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Abstract: Aftershocks of earthquakes can destroy many urban infrastructures and exacerbate the
damage already inflicted upon weak structures. Therefore, it is important to have a method to
forecast the probability of occurrence of stronger earthquakes in order to mitigate their effects. In this
work, we applied the NESTORE machine learning approach to Greek seismicity from 1995 to 2022
to forecast the probability of a strong aftershock. Depending on the magnitude difference between
the mainshock and the strongest aftershock, NESTORE classifies clusters into two types, Type A and
Type B. Type A clusters are the most dangerous clusters, characterized by a smaller difference. The
algorithm requires region-dependent training as input and evaluates performance on an independent
test set. In our tests, we obtained the best results 6 h after the mainshock, as we correctly forecasted
92% of clusters corresponding to 100% of Type A clusters and more than 90% of Type B clusters. These
results were also obtained thanks to an accurate analysis of cluster detection in a large part of Greece.
The successful overall results show that the algorithm can be applied in this area. The approach is
particularly attractive for seismic risk mitigation due to the short time required for forecasting.

Keywords: NESTORE; machine learning algorithm; aftershocks; features; Greek seismicity; clusters;
forecasting; training procedure

1. Introduction

It is widely known that large earthquakes are followed by other earthquakes, usually
smaller and occurring in close proximity, days to years later, and that it takes some time
for seismicity to return to normal levels [1–4]. However, it may happen that the following
earthquake magnitude is comparable with the previous one. Moreover, aftershocks can
affect numerous facilities in a city, and repeated earthquakes worsen the damage already
inflicted upon vulnerable structures and infrastructure. Greece’s location at the point of
contact between the tectonic plates of Eurasia and Africa has resulted in several geodynamic
processes and high seismicity, with multiple events of large magnitude recorded both in
ancient and modern times. Greece ranks sixth in the world and first in the Mediterranean
region for seismic energy emission [5,6]. The significant geotectonic phenomena, such as the
continental convergence, where the oceanic crust of the North African plate is subducted
under the European plate, are often associated in the literature with the high seismic activity
in Greece. This migration was accompanied by significant crustal shortening and an uplift
rate of a few millimeters per year along the Hellenic Arc because of the accretion of African
plate sediments beneath the underlying Aegean plate. The rollback of the subducting
African slab, resulting in high-rate extension in the back-arc region, is also a significant
seismic source. Last but not least, seismic activity is caused by the North Aegean Trough
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(NAT), the most notable tectonic feature of the North Aegean Sea and the Cephalonia
Transform Fault Zone (CTFZ) [7].

The Mediterranean and Greek regions are particularly well-known both for intense
seismicity and the large-scale earthquakes that have taken place both in recent years and in
ancient times. A typical example is the devastating 365 earthquake of Crete, estimated to
have had a moment magnitude of 8.5 or greater. The earthquake is believed to have caused
the island of Crete to rise by nine meters, while a tsunami that followed the earthquake
destroyed the southern and eastern Mediterranean coasts [8]. On 3 April 1881, the deadliest
earthquake (Mw 6.5) in Greece’s seismic history devastated the SE Chios island. Numerous
fatalities occurred, and the vast majority of facilities were totally destroyed [9,10]. The
Great Kefalonia earthquake, which devastated the southern Ionian Islands in Greece in 1953
with a magnitude of Ms 7.2 and killed over 500 people, was another significant earthquake
of the 20th century [11]. Among the earthquakes used for the analysis in this article, some
are major and particularly important, such as the Mw 6.4 Aigio (15 June 1995) [12], the Mw
6.5 Andravida (8 June 2008) [13], the Mw 6.9 Limnos (24 May 2014) [14], the Mw 7.0 Samos
(30 October 2020) [15], the Mw 6.3 Elassona (3 March 2021) [16], and the Mw 5.7 Arkalochori
(27 September 2021) [17] earthquakes.

In such seismotectonic context, to help mitigate the seismic risk after a strong earth-
quake, it may be useful to develop and test an algorithm, based on the immediate mild
aftershocks, for forecasting the occurrence of stronger subsequent earthquakes. For real-
time or near-real-time applications carried out during a cluster occurrence, it is not known
whether a first high-magnitude earthquake will be followed by one or more strong events.
For this reason, we use the term “o-mainshock” (short for “operative-mainshock”), which
refers to the first earthquake in the cluster that exceeds a certain magnitude threshold [18].

Many studies have focused on the value of Dm, which corresponds to the magni-
tude difference between the mainshock and the Strongest Subsequent Large Earthquake
(SSLE) [19–24]. The magnitude of the SSLE increases as Dm decreases, making the cluster
more dangerous for the population. Using the assumption of the self-similarity theory of
seismicity, which assumes similar behavior for shocks of different magnitudes, studies
on this topic are based on Dm rather than SSLE magnitude. This approach also has the
advantage of using clusters characterized by mainshocks of lower magnitude, which are
more frequent than others, and thus, by increasing the training and testing database, im-
prove statistical reliability. Some studies investigating the relationship between Dm and
mainshock characteristics show that they vary considerably depending on the region [18].

In this paper, we propose a machine learning approach to the problem of Dm fore-
casting during the occurrence of seismic clusters. NESTORE (NExt STrOng Related Earth-
quake) is a machine learning-based approach for SSLE forecasting that can be applied to
clusters whose magnitude of completeness is at least equal to the mainshock magnitude
minus 2 [18,25–27]. The clusters are divided into two groups based on the mainshock
magnitude Mm and the SSLE magnitude: Type A if Dm ≤ 1 and Type B otherwise. The
method is based on the analysis of the seismicity after the mainshock by extracting some
features used for machine learning. The features describe the characteristics of the seis-
micity during the cluster in terms of radiated energy, number of events, and space and
time distribution. NESTORE trains a one-node decision tree for each feature separately and
evaluates thresholds so that clusters whose feature is above the threshold are classified as
Type A and the others are classified as Type B. The probability of being a Type A cluster is
independently estimated for each feature classifier from the percentage of Type A clusters
below and above the threshold in the training set; these probabilities are combined for
a final probability estimate using a Bayesian approach [25]. To simulate the increase in
knowledge over time after the o-mainshock, the analysis was performed at different time
intervals Ti, ranging from 6 h to 7 days after the mainshock. In this case, we applied the
NESTORE algorithm to the Greek seismicity by using the NESTOREv1.0 software available
on GitHub [26].
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2. Geology and Tectonics

Greece is a typical region of Neo-Europe and is associated with the Alpine orogenic
system, which includes the Hellenides. The subduction of the African plate under the
Eurasian plate defines the Hellenic Arc system, and the complex process of detachment
at the top of the orogenic arc forms the numerous tectonic units of the Hellenides (see
Figure 1) [28]. The most recent evolutionary stages of Greece are represented by the Ionian
and Paxi geotectonic units, whose rocks are overthrust blocks of the external Hellenides
with limestones, schists, and dolomites. The Peloponnese peninsula includes several
geotectonic units, such as the Ionian and the Pindos units, which is composed of Mesozoic
deep-water carbonates and siliciclastic rocks. The Tripolis unit consists of Paleogene
flysch sediments and thick Mesozoic shallow-water carbonates, while the Sub-Pelagonian
is made up of clastic formations, limestones, dolomites, and in some cases, ophiolitic
formations [29–31].

Internal and external Hellenides are found throughout central Greece. Attica is lo-
cated at the easternmost point of Central Greece and is mostly composed of post-alpine
formations and alpine basement rocks, both metamorphic and nonmetamorphic. The
high-pressure metamorphic units of the Attic-Cycladic (shales, marbles, schists) and the
Sub-Pelagonian unit are the origins of the Alpine rocks. Thessaly is part of the Internal
Hellenides, with the Pelagonian Massif and Sub-Pelagonian unit [32]. The Rhodope Massif,
the Serbomacedonian Massif, the Axios-Vardaris (Vardar Zone), and the Circum-Rhodope
Belt are the tectonostratigraphic units that encompass the Halkidiki Peninsula from east to
west. The Vadar zone, an extensive belt with NNW and SSE trends, is considered a suture
zone due to its numerous ophiolitic bodies [33]. The Serbmacedonian Massif is mainly
composed of gneiss and marble in the north. The Rhodope and Circum-Rhodope belts are
composed mainly of marble [34]. Crete is formed by the Gavrovo (Tripolis), the Pindos,
the Plattenkalk tectonostratigraphic units, and the Phyllite-Quarzite sequence. On the
island, limestones, partially recrystallized, are the lowest rocks visible and near-horizontal
faults during crustal compression deposited limestones and other rocks of comparable
age above [35].

Apart from the Hellenic Trench, the Kefalonian Transform Zone [36], and the North
Anatolian Fault (NAF) [37], there is a large number of active faults on both the mainland
and the islands, contributing to the release of seismic energy in Greece. More precisely, the
Peloponnese and Central Greece are mainly influenced by alpine thrusts and characterized
by post-alpine faults [38]. Furthermore, these regions are mainly dominated by active
normal faults [39]. Evia is dominated by normal and strike-slip faults that mainly rotate
counterclockwise [40]. Thessaly is characterized by an active tectonic regime as well as
sporadic earthquakes [41,42]. Crete is part of the Hellenic Arc and was formed by the
subduction of the African plate under the Aegean Sea.
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Figure 1. Simplified geotectonic map of Greece modified after [43] which shows the North Anatolian
Fault (NAF), the Kefallonian Transform Zone (KFZ), and the Hellenic Arc.

3. Data and Region Analyzed

Most statistical or machine learning methods require a large training dataset (hundreds
of samples). Even though NESTORE is optimized for small datasets [18], it requires a
sufficiently large number of Type A and B clusters (tens of clusters) whose magnitude of
completeness is at least two magnitudes lower than that of the corresponding mainshocks.
To achieve this, the use of an earthquake catalogue with a long time span, a large area, and a
low completeness magnitude is essential to obtain an adequate input database. At the same
time, data with low location accuracy and volcanic areas should be avoided because the
triggering mechanism of earthquakes is different. Considering all these points, several tests
were carried out with different available catalogues, and it was found that the Aristotle
University of Thessaloniki earthquake catalogue (AUTH) [44] was the most suitable for the
time period 1995–2022. This database was also previously used in the study conducted by
Bountzis et al. (2022) to identify seismic clusters in specific regions of Greece [45].

For the analysis, we took into account the regions selected by Bountzis et al. (2022)
corresponding to the Corinthian Gulf area, the Ionian Islands, and the North Aegean Sea.
Bountzis et al. (2022) selected these regions based on factors such as the homogeneity
of focal mechanisms and continuous, comparatively intense seismicity. The Corinthian
Gulf is characterized by high rates of extensional deformation, and eight significant faults
bounding the rift to the south and dipping to the north are mainly responsible for seis-
micity [46–50]. In the central Ionian Islands, the Kefalonian Transform Fault Zone, which
includes the Lefkada and Kefalonian faults and extends for more than 100 km along
the western coast of these islands, is the main seismotectonic domain, and the predomi-
nant fault type is right-lateral strike-slip motion. The northern Aegean is characterized
by a dextral strike-slip fault running through the North Aegean Trough and its parallel
branches, which is the result of the westward propagation of the North Anatolian Fault
into the Aegean [51–53].

In order to extend the available dataset over a particularly seismically active region,
we extended the analysis to the area of Crete for the same time period. An area of predomi-
nantly oblique motion is located over well-defined detachment zones in southern Crete,
while north-dipping thrust faults are found due to the westward propagating Hellenic
fold-and-thrust system [54].
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In the first tests, we performed the analysis for each region separately to account for
the different seismotectonic regimes. However, the results were not statistically relevant
due to the small number of clusters in each region. We performed an analysis to check if the
clusters belong to the same population and we combined all the above regions into a single
area (see Figure 2); we merged the original regions by adding the Peloponnese, Thessaly,
Central Greece, and Crete, but omitting (1) the area of the Greek volcanic arc because of the
possible different origins of the earthquakes, (2) the area of the subduction zone because of
possible viscoelastic effects, and (3) the western Turkish coast and offshore regions because
of the poor coverage by the national seismological network.
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4. NESTORE Algorithm

The multiparameter machine learning approach called NESTORE examines the evolu-
tion of seismicity at various time intervals. Its main goal is the estimate of the probability
that the analyzed clusters are of Type A. This machine learning approach is designed par-
ticularly for the analysis of seismicity problems and limited data, as there are typically tens
of available clusters. In order to simulate the evolution of seismicity over time, the analysis
was conducted on increasing time intervals Ti, beginning shortly after the mainshock.
NESTOREv1.0 uses earthquakes with magnitude M ≥Mm − 2, and to avoid classifications
of clusters in which the class has been already defined, it examines Type A clusters for time
intervals shorter than the time difference between the mainshock and the first aftershock
with magnitude ≥Mm − 1. For this reason, both the training and the test sets change
depending on the considered time interval, because for longer time intervals, fewer Type A
clusters are available.

A set of features (see Supplementary Materials for a detailed description) are extracted
from spatio-temporal and energy distribution of seismicity, and for each feature indepen-
dently, a simple threshold is used to distinguish between the classes. The analysis focuses
on features based on the earthquakes following the o-mainshock attempting to capture
high and irregular earthquake activity [55,56]. It is important to remark that the framework
of the algorithm is independent of the specific features used, which can be adapted based
on the study area’s characteristics, including both aspects of seismicity and data availability.
Before strong earthquakes, some variations and a change in earthquake flow, which be-
comes more intense and anomalous in space and time, have been reported and analyzed as
a symptom of instability of a nonlinear system equivalent to seismic faults [57]; Vorobieva
and Panza (1993) supposed that similar behavior can be detected if a strong subsequent
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earthquake is expected (Type A clusters) [19]. This is the assumption on which the features
adopted by NESTOREv1.0 software package are based. From a physical standpoint, these
variances are comprehensible because the lithosphere may respond to tectonic stress more
strongly, and since those symptoms appear after a mainshock, they may be precursors to
the occurrence of a second major event [58].

The NESTOREv1.0 software package is divided into four main modules. In our
analysis, we used the cluster identification, training, and testing modules [26]. The cluster
identification module identifies seismic clusters whose mainshock has a magnitude Mm
above a given threshold of magnitude Mth. The training module uses decision trees based
on different features to find appropriate thresholds with the aim of discriminating clusters
of known class (A or B) in a training database. The testing module is used to check the
performances of the training; it uses the outputs of the training module to provide an
estimate of the probability that a cluster is of Type A in a test database; then it compares the
result with the already known actual class of the clusters. The last module, not used in this
work, is the near-real-time classification module, which has been proposed recently [26]
for new ongoing cluster classifications after validation of the method in an area. Such
validation is the topic of this paper.

4.1. NESTORE Cluster Identification

Since cluster identification is a non-unique process, there are numerous methods in
the literature that provide a range of results. It is easier to solve the task of declustering
a catalogue by removing dependent earthquakes than to assign each dependent event to
a particular cluster, since this may be controversial for clusters that are close in time and
space. The events belonging to each cluster can be significantly affected by the choice of
cluster identification procedure. Different methods have been used to identify clusters,
depending on the research field. For example, a deep learnable scattering network had
been used to cluster seismic events in continuous waveforms [59]. Another method related
to distinguishing different structures of lightning phenomena in a multidimensional image
developed an analysis pipeline using the t-distributed stochastic neighbor embedding
(t-SNE) method and a DBSCAN algorithm for further cluster detection [60]. In space-time
analysis of seismicity, many cluster identification algorithms are applied (for further details,
see [61]). In particular, in our research, the NESTOREv1.0 cluster identification module
implements a simple method of cluster identification, a window-based technique [61],
where the cluster is defined as all events occurring within a time and space window around
the mainshock, the size of which depends on the magnitude of the mainshock. Window
techniques provide a quick and easy way to detect mainshocks and aftershocks, but it is
necessary to define a region-dependent law for the maximum time interval t(Mm) after
the mainshock and the maximum distance d(Mm) from the mainshock of the earthquakes
inside the cluster [61].

4.2. NESTORE Training Procedure

NESTORE assesses a set of features individually before combining the best feature
classification after training. In particular, each feature is assessed using a pattern recog-
nition method that employs an independent decision tree [62,63] and the algorithm then
determines a threshold Th for each feature, f, so that if f ≥ Th, the cluster is designated
as A and otherwise as B. The features are calculated at time intervals [s1, s2], where s1
is the time after the mainshock used to guarantee that the completeness magnitude of
Mc ≤ Mm − 2 can be achieved [18] and s2 corresponds to the ending time for the analysis.
The features [27] used by NESTORE in this case are evaluated using events having mag-
nitude M ≥ Mm − 2 and correspond to nine seismicity parameters related to the number
of events, their spatial distribution, magnitude, and energy trend over time in increasing
time intervals following the occurrence of the mainshock [18,26]; see the Supplementary
Materials for a detailed description.
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The major goal of utilizing these features is to spot changes in the flow of earthquakes,
such as irregularities in space, time, and magnitude that can be related to different seismic
behaviors between Type A and B clusters. In addition, in order to achieve a balance between
the need for as many clusters as possible for our study and the necessity for a strong enough
statistic on the development of seismicity, we set up the analysis starting at the first 6 h
(0.25 days) after the mainshock and at time intervals Ti ending 0.25, 0.50, 0.75, 1, 2, 3, 4, 5,
and 7 days after [18,25–27,64].

The training set of samples and the expected output class are inputs to the training
procedure, which consists of the following sections: feature extraction, decision tree training,
good interval identification, inheritance, and validation [18].

NESTORE algorithm is based on a supervised training approach. For each time
interval following the mainshock, the algorithm extracts the desired features from the input
training clusters (see Figure 3). To prevent a too complex structure of the classifier, which
would lead to an overfitting of the data if the data are few, the training is performed using
binary decision trees with a depth of 1, which splits classes based simply on a threshold.
Using the information on the class of the training clusters, the threshold is chosen such
that (most of) the clusters of Type A have features greater than or equal to the threshold,
while (most) Type B clusters have values of the features under the threshold. If no tree can
be found to solve the issue, the value NaN (Not a Number) is assigned as the threshold
and the feature is ignored for that time interval. The performance could be poor even
when the decision tree finds a threshold; in order to avoid this problem, the quality of
threshold-based classifiers is estimated by performance evaluators.
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Specifically, performance evaluators are Accuracy, Recall, Precision, and Informedness.
The last evaluator is given between −1 and 1, where 1 is the best and −1 is the worst. The
first previous three evaluators are specified between 0 and 1, where 1 is the best and 0 is the
worst. As the observation time Ti grows, the value of these performance indicators often
increases until it reaches a peak, and then stabilizes or decreases with longer observation
time. The algorithm chooses intervals Ti in which three requirements are satisfied. The first



Entropy 2023, 25, 797 8 of 22

states that Recall, Precision, and Accuracy should all be greater than 0.5. The second one
specifies that Accuracy should be greater than or equal to the Accuracy we can obtain from
a constant response corresponding to the most populous class (Class B). The last one states
that Informedness should be greater than zero. Therefore, for each time interval, a set of
reliable classifiers corresponding to a subset of the original features is selected.

When the greatest level of Informedness is reached for a feature at a particular Ti, the
instances of that feature for each cluster of NESTORE are automatically set to the value they
have for T = Ti. The time intervals smaller than or equal to Ti that satisfy the previous three
conditions are called good intervals. For longer time intervals, both the feature value and
its threshold are set to the ones corresponding to the maximum value of Informedness. This
procedure, called inheritance, is intended to use features with high performance in a given
time period, even for longer periods when performance is becoming poorer. However, as
Ti increases, inherited features and thresholds may experience a fall in performance due
to a selection effect on clusters, since for some features, Type A clusters with later SSLEs
belong to a separate population. Over time, the percentage of these clusters in the dataset
rises, resulting in a decline in feature performance. For this reason, the algorithm rechecks
the performances. It determines if the percentage of Type A clusters properly categorized
is higher than the percentage of Type B clusters mistakenly classified as Type A, for all
inherited thresholds and features. If this does not happen, the interval Ti is removed from
the list of intervals associated with the feature [18].

4.3. NESTORE Testing Procedure

The NESTORE testing procedure (see Figure 4) uses the information from the training
procedure to classify clusters of an independent test set and compares the obtained results
with the actual value of the cluster typology. The classification is performed for all the time
intervals and for all the classifiers considered reliable in those time intervals by the training
procedure. For each time interval, combining the different classification results, a unique
classification is produced, which can be binary (“class A” or “class B”) or continuous (“class
A probability”). A voting process is the simplest method for classifying combinations,
where each classifier receives one vote (A or B). If the number of A votes exceeds the
number of B votes by a certain amount, the classification is A; otherwise, it is B. The
previous methods presuppose that all classifiers are equally reliable, but in reality, this is
frequently not the case. Therefore, for each time interval and feature, NESTORE estimates
the probability that a cluster belongs to Type A depending not only on whether it is above
or below the corresponding threshold Th for single features, but also on how reliable each
feature classification is above or below Th. By combining many independent classifiers,
NESTORE uses a Bayesian technique to determine the total probability [25].
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According to Bailer-Jones et al. (2011), utilizing independent information (feature) D1,
. . . , Dn, the posterior probability that class is C is [65]:

P(C|D1 . . . DN) = α
∏N

n=1 P(C|Dn)

P(C)(N−1)
(1)

where P(C) is the probability of having a class C and P(C|Dn) is the posterior probability
that the class C is at Dn. N is the number of classifiers and α is the normalized factor
such that

∑k P(Ck|D1, . . . DN) = 1 (2)

where Ck are the classes of the problem.
In our case, we have two classes, A and B and, assuming for each i-th time interval

P(A) =
N(A)

N(A) + N(B)
and P(B) =

N(B)
N(A) + N(B)

(3)

where N(A) and N(B) are the number of A and B clusters in the dataset for the i-th interval,
respectively. Equation (1) can be written as

P(A|D1 . . . DN) =
[N(B)]N−1 ∏N

n=1 pn

[N(B)]N−1 ∏N
n=1 pn + [N(A)]N−1 ∏N

n=1(1− pn)
(4)

where pn = P(A|Dn) is the probability of having the cluster of Class A at a Dn value for
the feature n; pn is calculated from the training as the percentage of Type A clusters (divided
by 100) that are above or below the output threshold and acts as a weight depending on
different features’ reliability. A benefit of this method is that it takes into consideration the
number of Type A and B clusters in the dataset, which is crucial for imbalanced classes
such as the one we have (e.g., the Type A clusters account for one-fifth of the total clusters
in Greece). The testing supplies in output the Receiver Operating Characteristics (ROC)
and the Precision–Recall graphs, which show the performances of the training on an
independent test set (see the Supplementary Materials for a detailed description).

Binary classifiers distinguish between two classes, one positive (in our case, Class
A) and one negative (in our case, Class B). To evaluate the effectiveness of single-features
classifiers to determine if a strong aftershock would occur within a cluster, the output
Prob(A) for each test set cluster is binarized, so that if Prob(A) ≥ 0.5, the class is A;
otherwise, it is B. Resulting classes are compared with the actual one for each cluster and
the results are shown by using the ROC graph together with the Precision–Recall graph.

The ROC graph (see, e.g., 6th figure (a,c) in Section 5) shows the normalized percentage
of positive instances correctly classified as positives (True Positive Rate or Recall) vs. the
percentage of negatives incorrectly classified as positives (False Positive Rate). In the ROC
graph, a discrete classifier generates some points whose coordinates graphically represent
its performances [27]. The ideal classifier is represented by the point (0, 1) when all instances
are correctly classified [27]. In fact, if a point in the space ROC is closer to the point (0, 1), it
has a higher rate of positive and/or a lower rate of negative results, so it is preferable to
other points. The diagonal line indicates random guessing, and any classifier that occurs in
the lower right triangle performs worse than the random one and should be discarded.

The Precision–Recall graph (see, e.g., 6th figure (b,d) in Section 5) shows other useful
information: the Precision, which corresponds to the percentage (normalized to 1) of
clusters classified as A that are actually A. This information is important for evaluating
performance on imbalanced datasets. While both Recall and the False Positive Rate are
independent on the relative abundance of the classes, the abundance affects Precision and,
therefore, the random guessing horizontal line in the Precision–Recall (PR) graph. As there
are fewer A’s over longer time periods, the random guessing line parallel to the x-axis has
a decreasing y-intercept as Ti increases. A classifier that lies below the random guessing
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line is characterized by unreliable results; the closer it is to the upper right corner, the more
effective it is. The ideal classifier, shown by the upper right corner of the PR graph, correctly
classifies all Type A clusters and misclassifies no Type B cluster as A. The best performance
for the Precision–Recall graph corresponds to point (1,1) [27].

5. Results

In our case study, we applied NESTOREv1.0 to Greek seismicity using the AUTH earth-
quake catalogue, expressed in magnitude ML, for the period 1995–2022 with a maximum
focal depth of 50 km; the analyzed region is shown in Figure 5.

Entropy 2023, 25, x FOR PEER REVIEW 10 of 23 
 

 

Rate). In the ROC graph, a discrete classifier generates some points whose coordinates 
graphically represent its performances [27]. The ideal classifier is represented by the point 
(0, 1) when all instances are correctly classified [27]. In fact, if a point in the space ROC is 
closer to the point (0, 1), it has a higher rate of positive and/or a lower rate of negative 
results, so it is preferable to other points. The diagonal line indicates random guessing, 
and any classifier that occurs in the lower right triangle performs worse than the random 
one and should be discarded. 

The Precision–Recall graph (see, e.g., 6th figure (b,d) in Section 5) shows other useful 
information: the Precision, which corresponds to the percentage (normalized to 1) of 
clusters classified as A that are actually A. This information is important for evaluating 
performance on imbalanced datasets. While both Recall and the False Positive Rate are 
independent on the relative abundance of the classes, the abundance affects Precision and, 
therefore, the random guessing horizontal line in the Precision–Recall (PR) graph. As there 
are fewer A’s over longer time periods, the random guessing line parallel to the x-axis has 
a decreasing y-intercept as Ti increases. A classifier that lies below the random guessing 
line is characterized by unreliable results; the closer it is to the upper right corner, the 
more effective it is. The ideal classifier, shown by the upper right corner of the PR graph, 
correctly classifies all Type A clusters and misclassifies no Type B cluster as A. The best 
performance for the Precision–Recall graph corresponds to point (1,1) [27]. 

5. Results 
In our case study, we applied NESTOREv1.0 to Greek seismicity using the AUTH 

earthquake catalogue, expressed in magnitude ML, for the period 1995–2022 with a 
maximum focal depth of 50 km; the analyzed region is shown in Figure 5. 

 
Figure 5. Analyzed region. The mainshocks of the clusters are shown by circles. 

5.1. Cluster Identification and Completeness Magnitude Assessment in Greece 
In window-based cluster identification applications, the first step is to evaluate how 

the temporal and spatial extent of the cluster depends on the magnitude of the mainshock. 

Figure 5. Analyzed region. The mainshocks of the clusters are shown by circles.

5.1. Cluster Identification and Completeness Magnitude Assessment in Greece

In window-based cluster identification applications, the first step is to evaluate how
the temporal and spatial extent of the cluster depends on the magnitude of the mainshock.
An incorrect assessment may lead to the loss of events belonging to some clusters, thus
underestimating their impact on the analyzed area, or, conversely, in including background
events or events belonging to other clusters, thus overestimating the impact of the clusters
on the area. Since this pre-selection can influence the results of the following analysis, it is
an important preliminary step of the cluster analysis. In order to understand which was
the most appropriate law for window-based cluster identification in Greece, we compared
several laws available in the literature that have been successfully applied to other parts of
the world. In these laws, both the duration of the cluster and the radius of a circular area
around the mainshock in which aftershocks occur are given as functions of the mainshock
magnitude. We set the minimum magnitude of the mainshocks equal to 4, and we tested the
equations for duration of Gardner and Knopoff (1974) [66], Lolli and Gasperini (2003) [67],
Gentili and Bressan (2008) [68], and Uhrhammer (1986) [69]. For space windows, the
equations of Kagan et al. (2002) [70], Uhrhammer (1986) [69], Gardner and Knopoff
(2000) [71], and Gentili and Bressan (2008) [68] were tested, the last one with the addition
of two kilometers to account for localization inaccuracies.
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The choice of the best law for Greece was performed manually. First of all, we
estimated manually the distance between the mainshock and the most distant aftershock
for a large dataset of clusters and plotted this radius as a function of magnitude, comparing
it with the curves representing the equations to be checked. The main idea was to select a
curve that corresponds to the smallest radius that encompass most of the clusters, in order
not to lose events belonging to the cluster but, on the other hand, to avoid the inclusion of
independent events. Figure 6a shows such a plot on 177 clusters in the area.
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Figure 6. (a) Plot of the calculated radius vs. the magnitude of the cluster mainshock. The coloured
lines indicate the radius estimation equations. (b) Determination of the best space-window law by
map visualization [66–71].

In order to check the results on a larger dataset, we also manually inspected the
maps of all the clusters obtained by imposing the larger radius equation (Gardner and
Knopoff, 1974) [66] and comparing earthquakes’ positions with the circles representing the
checked equations (see Figure 6b). In both cases, the best choice was the equation proposed
by Uhrhammer (1986) [69]. This equation provides a much smaller radius than the one
proposed by Gardner and Knopoff (1974) [66], but also helps to avoid the inclusion of
independent earthquakes in a cluster. In addition, it provides a larger radius compared
to the equations proposed by Kagan et al. (2002) [70] and Gentili and Bressan (2008) [68],
allowing more aftershocks to be included in the defined cluster. For time window, we
plotted the magnitude vs. time for the obtained clusters (see Figure 7) and we compared it
to the duration obtained by different equations. Again, the best choice was the equation
proposed by Uhrhammer (1986) [69], which supplies a shorter t(Mm) compared to the
other methods (see Figure 7) and has the advantage of including highly dependent events
in the cluster.
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Equations (5) and (6) show the selected radius (in km) and duration (in days):

d = e−1.024+0.804Mm (5)

t = e−2.87+1.235Mm (6)

This procedure failed only in two earthquakes in the northern Gulf of Evia. The first
occurred on 17 November 2014 and the second on 9 June 2015, with magnitudes ML of 5.3
and 5.1, respectively. As indicated by Ganas et al. (2016) [72], the above earthquakes belong
to the same cluster, which is a Type A cluster according to the NESTORE classification.
However, the applied method of cluster identification leads to an obvious classification
failure as it splits the cluster into two parts. Since the NESTOREv1.0 module is independent
of the others in the NESTOREv1.0 package, it can be substituted with a different cluster
identification procedure. A more reliable cluster identification method will be used in
the future for the analysis of the region. In this application, we removed the cluster from
the analysis.

As previously stated, NESTOREv1.0 needs clusters with a completeness magnitude
of ≤Mm − 2, where Mm is the o-mainshock magnitude. When at least 80 earthquakes are
available in a cluster, NESTOREv1.0 automatically evaluates the completeness magnitude
for the cluster using the maximum curvature method (+0.2 to account for possible underes-
timates of the method); otherwise, it allows a default value. We considered a completeness
magnitude value of 3.0 for clusters that occurred before 2009 and a magnitude value of 2.5
for those starting in 2009. This assumption is based on a general analysis of the complete-
ness magnitude as a function of time for the analyzed area that we carried out using Zmap
software [73] (see Figure 8).
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Besides the selection based on the completeness magnitude, another selection of Type
A clusters was performed based on the time of the strongest aftershock: since the first
analysis is performed 6 h after the mainshock, NESTOREv1.0 analyzed only the Type A
clusters which did not have an aftershock with magnitude ≥Mm − 1 in the first 6 h.

At the end of the selection procedure, we detected 75 clusters satisfying NESTORE
requirements, of which 12 are Type A and 63 are Type B. In Figure 5, we superimposed
on the map of the studied area the locations of the o-mainshock of the clusters; we used
red color for Type A clusters and blue for Type B clusters. The clusters are located both
offshore and along the mainland.

Analyzing the characteristics of the clusters, we did not find any correlation between
the type of cluster (A or B) and some parameters of the mainshock, such as the focal
mechanism [37], location, depth, or magnitude.



Entropy 2023, 25, 797 13 of 22

5.2. NESTOREv1.0 Application to the Current Dataset

As described in Sections 2 and 3, Greece is extremely heterogenous from a seismo-
tectonic point of view. For this reason, it is important to check that, given one type of
cluster (Type A or Type B), all the clusters of that type have similar characteristics (i.e.,
they belong to the same population) according to the NESTORE model. If there is more
than one population depending on the sub-region, the training of each sub-region must
be performed separately. In order to check this, we trained NESTOREv1.0 with the whole
dataset of 1995–2022 both as a training set and a test set (autotest). Figure 9 illustrates the
probability P(A) of being a Type A cluster for different time intervals. The analysis was
performed on increasing time intervals ending every 6 h in the first day and every day in
the first week after the mainshock.

Entropy 2023, 25, x FOR PEER REVIEW 14 of 23 
 

 

 
Figure 9. Estimated probability of being a Type A cluster vs. time for all the clusters in the dataset 
(autotest). Red points correspond to A type clusters, while blue points correspond to B type ones. 

The figure shows that for most time periods, the probability of being A is close to 1 
and close to 0 for B. This is not an assessment of the performance of the method, since 
overfitting is an obvious risk when the training and test sets are coincident, but a 
preliminary check of the coherence of the dataset, showing that the two classes can be 
distinguished and that there are no obvious outliers. In detail, the good result in Figure 9 
shows that the clusters of the same type in different parts of Greece belong to the same 
population from NESTOREv1.0’s point of view, and the analysis can be performed on the 
whole area together. 

To fully exploit the potential of the machine learning approach for Type A cluster 
forecasting, we created a test set separate from the training set that contains instances with 
known classes. In the testing procedure, the class of each cluster in the test set is evaluated 
using the information obtained from training. The forecasted cluster class is compared to 
the already known actual class to obtain an estimate of the training performance. The 
choice of the number of clusters to be selected for the training set and the test set could, in 
principle, affects the results. Especially when few data are available, it is important from 
one side to have enough data in the training set to have a good estimate of the parameters, 
but on the other hand to have enough data in the test set, such that the obtained 
performances are reliable. A rule of thumb often used in machine learning suggests that 
three-quarters of the total data should be used for training and the remaining one-quarter 
for testing [74]; however, the number of Type A clusters is only 12 in the dataset 6 h after 
the mainshock. This means there are only three clusters to check the results for a time 
interval of 6 h, and fewer for longer time periods, due to the decrease in the number of 
Type A clusters. Xu and Goodacre proposed a range between 50% and 70% [75], which is 
more suitable for our application. We used the years from 1995 to 2015 for the training 
and the following 7 years for testing (see Table 1). Table 1 shows in detail the number of 
clusters, particularly Type A clusters, in the training set and the test set. 

0 5
0

0.5
1

P(
A)

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

P(
A)

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

P(
A)

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

P(
A)

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

P(
A)

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

P(
A)

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

P(
A)

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

P(
A)

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
0

0.5
1

0 5
T [days]

0
0.5

1

P(
A)

0 5
T [days]

0
0.5

1

0 5
T [days]

0
0.5

1

Figure 9. Estimated probability of being a Type A cluster vs. time for all the clusters in the dataset
(autotest). Red points correspond to A type clusters, while blue points correspond to B type ones.

Each cell corresponds to a different cluster classification for different time intervals.
Red circles correspond to Type A clusters and blue ones to Type B clusters.

The figure shows that for most time periods, the probability of being A is close
to 1 and close to 0 for B. This is not an assessment of the performance of the method,
since overfitting is an obvious risk when the training and test sets are coincident, but a
preliminary check of the coherence of the dataset, showing that the two classes can be
distinguished and that there are no obvious outliers. In detail, the good result in Figure 9
shows that the clusters of the same type in different parts of Greece belong to the same
population from NESTOREv1.0’s point of view, and the analysis can be performed on the
whole area together.

To fully exploit the potential of the machine learning approach for Type A cluster
forecasting, we created a test set separate from the training set that contains instances with
known classes. In the testing procedure, the class of each cluster in the test set is evaluated
using the information obtained from training. The forecasted cluster class is compared
to the already known actual class to obtain an estimate of the training performance. The
choice of the number of clusters to be selected for the training set and the test set could, in
principle, affects the results. Especially when few data are available, it is important from one
side to have enough data in the training set to have a good estimate of the parameters, but
on the other hand to have enough data in the test set, such that the obtained performances
are reliable. A rule of thumb often used in machine learning suggests that three-quarters of
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the total data should be used for training and the remaining one-quarter for testing [74];
however, the number of Type A clusters is only 12 in the dataset 6 h after the mainshock.
This means there are only three clusters to check the results for a time interval of 6 h, and
fewer for longer time periods, due to the decrease in the number of Type A clusters. Xu
and Goodacre proposed a range between 50% and 70% [75], which is more suitable for our
application. We used the years from 1995 to 2015 for the training and the following 7 years
for testing (see Table 1). Table 1 shows in detail the number of clusters, particularly Type A
clusters, in the training set and the test set.

Table 1. Training and testing dataset information.

Training Period Testing Period No. of Clusters
(Training Set)

No. of A Clusters
(Training Set)

No. of Clusters
(Test Set)

No. of A Clusters
(Test Set)

1995–2015 2016–2022 46 6 29 6

Figure 10 shows the performances of the method. The NESTOREv1.0 Bayesian classifi-
cation performance for each time period Ti is shown by magenta stars, and some examples
of single-feature classifier performances are shown with different symbols.
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Figure 11 shows the probability vs. time of being a Type A cluster obtained for different
time periods Ti for the clusters of the test set.
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Figure 11. Estimated probability of being a Type A cluster vs. time for all the clusters in the time
period 2016–2022 (training period 1995–2015).

Both the ROC and PR plots in Figure 10a,b show that NESTOREv1.0 Bayesian clas-
sification consistently lies within ranges corresponding to reliable classifiers for all time
periods, above the random rate line in the PR plots and in the top left triangle for the ROC
plots. Longer time periods correspond to a small number of Type A clusters, due to the
elimination from the dataset of clusters that already had strong aftershocks. This affects the
capability of both the training set and the test set to accurately describe the characteristics
of the clusters, and thus, the reliability of results. Therefore, the analysis was stopped
at Ti = 0.75 days (18 h) so that we have at least three Type A clusters both in the training
set and in the test set. The best performance for both ROC and PR graphs is at 6 h. We
hypothesize that this is because, by including more data in the training set and using a more
balanced dataset, we were able to better model the complexity of Greek seismicity, allowing
the decision trees to converge to a more stable result. The good performances’ short time
intervals after the mainshock are noteworthy for the seismic risk mitigation assessment.

Figure 10c,d illustrates the characteristics of some features, selected because of their
different performances, to illustrate the whole method procedure. They are calculated for
different time intervals and are the normalized cumulative source area (S), the normalized
radiated energy (Q), the cumulative variation of magnitude between each occurrence (Vm),
and the number of events (N2). From one feature to another, different time intervals Ti were
needed to achieve the best performance. For shorter intervals following the mainshock,
not all of the features were considered reliable or could be computed. Six hours after the
mainshock, the feature Q, S, Z, and N2 are considered reliable, but only two of them supply
high-performance results. Comparing feature performances in Figure 10c,d, it can be seen
that the features S and Q produced the best performances, the feature N2 produced the
poorest, and the feature Vm had intermediate results. These differences are mainly related
to the smaller recall (True Positive Rate) of these features, very low especially for N2 (blue
dots). At 6 h after the mainshock, the NESTOREv1.0 Bayesian performances coincides with
Q and S feature ones, with a True Positive Rate of 1 (all Type A clusters correctly classified),
a False Positive Rate of 0.095 (90.5% of Type B clusters correctly classified), and a Precision
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of 0.75 (75% of the clusters classified as Type A were actually A). This result corresponds
in Figure 11 to two Type B clusters wrongly classified: one in the third row and second
column, correctly classified for longer time periods, and the cluster in the fourth row and
fourth column, automatically outlined in yellow by NESTOREv1.0 as an outlier, because it
supplies a wrong classification in all the analyzed time periods.

In order to evaluate the best value of the threshold for future application of the method
to Greek seismicity (by using the near-real-time classification module), we used the ones
obtained during the autotest. Since, using all the data, we have no independent test set to
evaluate the performances, we stopped our analysis at Ti = 18 h, as in the test shown in
Figure 10. Table 2 shows the values of the thresholds for the training set of the autotest
at these time intervals. It is noticeable that the larger training set eliminates the poorly
performing feature N2 from the classification at 6 and 12 h.

Table 2. Values of the thresholds of the features obtained by the training procedure on the whole
dataset. Inh. = inherited threshold value.

Features
Thresholds

Th (6 h) Th (12 h) Th (18 h)

S 0.053 0.053 0.084
Z 0.026 0.026 0.026

SLCum 0.056 Inh.
QLCum 2.318 2.318
SLCum2 0.090
QLCum2 2.79

Q 0.012 0.012 0.013
Vm 0.035 0.450
N2 2.5

Table 3 shows the values of pu and po that are used to evaluate pn of Equation (4): if
the cluster is under the threshold, pu is used; otherwise, po is used.

Table 3. Values of the probability of being Type A under and over the threshold for the whole dataset.

Features
Thresholds

pu (6 h) po (6 h) pu (12 h) po (12 h) pu (18 h) po (18 h)

S 0.02 0.85 0.00 0.83 0.02 0.88
Z 0.06 0.64 0.03 0.62 0.02 0.58

SLCum 0.02 0.82 0.02 0.78
QLCum 0.02 0.69 0.02 0.64
SLCum2 0.02 1.00
QLCum2 0.00 0.67

Q 0.02 0.92 0.02 0.90 0.02 0.88
Vm 0.02 0.75 0.02 0.78
N2 0.02 0.63

Figure 12 shows a comparison between the features Q and N2 for the 6 h time interval.
The clusters are ordered in time, so the circles with cluster numbers from 1 to 46 are the
ones from the 1995–2015 training set. It is noticeable how the A clusters can be clearly
discriminated from the B ones using the Q feature, while N2 shows mixed classes. In
particular, several Type B clusters show a number of events N2 equal to 2 at 6 h, while there
are Type A clusters with a smaller or equal number of events. The bad performances of the
N2 feature in Figure 12 can be explained with the attempt of the algorithm to discriminate
the two classes setting high values of the threshold (in this case, 3.50). This choice supplied
poor results for the testing of Figure 10c,d because half of the Type A clusters in the test set
are under the threshold.
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Figure 12. Values of the features Q (a) and N2 (b) at the 6 h (6 h) time interval for the whole 1995–2022
dataset. Red circles: Type A clusters; blue circles: Type B clusters; black dashed line: the threshold
obtained by NESTOREv1.0.

6. Discussion

In analyzing Greek seismicity from the perspective of Type A and B cluster analysis,
several interesting results emerged that distinguish the seismicity of the area from that
of other regions of the world. The first interesting result is that the percentage of Type A
clusters in Greece is very low, even considering the smallest time interval analyzed after
the mainshock (6 h). In fact, for a time interval of 6 h, the number of Type B clusters is
about five times higher than the number of Type A clusters. This number is very high
when compared with Italy, northeastern Italy and western Slovenia, and California, where
NESTORE has already been applied [18,25,27], where the number of Type B clusters is
between 1.5 and 2 times the number of Type A clusters. Moreover, there are no correlations
between the cluster type and the focal mechanism, focal depth, magnitude, and location of
the mainshock, as observed in some cases in other regions [27].

Previous studies in California [18], Italy [27], and northeastern Italy and western
Slovenia [25], corresponding to very different seismotectonic regions, have shown good
performance of classifiers based on the number of events (feature N2) shortly after the
mainshock [18]. Classifiers based on the features Q and S perform well in Italy and
western Slovenia, while in California, they provide reliable results only some days after
the mainshock. Conversely, feature N2 gives the worst results in Greece, while features Q
and S give the best results. The difference in performance between features Q and N2 in
Greece can be clearly seen in Figure 12. The main difference is related to a large number of
Type A clusters with a similar number of aftershocks as B clusters. A further comparison
of the N2 feature at 6 and 18 h, shows that the performance of the N2 feature improves at
longer time periods, since the Type A clusters, characterized by an early strong aftershock
and therefore removed from the dataset, are precisely those with a low number of events.
These strong early aftershock clusters are not very productive in terms of the number of
aftershocks, but they are still productive in terms of the energy of the aftershocks and can
therefore be discriminated from B clusters using the features Q and S, which are related to
the magnitude of the aftershocks. This fact and the low percentage of A clusters make us
hypothesize that there may be fewer high-energy earthquakes in Greece for the same total
energy radiation. This hypothesis is beyond the scope of this paper and should be verified
in future work.

Another interesting feature is QLcum, which corresponds to the deviation of Q from
the long-term trend. This feature gives good short-term results after the mainshock for
California as well as for northern Italy and western Slovenia, while it requires longer
time intervals for Italian seismicity. The numerical values of this feature can only be
compared with the application for California, since the interval start time and completeness
requirements have changed from previous work. However, it is interesting to note that
the thresholds of the other features defined in both Greece and California are similar, with
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variations within 25%, while the threshold of the QLcum feature in Greece is about 12 times
higher than that in California. This could be related to the strong temporal variations in the
radiated energy in both the Greek Type A and Type B clusters.

For this NESTOREv1.0 application, the performance is good at 6 h and deteriorates
over time for longer periods. This trend is explained by the fact that shorter time intervals
have a higher percentage of Type A clusters than longer time intervals, where performance
is affected by the imbalance of A and B classes, resulting in a reduced ability of the
classification system to distinguish between classes. In addition, the effects of background
seismicity and activation of nearby fault segments, especially in case of large earthquakes,
may reduce the reliability of the features. Importantly, the improved performance shortly
after the mainshock is a notable advantage for the application of the algorithm for risk
mitigation purposes.

7. Conclusions

The NESTORE machine learning algorithm, implemented in the NESTOREv1.0 soft-
ware package [26], was applied to Greek seismicity to forecast the occurrence of a strong
earthquake after an intense mainshock. We used the AUTH earthquake catalogue between
1995 and 2022 over a large area of Greece, consisting of the Gulf of Corinth, the Ionian
Islands, the northern Aegean Sea, Thessaly and central Greece, Crete, and the Peloponnese,
in order to obtain a long time period and a large area for analysis, and thus to analyze a
sufficiently large number of clusters. Using a window-based approach, in which a cluster
is defined as all events occurring within a temporal and spatial window around the main
earthquake, we tested several laws for cluster detection and found that Uhrhammer’s
(1986) [69] law was the most appropriate for identifying clusters in Greece.

NESTORE classifies clusters into two classes, Type A or Type B, depending on the
magnitude of the strongest aftershock. The algorithm analyzes seismicity features at in-
creasing time intervals from the mainshock using a training procedure based on single-node
decision trees (one threshold for each feature) and found statistically validated thresholds
for the features to discriminate the two typologies. After training, a testing procedure
estimates the probability for each feature to be a Type A cluster on an independent test
set. The estimated probabilities from the different features are combined using a Bayesian
approach to obtain the NESTORE response, which takes into account the different degrees
of reliability of each feature.

The NESTOREv1.0 cluster identification module is independent of the other two. It
allows the user to choose the equations for the radius and time interval of the cluster. This
approach allows fitting to different regions for which different equations should be used.
However, if a more accurate cluster evaluation procedure is required for a particular region,
this module can be modified without affecting the following two modules.

The training and testing modules can be applied to clusters whose magnitude of
completeness is at least equal to the magnitude of the mainshock minus 2. The modules
require a dataset of tens of clusters for reliable training and testing. Thus, the success of the
application of the NESTORE algorithm is influenced by the earthquake catalogue: if the
completeness magnitude is too large, and thus, the number of clusters that can be analyzed
is too small, the algorithm cannot be successfully applied. In addition, the performance of
the features can be affected by the quality of the catalogue used and the magnitudes and
the epicenters of the earthquakes. For this reason, a well-covered seismological network is
important. To avoid too few clusters or problems related to changes in seismicity over time,
the use of data over a period longer than 10–20 years is strongly recommended to cover the
variability of seismicity features. Considering these catalogue property requirements, the
algorithm has been shown to be robust enough to be applied in different seismotectonic
environments. Crucial to this are the training procedure, which allows the algorithm to
automatically adapt to the study area, and the clustering approach, which allows different
region-specific equations as input.
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In our work, we carried out the analysis by NESTOREv1.0 on 75 clusters reported
in the AUTH earthquake catalogue from 1995 to 2022, using a training set from 1995 to
2015 and a test set in the following 7 years. In particular, by using ROC and Precision–
Recall plots, we show that NESTOREv1.0 provided good performances in terms of Type A
clusters forecasting. The best performance was obtained for a time interval of 0.25 days
(6 h) after the o-mainshock. Notably, 100% of Type A clusters were forecasted correctly, the
percentage of Type B clusters misclassified as Type A clusters was less than 10%, and the
percentage of correct classifications was 92%. This makes the method particularly attractive
for application in the field of seismic risk mitigation, as it allows estimating the probability
of a future hazardous earthquake occurring after an initial strong event.

Our understanding of the SSLE preparation process can benefit from a detailed exami-
nation of the features and time periods in which they are relevant to the cluster classification.
In particular, the features S and Q, both depending on the earthquake’s magnitude, per-
form well shortly after the mainshock, while N2, depending on the number of earthquakes,
performs poorly. Interestingly, in a previous application of the code to California, Italy, and
northeastern Italy and western Slovenia, in [18,25,27], N2 performed best, while Q and S
feature performances depended on the analyzed region.

It is important to remark that NESTORE performs well independently on different
regional characteristics because is based on a region-dependent training and because it
is based on different features of seismicity. In our opinion, such an approach based on
multiple features is pivotal to develop a robust algorithm able to work in different regions.
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