changes if we use waveforms in
cceleration, velocity, or displacement; 3) The source time function
uration depends itself on magnitude, and that influences how much
nformation we can retrieve from a chosen time window; 4) The
nelastic attenuation acts reducing the more the high frequency
ontent the further away will be the event; 5) Site effects corrupt the
ignals related to the seismic source; 6) For shor ter distances, par t
f the S -wave might be included in the chosen window. All these
ffects influence in different ways each feature at the same time,
aking the problem of estimating D and the PGA H from features

learly non-linear. Therefore, in this paper, we use a non-linear
achine learning regressor as the Gradient Boosting Regressor. 

.3 Lead-time 

o assess the ef fecti veness of the EEW alerts, after the ML models
alibration, we will consider the lead-time. Therefore, we calcu-
ate the lead-times, LT PG A , for all the waveforms in our data set
onsidering the arri v al time of the PGA, t PG A , as 

LT PG A = t PG A − t P − P window − t comp (2) 

here P window is the considered time window in seconds, t p is the
 -w ave arri v al and t comp is the computation time that we set at 0.5
econds. It is worth to note that often EEWS approaches consider
 4

http://www.orfeus-eu.org/data/eida/
http://ran.protezionecivile.it/EN/index.php;
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggad443#supplementary-data
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Figure 1. Map showing the spatial distribution of earthquakes and accelerometric/seismic stations. The events are displayed as stars coloured by depth while 
the stations are plotted as black triangles (a) S1619 set. The red star refers to the M w 6.5 ‘161 030 064 017’ Norcia event. The orange star refers to the M w 

6.0 ‘160 824 013 632’ Amatrice e vent. Finall y, the yellow star refers to the M w 5.9 ‘161 026 191 805’ Visso earthquake. (b) S09 data set. The red star 
refers to the M w 6.0 ‘090 406 013 242’ L’Aquila event. The orange star refers to the M w 5.4 ‘090 407 174 739’ Fossa event. 

Table 1. List of the features used. 

Feature Symbol Equation Reference 

Peak of acceleration Pa P a = max 
t o <t<t o + �t 

A ( t) (Wu & Kanamori 2005a ) 

Peak of velocity Pv P v = max 
t o <t<t o + �t 

V ( t) (Wu & Kanamori 2005a ) 

Peak of displacement Pd P d = max 
t o <t<t o + �t 

D( t) (Wu & Kanamori 2005a ) 

Integral of squared acceleration IA 

2 I A 

2 = 

t o + �t 
∫ 
t o 

A 

2 ( t ) dt This work 

Integral of squared velocity IV 

2 I V 2 = 

t o + �t 
∫ 
t o 

V 2 ( t ) dt (Festa et al. 2008 ) 

Integral of squared displacement ID 

2 I D 

2 = 

t o + �t 
∫ 
t o 

D 

2 ( t ) dt (Iaccarino et al. 2021 ) 

Dominant period τ c τc = 2 π

√ 

∫ t o + �t 
t o D 2 ( t) dt 

∫ t o + �t 
t o V 2 ( t) dt 

(Wu & Kanamori 2005a ) 

Predominant Period τ p τp = 2 π

√ √ √ √ 

mean 
t o <t<t o + �t 

D 2 ( t) 

mean 
t o <t<t o + �t 

V 2 ( t) 
(Wolfe , 2006) 

Cumulative absolute velocity CAV C AV = 

t o + �t 
∫ 
t o 

| A ( t) | dt (Fahjan et al. 2011 ) 

Acceleration root mean square Arms A rms = 

√ 

∫ t o + �t 
t o A 2 ( t) dt 

�t 

Velocity root mean square Vrms V rms = 

√ 

∫ t o + �t 
t o V 2 ( t) dt 

�t 

Displacement root mean square Drms D rms = 

√ 

∫ t o + �t 
t o D 2 ( t) dt 

�t 
Acceleration signal-to-noise ratio SNRa SN R a = 20 ∗ log 10 

Pa 
Pa noi s e 

This work 

Velocity signal-to-noise ratio SNRv SN R v = 20 ∗ log 10 
Pv 

Pv noi s e 
This work 

Displacement signal-to-noise ratio SNRd SN R d = 20 ∗ log 10 
Pd 

Pd noi s e 
(Caruso et al. 2017 ) 
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the S -w ave arri v al time to compute the lead-time. Ho wever , many 
earthquakes, especially the largest ones, present peaks of amplitude 
that arrive well after the S -wave arrival, due to the finite source 
effect. For this reason, considering the arrival time of the PGA, 
which is the ef fecti ve ground motion with respect to the EEWS 

should protect the users, provides a more realistic estimation of the 
ef fecti ve lead-time (Parolai et al. 2015 ). 
h
3.4 Gradient Boosting Regressor 

One of the most powerful and applied techniques in ML is the en- 
semb le of methods, w hereas predictions from multiple, often weak, 
statistical models are combined to improve the predictive perfor- 
mance (Dietterich 2000 ). Among these ensembles, we recall the 
random forests (Breiman 2001 ) and boosted gradient trees (Fried- 
man 2001 ). 
 2024
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Table 2. Scheme of the features used for the models. 
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It is worth noting that the ensemble predictions are not al wa ys
etter than the prediction from the individual models that constitute
he ensemble. Ho wever , using large and completely random ensem-
les (for which the models are uncorrelated), it has been shown that
he variance and, thus, the fluctuations due to finite-sample effects
re cut down. On the other hand, when models in the ensemble are
ompletely random, the bias of the aggregate predictor is the same
f a single model. This is true for random forest method, but in
eneral, the increase in bias can be neglected with respect to the
eduction in variance. For this reason, these methods are well-suited
or procedures where the error of the predictor is dominated by the
ariance and not by the bias (Mehta et al. 2019 ). 

In this work, we use the Gradient Boosting Regressor (Friedman
001 ), hereinafter called GBR. GBR combines the intuitions from
oosting and gradient descent to construct ensembles of decision
rees. Like in boosting, the ensembles are created by iteratively
dding new decision trees to the structure. The central role is played
y the cost function that measures the performance of our ensem-
le. At each step of the process, the gradient of the cost function is
alculated with respect to the predicted value of the ensemble, and
rees are added to shift the algorithm in the ne gativ e direction of the
radient. The GBR models are mainly controlled by three hyper-
arameters: the number of the trees, the maximum depth of these
rees and the learning rate of the gradient descent. It is worth noting
hat, since GBR is an ensemble of decision trees, it cannot predict a
arget that is outside the range of targets which make up the training
et. For example, the calibrated model in our application will never
e able to predict a distance greater than 150 km. Moreover, as for
ll the machine learning methods, GBR has problem to make good
redictions for events with different characteristic with respect to
he training set (i.e. events from different regions, or with greater

agnitude). 

.5 Training process 

o improve the convergence of the gradient descent approach, we
rst standardize all the 60 features (Table 1 ) for each considered

ime window (i.e. 1 s, 2 s and 3 s). Then, we tune our GBR models.
pecifically, we fix the number of trees to 300. For the GBR training,
e consider the 80 per cent of S1619 (hereinafter, S1619 T ), with
ata selection stratifying them by magnitude. The stratification in
agnitude helps to avoid unw anted ef fects due to data imbalance

Suppor ting Infor mation Fig. S1 ). 
We use all the features presented in Table 1 for both the models,

ut, after a trial-and-error procedure, we decide to exclude features
btained from the N- and E- components for computing the PGA H .
n this way, the model for the prediction of D uses a total of 60
eatures, while, for the prediction of PGA H , only 30 features are
sed. In Table 2 , we present a simple scheme of the components
sed for both models. 

During the validation process, we consider the remaining 20 per
ent of S1619 (hereinafter, S1619 V ). We let the maximum depth of
he trees to vary from 3 to 20, and the learning rate of the gradi-
nt descent from 0.001 to 0.1. This choice for the hyperparameters
nsures a robust predictive model (Raschka & Mirjalili 2017 ). In
he tuning phase, we train the model using the S1619 T set, and
e e v aluate the hyperparameters combination looking at the results
n the S1619 V set in terms of R 

2 of the prediction. At the end of
his process, we choose the best set of hyperparameters. Finally,
e apply the best model on the S09 set. It is worth to note that
e deri ve dif ferent models for each time window tuning the hyper-
arameters dif ferentl y. This procedure is important to avoid or, at
east mitigate, the effect of the overfitting. This is a natural effect
f ML techniques, where the calibrated models tend to perfectly
redict the training set, but at the cost of a drop in the prediction
erformance when models work on the testing set. The valida-
ion process helps to select models that reduces at maximum the
verfitting. 

It is important to note that the system presented in this paper is
hought to be just a module of a complete EEW system. Therefore,
e do not consider data with only seismic noise in the training
rocess, because we assume that another module would distinguish,
n real-time, seismic arri v als from noise. 

 R E S U LT S  

.1 GBR for hypocentral distance prediction 

ollowing the GBR training on the S1619 T data set, we show in
ig. 2 the results of the model validation on S1619 V concerning

he prediction of the logarithm of hypocentral distance (log 10 D).
he results are presented in terms of R 

2 . We can see that the best
yperparameter configurations barely change with the time window
ength. The best maximum depth is al wa ys 10, while the learning
ate is 0.063 for the 1 s and 3 s models, and 0.016 for the 2 s model.
he R 

2 slightly increases with the time window length from 0.810
o 0.828. Moreover, we see that R 

2 has values that differ each other
y less than 0.01 from the best solution when considering various
onfigurations. This result tells us that it is not necessary to refine
he search of the hyperparameters. 

In Fig. 3 , we report the prediction of the logarithm of hypocentral
istance (log 10 D ) for S09 at 1 s, 2 s and 3 s. The data are colored by
agnitude to highlight the well-known trade-off between magnitude

nd distance that typically hampers the magnitude estimation in on-
ite EEW applications (M ünchmeyer et al. 2020 ; Song et al. 2022 ).
ur ther more, we repor t the predictions of log 10 D for S1619 T (Sup-
or ting Infor mation Fig. S2 ) and S1619 V (Suppor ting Infor mation
ig. S3 ) in the Supplemental Material. Overall, we can see that the
redictions are reliable for all the time windows, having: i) R 

2 = 0.74
nd σ= 0.15 at 1 s; ii) R 

2 = 0.77 and σ= 0.14 at 2 s; iii) R 

2 = 0.79 and
= 0.14 at 3 s. As expected, these values are lower than the validation

esults, but they still indicate a good prediction performance. More-
ver, it is evident a slight improvement of results with the increase
f the time window length. The residual panels (lower subplots in
ig. 3 ) well highlight the strong dependence of residuals with mag-
itude. Our results confirms that any on-site EEW approach aiming
o predict magnitude from P waves measures would be prone to large
ncertainty. 

We can have a better look at the residual’s distribution for all the
ata sets and time windows in Supporting Information Fig. S4 . In
he latter, we binned the residuals for D , and for each bin we show
he residuals mean values and the standard deviation (as blue error
ars). Looking at plot for the training set, S1619 T , we observe that
he residuals are consistent with zero for each bin except for very
mall D ( D < ∼7 km) and large D ( D > ∼125 km). The latter
esult confirms us that the model is well trained. For very small
 4
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Figure 2. Results of the validation process performed for the three P time windows in terms of R 

2 . The heatmaps show the best couple of hyperparameters –
depth and learning rate – (in red) to be used for the log 10 D predictions. 

Figure 3: Predictions of log 10 D versus the observed values for the three time windows for S09 data. The plots are colored by station magnitude. We report the 
time windows from left to right. Diagonal dashed lines report the 1vs1 relation, while horizontal and vertical ones denote the alert threshold used to assess the 
quality of prediction. The bottom panels show the residuals of the predictions versus log 10 D . 
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and large distances, on the contrary, data are too few for model 
convergence (Suppor ting Infor mation Fig. S1 ). On the other hand, 
for S1619 V and S09 we observe an increased dispersion of the data 
due to overfitting, but also in this case we note that the residuals 
remain consistent with zero for all the bins, with again the exception 
of D < ∼7 km and D > ∼125 km. 

Interestingly, for the 2 s and 3 s windows, we observe that all 
the data sets present a notch of small overestimation (Supporting 
Information Fig. S4 ). The latter cases correspond to around log 10 ( D ) 
= 1.2 ( D ≈ 16 km) for the 2 s window and around log 10 ( D ) = 1.4
( D ≈ 25 km) for the 3 s window. These values are consistent with 
the S -wave propagation, so we believe that this effect is mainly due 
to the fact that the model is adapting itself to whether or not the 
S -wave is already in the considered window (before or after the 
notch), while it has a small difficulty on the transition. 

For a better e v aluation of the models’ performance, we analyze 
the ROC (Receiver Operating Characteristic) curve. We select this 
analysis because it allows to e v aluate the prediction independently 
from choosing a specific alert threshold. This is particularly useful in 
EEW applications, since many studies pointed out the dependence 
of the EEW performances with the alert threshold (Meier 2017 ; 
Minson et al. 2019 ). 

In Fig. 4 , we show the ROC curves and the ROC-AUC (Area 
Under the ROC Curve) values for log 10 D predictions, for S1619 T , 
S1619 V and S09 sets. Looking at the ROC curves for the three data 
sets, we observe the best performance is obtained for the training 
set (S1619 T ), while the results slightly worsen for the validation 
(S1619 V ) and the testing (S09) sets. 

Despite the strategies put in place to avoid it, we think that the 
difference in performances among the three data sets is likely due 
to a small overfitting in the model training. Ho wever , despite the 
ov erfitting, we observ e that the AUC reaches values greater than 
0.92 for S09 in all the time windows, and this represents a partic- 
ularly good performance. Moreover, the performances between the 
validation and the testing data sets are similar, confirming that the 
two data sets are quite homo geneous. Finall y, we can see a slight 
4
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Figure 4: ROC-curves for log 10 D . Each panel shows the three curves for training, validation and testing sets. In parenthesis, we reported the AUC values for 
the predictions. 
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mprovement in the AUC value for the testing prediction, switching
rom 1 s to 3 s window. 

.2 GBR for peak ground acceleration prediction 

n Fig. 5 , we report the results of the validation process on S1619 V 
or the prediction of the log 10 PGA H (the figure is analogue to Fig. 2 ).
n this case, we obtain the same best hyperparameters configuration
or the three time window lengths: maximum depth equal to 10 and
earning rate equal to 0.016. As in pre vious case, the v alidation R 

2 

ncreases with the time window length from 0.888 to 0.940. The
erformances for this target are clearly better than those for D ,
uggesting a better correlation of PGA with the used features. 

In this case, we use the GBR regressor to retrieve the log 10 P G A H ,
nd we start, as before, from P waves features without any analytical
ypothesis on the function form of the model. Here, we consider
nly features computed on the vertical, Z, and the horizontal, H,
omponents. Moreov er, we e xclude features for the E and N com-
onents after a trial-and-error optimization. 

In Fig. 6 , we show the predictions of log 10 P G A H obtained by
pplying the GBR, along with the residual plots for the 1 s, 2 s and
 s windows, for S09 set. In the Supplemental Material, we present
he predictions of log 10 PGA H for S1619 T (Supporting Information
ig. S5 ) and S1619 V (Supporting Information Fig. S6 ). 
The results are already very good for the 1 s window, reaching a

alue for the R 

2 score equal to 0.90. For larger time window lengths,
e can observe a slight improvement in the predictions, which

eaches R 

2 = 0.95 for 3 s. The standard deviation ranges between
.27 for the 1 s window to 0.19 for the 3 s case. For comparison,
indi et al. ( 2011 ) provided a GMPE relation for log 10 PGA H using

talian data with a total standard deviation equal to 0.337. 
In Supporting Information Fig. S7 , we again report all the resid-

als together with the mean and the standard deviation computed
n data binned in PGA. The latter shows us that the residuals for
1619 T are al wa ys consistent with zero for each bin, except for very
mall and very large values of log 10 PGA H (i.e. for these latter bins
ikely data are too few to properly constrain the model, Supporting
nformation Fig. S1 ). No trend is visible in the residuals, which
onfirms us the goodness of GBR models. Moreover, we note an
ncreased dispersion for S1619 V and S09 due to overfitting. By the
ay, it is evident that the predictions present a high underestimation

or large PGA for S1619 V . Ho wever , since this effect is not visible
or S09, we believe that is due to a heterogeneity of the data sets in
his range of PGA H , which maybe is due to the presence of peculiar
ource, propagation or site effects. 

As done in the previous parag raph, we repor t in Fig. 7 the ROC
urves and AUC values for log 10 P G A H predictions, for S1619 T ,
1619 V and S09 sets. Also in this case, we can observe a small
verfitting, which is identifiable as the small area between the red
urve and the other ones, but also from the decrease of the AUC by
ust 0.01–0.02. Nevertheless, it is worth to say that the GBR models
how a very good performance in the prediction of PGA H . 

.3 Prototype of EEWS 

o highlight the potential benefits and limitations of an on-site
EW system predicting the hypocentral distance and ground motion

ntensity using the calibrated models in this study, we present in
he following a prototype of a single-station alert system. In this
ramework, the alert notification of an upcoming earthquake damage
s issued based on the local measurements of P -wave ground motion,
ith no need for accurate estimation of source parameters (Zollo

t al. 2010 ). Many authors (Kanamori 2005 ; Wu & Kanamori 2005 a,
005b ; Zollo et al. 2010 ) have suggested the introduction of an alert
ystem for both regional and on-site EEWSs, using the information
xtracted from the early P -wave signals, such as the P d and/or P a , P v 

nd τc parameters, as proxies for the estimation of the ground motion
arameters, such as Peak Ground of Displacement (PGD), PGV and
GA. The setting of specific thresholds for these parameters allows

he system to rapidly issue an earthquake alert based on a four-
ntry decision-table scheme (Zollo et al. 2010 ). Nevertheless, we
ust consider that a given level of uncertainty is al wa ys associated
ith the model prediction used in EEWS. Therefore, we establish

n alert criterion in which the comparison between the predicted
round motion and the threshold selected for the ground motion
arameter is done using a probabilistic approach (Minson et al.
019 ; Iaccarino et al. 2020 ). 

For our purpose, we consider that the estimates of log 10 P G A H 

nd log 10 D are the mean values of two gaussian functions with
tandard deviations equal to σPG A H and σD , respecti vel y. We thus
ombined the two functions by computing their joint probability
istribution and we obtain a probability ellipsoid in the space of
og 10 P G A H and log 10 R (Figs 8 a and c). This allows us to build an
lert system based on the exceedance probability with respect to
ny threshold selected for the two parameters. 
4
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Figure 5. Results of the validation process performed for the three P time windows in terms of R 

2 . The heatmaps show the best couple of hyperparameters –
depth and learning rate – (in red) to be used for the log 10 PGA H predictions. 

Figure 6. Predictions of log 10 PGA H versus the observed values for the three time windows for S09 data. The plots are coloured by observed D . Diagonal 
dashed lines report the perfect predictions, while horizontal and vertical ones denote the alert thresholds (see Table 3 ). The bottom panels show the residuals 
of the predictions. 

Figure 7. ROC-curves for log 10 PGA H . Each panel shows the three curves for training, validation and testing sets. In parentheses, we reported the AUC values 
for the predictions. 
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Figure 8. Probabilistic threshold-based alert system example for event M4.17 ‘090 406 035 648’ recorded at the station AQK (observed hypocentral distance 
D = 11.0 km and PGA H = 0.580 m s −2 ). (a) Probabilistic scheme for the alert declaration using 1 s model. The black dot refers to the predicted values of 
distance and PGA for this datum. The red star indicates the observed value for the same data point. Vertical and horizontal dashed lines indicate the thresholds 
chosen for distance and PGA for the Damage Alert system. The confidence ellipse for the estimation of Distance and PGA is shown for 1 σ , 2 σ and 3 σ . On 
the top and on the right side of the plot, we report the single target normal distributions, and the probabilities values corresponding to the area above or below 

the thresholds. (b) Bar plot of the joint probabilities for each possible alert level at 1 s. (c) Same as (a) at 3 s. (d) Same as (b) for 3 s. 

Table 3. Felt (FA) and Damage (DA) Alerts. The PGA information is taken 
from Faenza & Michelini ( 2010 ). 

FA DA 

Distance (km) 50 25 
PGA (%g) 0.52 3.1 
Perceived shaking Light Strong 
Intensity (Low bounds) IV VI 

 

a
a  

c  

V  

2
 

c  

t  

a  

l  

b  

a
 

t  

d  

g  

t  

a  

e  

g

 

d
 

e
 

a
 

e

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/236/1/675/7407331 by O

G
S (Istituto N

azionale di O
ceanografia e di G

eofisica Sperim
entale-O

G
S) Borgo G

rotta user on 26 M
arch 202
Therefore, we define two levels of alert: a Damage Alert (DA) and
 Felt Alert (FA) (see Table 3 ). We define the thresholds in PGA H 

ssociated to these alert levels considering the two MCS Intensity
lasses from (Faenza & Michelini ( 2010 ): intensity IV for FA, and
I for DA. We define the thresholds in D equal to 50 km for FA and
5 km for DA. 

More specifically, the distance threshold for both DA and FA is
onsidered as an upper bound, meaning that the alert is triggered if
he prediction of D is below that threshold (i.e. if the event occurs
t close distances to the target). On the contrary, we consider for the
og 10 PGA H a lower bound threshold, for which the alert is triggered
y predictions of log 10 PGA H surpassing the threshold itself (Figs 8 a
nd c). 

Computing the area under the normal distribution above or below
he given threshold for a set of PGA and D predictions allows to
etermine the probability associated to the FA and DA alerts at a
iven target (here we consider the target co-located with, or nearby,
he seismic station). Then, multiplying these probabilities, we obtain
 joint probability (Figs 8 b and d) that the predicted targets overcome
ither both thresholds, one threshold, or no threshold at all. This
ives us four distinct levels of alert, given by: 

(i) Alert 0: Distance > Threshold, PGA < Threshold (i.e. no
anger for the target). 
(ii) Alert 1: Distance < Threshold, PGA < Threshold (i.e. close

vent but negligible danger for the target). 
(iii) Alert 2: Distance > Threshold, PGA > Threshold (i.e. far-

w ay e vent but danger for the target). 
(iv) Alert 3: Distance < Threshold, PGA > Threshold (i.e. close

vent and danger for the target). 
4
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In Fig. 8 , we report the case of an event (ID 090406035648 1 ) 
with magnitude M w = 4.17 that has been recorded at the station 
AQK, and we consider the DA thresholds. The observed hypocentral 
distance D and PGA H are 11.0 km and 0.580 m s −2 (5.92 per cent g), 
respecti vel y. Therefore, according to our decision framework, the 
correct output of an EEWS should be ‘Alert 3 ′′ . Already from the 
information related to the 1 s time window, the GBR models predict 
D equal to 13.2 km and PGA H equal to 0.426 m s −2 (4.35 per 
cent g) (Fig. 8 a). These predictions are within 1 σ from the real value 
(Fig. 8 a). These estimates of D and PGA H lead our EEW prototype 
to correctly release the alert level to be ‘3’ with a probability of 
0.53 (Fig. 8 b). In Figs 8 (c) and (d), we present the outputs of the 
EEW prototype for the same event but using the 3 s features. For 
this time window length, the models predict D = 12.2 km and 
PGA H = 0.756 m s −2 (7.71 per cent g). Therefore, also in this case 
the prediction of the targets is within the 1 σ from the real value, 
even considering that the standard deviation is lower in this case 
(Fig. 8 c). Again, the EEW prototype provides the right alert level, 
this time with a probability of 0.75 (Fig. 8 d). 

Fur ther more, we present two more applications of the prototype 
in Supporting Information Figs S8 and S9. Here, we show the results 
for the M w 6.0 L’Aquila main event (‘090 406 013 242’), for two 
different stations, AQK at a distance of 8.43 km (Alert 3) and LSS 

at a distance of 42.23 km (Alert 0). In both cases, w e ha v e v ery 
good results and successful alert declarations. 

The prediction of the hypocentral distance is fundamental to 
provide the EEW users with an estimation of the lead-time, which 
is the time available to mitigate their exposure to the incoming 
seismic risk. 

Using our EEW prototype, we obtain a probability value for 
each of the four alert levels, and then we select for the hypothet- 
ical warning message the alert level corresponding to the maxi- 
mum probability. It is worth noting that our choices are made for 
the sake of illustrating how an On-Site EEWS w ould w ork. Of 
course, for the operations in real conditions, the final users of the 
EEWS could decide to follow our scheme, but to tailor the deci- 
sion alert criteria according to other needs (e.g. by a cost-benefit 
analysis). 

In Fig. 9 , we report the EEWS performances for the whole S09 
data set considering each time window length and the threshold 
settings defined in Table 3 . The performance is assessed comparing 
the GBR predictions for D and PGA H with the observed measured 
values. Since we have 4 possible outputs for the EEWS (i.e. four 
alert levels), w e ha ve 12 different kinds of misclassification being 
that each alert level can be misclassified with the other three. Six 
of these misclassifications represent overestimations of the alert, 
‘1 | 0 ′′ , ‘2 | 0 ′′ , ‘3 | 0 ′′ , ‘2 | 1 ′′ , ‘3 | 1 ′′ and ‘3 | 2 ′′ (released alert | real alert),
the opposite ones are underestimations. Moreover, as noted by many 
authors (Satriano et al. 2011 ; Minson et al. 2019 ), for assessing the 
performance of the EEW system, we must also consider the events 
that happen too close to the station/target to release a useful alert 
(i.e. the sites that are within the so-called b lind-zone, w here there is 
no lead-time available to mitigate the users’ exposure to the seismic 
risk). In the end, to simplify the problem, we define 4 types of 
performances: the rate of Successful Alert, SA, Missed Alert, MA, 
Underestimated Alert, UA and Overestimated Alert, OA. 

These latter are defined as: 
SA: Released Alert = True Alert. 
1 The ID refers to the origin time of the event in the format ‘yymmddHH- 
MMSS’. 
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MA: Lead Time ⇐ 0 s. 
UA: Released Alert < True Alert. 
OA: Released Alert > True Alert. 
Moreover, we recall that in this analysis false triggers are not 

considered, because here we only aim at assessing the performance 
of the calibrated modules. We can imagine them as modules of a 
future EEW system, and the issue of false trigger on noise will be 
assessed during the future testing of such system in the real word. 

In Fig. 9 , we report the total performances of our EEW prototype. 
Here, we see that using the GBR predictions of D and PGA H we 
al wa ys obtain a SA rate over 65 per cent, with a maximum of 81.9 
per cent for DA at 1 s. As matter of fact, we see that SA decreases 
with the increasing of the time window, but this is due to the increase 
of MA (i.e. large windows increase the blind-zone size), with this 
latter that ranges from 2.6 per cent at 1 s to 25.1 per cent at 3 s. 
Similarly, also UA and OA are lower for larger time windows, also 
in this case for the increase of MAs. These results show that the 
GBR model for the 1 s window can be extremely useful in EEW 

applications for regions as Central Italy being prone to moderate- 
to-large earthquakes ( M w < 7). For such kind of earthquakes, the 
1 s window allows for an excellent compromise between a high 
performance in the prediction of target parameters and a small 
blind zone. Of course, the 1 s windo w w ould saturate with events 
for which the P -wave source time function is far greater than the 
considered window. Increasing the time window to 2 s or 3 s would 
slightly improve the precision of the target’s prediction, but at the 
price of eroding the lead-time. Fur ther more, we do not see many 
differences in performances between FA and DA thresholds. This 
confirms that the provided models are robust and reliable. 

5  C O N C LU S I O N S  

In this work, we explored the feasibility of the GBR for obtaining 
models suitable for the real-time prediction of hypocentral distance 
and ground motion intensity for single-station EEW purposes. The 
hypocentral distance, and Peak Ground Acceleration, PGA predic- 
tions are derived exploiting 60 features extracted from three P -wave 
time windows of length 1,2 and 3 seconds. To this purpose, we have 
used a large and high-quality data set consisting of about 80 000 
ear thquake wavefor ms and covering a magnitude range between 
M w = 1 . 8 and M w = 6 . 5 and a distance range between 5 km and
150 km. We divided the data set in three parts, using the bigger 
subset rele v ant to the 2016–2017 Central Italy sequence for training 
and validation of the models, while the smaller one relevant to the 
2009 L’Aquila sequence as testing set. 

The results of our analyses show that the proposed methodology 
can provide reliable predictions of both hypocentral distance and 
peak ground acceleration. As matter of facts, D is predicted on the 
S09 set with standard deviations equal to 0.15, 0.14 and 0.14 for 
the 1 s, 2 s and 3 s time windows, respecti vel y. From the anal y- 
sis of the residuals, we observed a trade-off with magnitude that, 
ho wever , does not affect the performances of the estimations. The 
results have been e v aluated considering the R 

2 and the AUC-ROC 

values, which improve from 0.92 for the 1 s window to 0.94 for 3 s 
window on the S09. As said, the residuals present a remaining cor- 
relation with the magnitude. We observed that this trade-off causes 
an underestimation of D for event with M w > 4 and large hypocen- 
tral distances (and clearly, vice versa, an overestimation for lower 
magnitude events). Despite this effect is not ideal, the underestima- 
tion of D for high magnitude events and large hypocentral distances 
would tend to produce safer alerts, which is a good side-effect. 
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Figure 9. Pie charts of the EEWS performances on the S09 data set. (a) Results for 1 s model and FA thresholds. (b) Results for 2 s model and FA thresholds. 
(c) Results for 3 s model and FA thresholds. (d) Results for 1 s model and DA thresholds. (e) Results for 2 s model and DA thresholds. (f) Results for 3 s model 
and DA thresholds. 
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The PGA predictions exhibit good accuracy and reliability al-
eady using P -wave information extracted from a window length
qual to 1 s. The analysis of the residuals does not present any bias
r correlations. This means that PGA can be estimated already with
 good level of accuracy from the first seconds of the P -wave for the
ange of magnitude explored. This is par ticularly impor tant consid-
ring the perspective of including this methodology in a real-time
ramework for EEW on-site applications. It is important to note that
ot all the features are equally important for the retrieved models.
o address this question, we perform a features importance anal-
sis for the two models and show the results in Figs S10 ( D ) and
11 (PGA H ). From these figures we observe that a limited number
f features outperforms the others since the ten most importance
eatures accounts for 82–85 per cent of the performances for D
rediction (10 out of 60 features) and for 94–97 per cent for PGA H 

rediction (10 out of 30 features). Interestingly, we see in both Figs
10 and S11 that among the best ten features, some are recurring
i.e. Pa, Pv, SNR a , ID 

2 and τ c ), even if with different components.
his set of features seems trying extracting from the event wave-

or ms complementar y infor mation concer ning the seismic source
ize and distance, as the radiated energy (ID 

2 ), the peak amplitude
Pa, Pv, SNR a ), the frequency ( τ c ) and the data quality (SNR a ).
hese pieces of information are e videntl y used b y the GBR models

o optimize the prediction. Despite the existence of a set of impor-
ant features, their variability among the different targets and signal
indow duration testifies the absence of data leakage. In fact, in the

ase of data leakage, the GBR would have chosen the same ‘leaked’
eature for all the models. Our results let us to believe that, with
urther studies, it should be possible to develop a simpler model
ith less features and similar overall performances. 
We have then assessed the performance of the calibrated pre-

ictive models by considering a prototype of an EEW alert system
ased on PGA and distance thresholds chosen for two macroseismic
ntensity scale levels, that we indicated as the FA and DA (Table 3 ).
e adopted a probabilistic approach to describe the possibility to
ive an alert. In particular, we computed the joint probabilities
f the two predictors, and we established a decision probability
ramework based on four levels from 0 to 3. Moreover, we con-
idered the lead-time of the PGA to distinguish the useful alerts
rom the late ones that we counted as Missed Alert. In the end,
e established 4 kinds of performances: successful, missed, un-
erestimated, and overestimated alarms (Fig. 9 ). We showed that
ur prototype is particularly reliable already considering only 1 s
f P -wa ve signals, ha ving SA a rate greater than 78 per cent for
oth damage and felt thresholds. With the increasing of the time
indow length, the missed alerts increase significantly. This latter

esult well illustrates a problem in EEW applications for coun-
ry like Italy (i.e. those with short distances between seismogenic
ones and targets; Picozzi et al. 2015a ; 2015c ). Indeed, an increase
f the time window length to pursue better predictions of EEW pa-
ameters (e.g. hypocentral distance, ground motion intensity, mag-
itude), would ine vitabl y erode the lead-time and cause the occur-
ence of missing alerts for targets prone to the largest ground motion
ntensities. 

In conclusion, we also wish to stress the concept that the tested
odels can be applied to the seismicity on which they have been

rained, that is the seismicity with range of depths and magnitude
f central Italy. Further studies and new data sets are necessary
o safely transfer the developed models to other seismogenic areas.
espite that, we believe that the calibrated GBR models for predict-

ng distance and peak ground acceleration by 1 s P -wave windows
re particularly suitable for those regions where the target areas are
lose to the seismogenic threats. 

U P P O RT I N G  I N F O R M AT I O N  

upplementary data and figures are available at GJI online. 
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DATA  AVA I L A B I L I T Y  

We used data and information retrieved from ORFEUS-EIDA 

( https://www.or feus-eu.or g/data/eida/ ), IRIS ( https://www.ir is.edu 
/hq/ ) and DPC ( http://ran.protezionecivile.it/EN/index.php ). The 
INGV bulletin is used to guide the data download (webser- 
vices.rm.ingv.it/fdsnws/event/1/) and to extract the earthquake lo- 
cations. The International Federation of Digital Seismograph Net- 
works (FDSN) specifications are available at http://www.fdsn.org/ 
and the Standard for the Exchange of Earthquake Data (SEED) man- 
ual is available at http://www.fd sn.org/pdf /SEEDManual V2.4.pd f . 
For the calibration of the attenuation models, we used data from 

networks IV (DOI: 10.13127/SD/X0FXnH7QfY) and IT (DOI: 
10.7914/SN/IT). 
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