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S U M M A R Y
We obtain the amplitude and energy reflection coefficients of seismic waves in porous media
with penny-shaped inclusions, based on the generalized Biot-Rayleigh model that takes into
account the attenuation due to mesoscopic local fluid flow (LFF). We consider two cases,
including a contact between two porous media having either different fluids (gas–water contact)
or crack density and aspect ratio, as well as a water half-space overlying a porous medium,
and study the frequency-dependent reflection-transmission (scattering) coefficients for open-
and sealed-pore boundary conditions. Our examples show that the LFF mechanism mainly
reduces the reflection coefficients (amplitude and energy) at the gas–water contact and at a
water–porous medium interface for frequencies less than 10 kHz, due to the fact that the
velocity in the lower medium decreases. For the latter case, if the fluid is gas, the LFF effect
becomes only important at frequencies between 0.0001 and 10 Hz for the open-pore case.
This is due to the fact that the acoustic impedance contrast between water and gas is high. At
frequencies less than 0.0001 Hz, the interface is equivalent to a water–elastic medium one, and
hence the results are the same as those of the sealed-pore case. Moreover, the crack density
and aspect ratio affect the mesoscopic attenuation and relaxation frequency, and therefore the
reflection coefficients.

Key words: Elasticity and anelasticity; Computational seismology; Seismic attenuation;
Wave propagation.

1 I N T RO D U C T I O N

Wave propagation in porous media finds application in a variety of fields, such as seismology, hydrogeology and hydrocarbon exploration
(Russell et al. 2011; Zong et al. 2012; Sharma 2013), to map the subsurface properties, such as porosity and saturation, which is essential for
accurate reservoir characterization and fluid identification (Russell et al. 2011). Particularly, the presence of fluids induces attenuation and
velocity dispersion by wave-induced fluid flow, which occurs when a wave creates pore pressure gradients. Based on the length scale of these
gradients, the fluid flow can be classified as global (macro), squirt (micro) and mesoscopic (Pride et al. 2004; Carcione et al. 2010; Müller
et al. 2010; Carcione & Gurevich 2011).

Global flow occurs when pressure gradients between peaks and troughs of the wave are induced, and attenuation is significant at
frequencies above 100 kHz (Biot 1956, 1962). Biot’s theory predicts a slow wave, which is diffusive at low frequencies and wavelike at high
frequencies. The reflection problem was studied by Deresiewicz & Rice (1964), Dutta & Odé (1983), Gurevich et al. (2004), Liu et al. (2021)
and Qi et al. (2021). A review of several expressions of the normal-incidence reflection coefficient was recently performed by Carcione et al.
(2021), whereas the effect of the boundary conditions was analysed by Qi et al. (2021). These works yield a significant frequency dependence
of the coefficients at high frequencies. The interface between a liquid and a liquid-saturated porous medium was considered in Santos et al.
(1992), Denneman et al. (2002), Rubino et al. (2006), Bouzidi & Schmitt (2012) and Qi et al. (2021). In particular, when gas is present, the
reflection coefficients depart from those of a single-phase medium, where the flow is not considered (Denneman et al. 2002).

On the other hand, squirt-flow loss occurs at the microscopic pore scale, due to the different compliances of cracks and stiff pores. It
is significant at ultrasonic frequencies (Mavko & Nur 1975; Mavko & Jizba 1991; Dvorkin & Nur 1993; Chapman et al. 2002; Gurevich
et al. 2010; Carcione & Gurevich 2011). In particular, Dvorkin & Nur (1993) proposed a dynamic poroelastic model that unified the Biot
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and squirt-flow loss mechanisms. Based on it, Cui & Wang (2003) considered an open-pore interface between a fluid and a fluid-saturated
poroelastic solid, and studied the effect of squirt flow.

Mesoscopic-flow loss is due to heterogeneities on a scale much larger than the pore size but smaller than the wavelength (Pride et al.
2004; Carcione & Picotti 2006; Müller et al. 2010). It is widely accepted as the dominant mechanism for attenuation at seismic frequencies.
The double-porosity theory is a simple and effective model to explain this phenomenon. Pride & Berryman (2003a, 2003b) presented a
model, where the storage and fracture porosities coexist and a frequency-dependent compressibility law is introduced to describe the fluid
transfer between these two pore spaces. The theory predicts realistic attenuation at the exploration-geophysics band. In addition, Ba et al.
(2011) developed another double-porosity model based on the Biot theory of poroelasticity and the Rayleigh model of bubble oscillations.
Scattering coefficients were studied by Dai & Kuang (2008) and Zhao et al. (2015). Sharma (2013) and Wang et al. (2020) investigated the
effect of mesoscopic local fluid flow (LFF) on seismic reflections from the free surface of a double-porosity medium, and from an interface
between two media, respectively. Basically, the LFF affects the energy partitions at the interface due to the mode transfer between the slow
and fast waves, causing significant dispersion at low frequencies.

Cracks, which here refer to grain contacts or intragranular microfractures with an aspect ratio between 10−5 to 10−2, coexist with
stiff pores in rocks. They play an important role in wave propagation, affecting not only the properties of the skeleton, but also the flow.
Particularly, significant LFF occurs when the flow occurs between compliant cracks and relatively stiff pores, because of their dissimilar
porosities, permeabilities, and compressibilities (Müller et al. 2010). This mechanism coexists with the Biot global flow. Tang (2011) and
Tang et al. (2012) included the effects of cracks into the Biot model, and formulated a set of equations having as input parameters measurable
properties such as the crack density and aspect ratio, which control the relaxation frequency and attenuation. The theory correctly predicts the
velocity variation with gas saturation, but it is not compatible with Gassmann equation. Chapman et al. (2002) derived a Gassmann-consistent
squirt flow model in which microstructure is assumed to consist of randomly oriented thin cracks and spherical pores. More models consider
the anisotropy induced by the presence of cracks (Galvin & Gurevich 2009; Guo et al. 2018; Guo & Gurevich 2020). Based on the solution
of the scattering problem for a single-crack and multiple-scattering theory, Galvin & Gurevich (2009) analysed the attenuation in a medium
containing aligned sparsely distributed penny-shaped cracks. Fu et al. (2018) considered aligned silt cracks and presented an alternative
solution of the scattering problem for a single crack and using the Waterman–Truell scattering approximation for a distribution of cracks.
The estimated attenuation is proved similar to that of the penny-shaped case and the theory is consistent with the anisotropic Gassmann
theory. Xu et al. (2021) considered fractures of different orientations embedded in layered rocks, and studied the frequency-dependent seismic
properties, where the dual effects of the wave-induced fluid flow between the fractures and pores as well as between different layers are taken
into account.

Zhang et al. (2019) represented the cracks as randomly oriented penny-shaped inclusions, and formulated a system of double-porosity
equations in the framework of Hamilton’s principle, generalizing Biot–Rayleigh model (Ba et al. 2011) from spherical inclusions to cylindrical
cracks. The microvelocity field inside the cracks during the LFF process is considered. It is consistent with Gassmann equation and honours
experimental data. Based on this approach, Kumari & Kumar (2020, 2021) studied the reflection of inhomogeneous waves at the free surface
of a cracked medium, and analysed the contributions of reflected longitudinal waves to wave-induced LFF. To further understand the influence
of LFF on wave propagation in cracked media, we consider two cases commonly encountered in exploration geophysics, namely, a contact
between two cracked porous media and a fluid overlying a saturated medium. Unlike the work by Kumari & Kumar (2020), we represent the
waves with Helmholtz potentials, which are determined from the uniform-porosity equations, so as to avoid restriction on the displacements.
Based on the boundary conditions at the interfaces (either open or sealed), we derive the solutions of the scattering coefficients and energy
ratios corresponding to the reflected and transmitted waves for an incident P wave.

2 G OV E R N I N G D I F F E R E N T I A L E Q UAT I O N S

As in Zhang et al. (2019), we consider randomly oriented cracks as penny-shaped inclusions embedded into a host medium, with two porosities
and the same fluid, namely a local porosity φ10 of the host medium with a large volume fraction f1, and a local porosity φ20 of the inclusions
(cracks) with a smaller volume fraction f2 = 1 − f1 (see Fig. 1). The cracks have a radius R0 and height h and are much smaller than the
wavelength, which corresponds to a mesoscopic-scale length. The boundary conditions between the inclusions and host medium are assumed
open so that the mesoscopic-scale LFF takes place due to the contrasts in permeability and compressibility. The flow occurs mainly along the
radial direction and is described by a generalization of Rayleigh’s theory of liquid collapse of a spherical cavity to the penny-shaped case. The
governing equations have as input parameters measurable properties such as the crack radius, density and aspect ratio, which highly affect
the anelastic wave propagation.

The Lagrangian formulation proposed by Zhang et al. (2019) holds for non-uniform porosity because the relative fluid displacements
are used as Lagrangian coordinates, and the total stress components and fluid pressure as generalized forces. With u, U(1) and U(2) denoting
the averaged displacement vectors of the matrix, fluid in host medium, and fluid in cracks, respectively, the relative fluid displacement vectors
are

w(m) = φm(U(m) − u), m = 1, 2 (1)
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Figure 1. Schemes showing a cracked double-porosity medium. (a) Randomly oriented penny-shaped inclusions (cracks). (b) and (c) Penny-shaped cracks
embedded into a host medium, with two porosities φ10 (host) and φ20 (cracks).

where m = 1, 2 represent the host medium and inclusions, and φm = fmφm0 are the respective porosities. The strain–displacement relations
are

εi j = 1

2
(∂i u j + ∂ j ui ), ε = ∇ · u, η(m) = ∇ · U(m), m = 1, 2 (2)

where εij are the solid strain components, ε and η(m) are the averaged volumetric strains of the solid and the two variations of fluid content in
the host (m = 1) and inclusions (m = 2). Using eq. (1), the two variations of fluid content relative to the solid are

ξ (m) = −∇ · w(m) = −φm(η(m) − ε), m = 1, 2 (3)

Let τ ij be the total stress, Pfm the pore–fluid pressure in each phase and ς the fluid variation between the host medium and the
penny-shaped inclusions. Then, the stress–strain relations are

τi j = 2μbεi j + (λcε − α1 M1(ξ (1) − φ1φ2ς ) − α2 M2(ξ (2) + φ1φ2ς ))δi j ,

Pf1 = −α1 M1ε + M1(ξ (1) − φ1φ2ς ),

Pf2 = −α2 M2ε + M2(ξ (2) + φ1φ2ς ), (4)

where δij is the Kronecker delta, with subscripts i and j being the Cartesian coordinates, μb is the dry-rock shear modulus and λc, α1, α2, M1

and M2 are stiffness coefficients, given in Appendix A.
The equations of motion are

τi j, j = ρüi + ρf ẅ
(1)
i + ρf ẅ

(2)
i ,

−(Pf1),i = ρf üi + m1ẅ
(1)
i + ηφ10

κ1φ1
ẇ

(1)
i ,

−(Pf2),i = ρf üi + m2ẅ
(2)
i + ηφ20

κ2φ2
ẇ

(2)
i , (5)

where the comma preceding an index indicates spatial differentiation, the dot above a variable the time derivative, κ1 and κ2 are the
permeabilities of the host medium and inclusions, respectively, η is the fluid viscosity, ρf is the fluid density, ρ = (1 − φ)ρs + φρf is the bulk

density, with ρs being the grain density, m1 = τ1ρf

φ1
, m2 = τ2ρf

φ2
are the Biot mass coefficients, where τm = 1

2
(1 + 1

φm0
) are the tortuosities

(Berryman 1979).
The LFF governing equation for ς is obtained with a generalization of the Biot–Rayleigh theory (Ba et al. 2011) from spherical inclusions

to cylindrical cracks. It is derived from the Lagrange equations based on the strain and kinetic energies and dissipation potential, where the
microvelocity fields inside the inclusions are considered. The equation is(

3

8
+ φ20

2φ10
ln

L + R0

R0

)
φ2

1φ2ρf R2
0 ς̈ +

(
3η

8κ2
+ η

2κ1
ln

L + R0

R0

)
φ20φ

2
1φ2 R2

0 ς̇

= φ1φ2(α1 M1 − α2 M2)ε + φ1φ2(M2ξ
(2) − M1ξ

(1)) + φ2
1φ

2
2 (M1 + M2)ς, (6)

where L = (R2
0/12)1/2 is the characteristic fluid flow length.

Now, we recast the equations in the uniform-porosity formulation. Let σ ij and σ m be the solid stress components and fluid stresses in
the two phases. Following Carcione (2014), they can be expressed as

σi j = τi j − (σ1 + σ2)δi j , σm = −φm Pf m, m = 1, 2 (7)
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1482 E. Wang et al.

Using eqs (4) and (7), we have

σ1 = Q1ε + R1(η(1) + φ2ς ),

σ2 = Q2ε + R2(η(2) − φ1ς ),

σi j = 2Nεi j + [
Aε + Q1(η(1) + φ2ς ) + Q2(η(2) − φ1ς )

]
δi j , (8)

where Qm represent the coupling between the volume change of the solid and that of the fluid, Rm are the pressures required on the fluid to
inject a given volume of fluid into the aggregate whereas the total volume remains constant and A and N are the composite moduli equivalent
to the Lamé constants in the theory of elasticity (Biot 1962). They can be expressed in terms of λc, αm and Mm, as given in Appendix A.

From eqs (3) and (6), the corresponding LFF equation becomes(
3

8
+ φ20

2φ10
ln

L + R0

R0

)
φ2

1φ2ρf R2
0 ς̈ +

(
3η

8κ2
+ η

2κ1
ln

L + R0

R0

)
φ20φ

2
1φ2 R2

0 ς̇

= [
φ2 Q1 − φ1 Q2

]
ε + φ2 R1η

(1) − φ1 R2η
(2) + (φ2

2 R1 + φ2
1 R2)ς. (9)

Similarly, the equations of momentum conservation corresponding to (5) are

σi j, j = ρ00üi + ρ01Ü
(1)
i + ρ02Ü

(2)
i + b1(u̇i − U̇ (1)

i ) + b2(u̇i − U̇ (2)
i ),

(σ1),i = ρ01üi + ρ11Ü
(1)
i − b1(u̇i − U̇ (1)

i ),

(σ2),i = ρ02üi + ρ22Ü
(2)
i − b2(u̇i − U̇ (2)

i ), (10)

where b1 = φ1φ10η/κ1 and b2 = φ2φ20η/κ2 are the viscous couplings between the pore fluid and skeleton, and ρ ij are five density parameters,
given in Appendix A.

3 P L A N E - WAV E S O LU T I O N

By substituting eqs (7) and (8) into (10), we obtain

N∇2u + (A + N )∇ε + Q1∇(η(1) + φ2ς ) + Q2∇(η(2) − φ1ς ) = ρ00ü + ρ01Ü
(1) + ρ02Ü(2) + b1(u̇ − U̇(1)) + b2(u̇ − U̇(2)),

Q1∇ε + R1∇(η(1) + φ2ς ) = ρ01ü + ρ11Ü
(1) − b1(u̇ − U̇(1)),

Q2∇ε + R2∇(η(2) − φ1ς ) = ρ02ü + ρ22Ü
(2) − b2(u̇ − U̇(2)). (11)

Eqs (9) and (11) are the governing equations for wave propagation in terms of the displacements u, U(1) and U(2). Considering time
harmonic oscillations (the Fourier convention is exp[−iωt]), based on eq. (9), we have

ς = d1ε + d2η
(1) + d3η

(2), (d1, d2, d3) = (φ1 Q2 − φ2 Q1, −φ2 R1, φ1 R2)/(L1ω
2 + L2iω + φ2

2 R1 + φ2
1 R2), (12)

where L1 =
(

3

8
+ φ20

2φ10
ln

L + R0

R0

)
φ2

1φ2ρf R2
0 and L2 =

(
3η

8κ2
+ η

2κ1
ln

L + R0

R0

)
φ20φ

2
1φ2 R2

0 .

Substituting eq. (12) into (11), and after a simplification, we have

N∇2u + (A + N + Zd1)∇ε + (Q1 + Zd2)∇η(1) + (Q2 + Zd3)∇η(2) = ρ00ü + ρ01Ü
(1) + ρ02Ü(2) + b1(u̇ − U̇(1)) + b2(u̇ − U̇(2)),

(Q1 + R1φ2d1)∇ε + (R1 + R1φ2d2)∇η(1) + R1φ2d3∇η(2) = ρ01ü + ρ11Ü
(1) − b1(u̇ − U̇(1)),

(Q2 − R2φ1d1)∇ε − R2φ1d2∇η(1) + (R2 − R2φ1d3)∇η(2) = ρ02ü + ρ22Ü
(2) − b2(u̇ − U̇(2)), (13)

where Z = Q1φ2 − Q2φ1.
Using the Helmholtz decomposition, the displacement vectors u, U(1) and U(2) can be expressed in terms of potential functions ϕi and

�i (i = 0, 1, 2), as follows:

u = ∇ϕ0 + ∇ × �0, U(1) = ∇ϕ1 + ∇ × �1, U(2) = ∇ϕ2 + ∇ × �2, (14)

where here the subscripts i = 0, 1, 2 correspond to the solid, fluid phase in the host medium and fluid phase in the inclusions (cracks),
respectively.

Applying the divergence operator to eq. (13), we have⎛
⎜⎝ρ00 ρ01 ρ02

ρ01 ρ11 0
ρ02 0 ρ22

⎞
⎟⎠

⎛
⎜⎝ϕ̈0

ϕ̈1

ϕ̈2

⎞
⎟⎠ +

⎛
⎜⎝b1 + b2 −b1 −b2

−b1 b1 0
−b2 0 b2

⎞
⎟⎠

⎛
⎜⎝ϕ̇0

ϕ̇1

ϕ̇2

⎞
⎟⎠ =

⎛
⎜⎝A + 2N + Zd1 Q1 + Zd2 Q2 + Zd3

Q1 + R1φ2d1 R1 + R1φ2d2 R1φ2d3

Q2 − R2φ1d1 −R2φ1d2 R2 − R2φ1d3

⎞
⎟⎠

⎛
⎜⎝∇2ϕ0

∇2ϕ1

∇2ϕ2

⎞
⎟⎠ , (15)

corresponding to the P-wave potentials. Invoking the expressions of Z and di, the matrix on the right-hand side of eq. (15) can be shown to
be symmetric.
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Similarly, after applying the curl operator, we obtain equations for the S-wave potentials as⎛
⎜⎝ρ00 ρ01 ρ02

ρ01 ρ11 0
ρ02 0 ρ22

⎞
⎟⎠

⎛
⎜⎝�̈0

�̈1

�̈2

⎞
⎟⎠ +

⎛
⎜⎝b1 + b2 −b1 −b2

−b1 b1 0
−b2 0 b2

⎞
⎟⎠

⎛
⎜⎝�̇0

�̇1

�̇2

⎞
⎟⎠ =

⎛
⎜⎝N 0 0

0 0 0
0 0 0

⎞
⎟⎠

⎛
⎜⎝∇2�0

∇2�1

∇2�2

⎞
⎟⎠ . (16)

The analytical plane-wave kernels for the potentials are⎧⎪⎨
⎪⎩

ϕ0 = A0exp
[
i(kp · r − ωt)

]
,

ϕ1 = A1exp
[
i(kp · r − ωt)

]
,

ϕ2 = A2exp
[
i(kp · r − ωt)

]
,

⎧⎪⎨
⎪⎩

�0 = B0exp [i(ks · r − ωt)] ,

�1 = B1exp [i(ks · r − ωt)] ,

�2 = B2exp [i(ks · r − ωt)] ,

(17)

where Ai and Bi (i = 0, 1, 2) are amplitudes, ω is the angular frequency, kp and ks are the wavenumbers of the compressional and shear waves,
respectively, and r is the space vector.

Substituting eqs (17) into (15), we obtain

H · A = 0, (18)

where A = [A0, A1, A2]T, and the components of H are⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

H11 = (A + 2N + Zd1)k2
p − ρ00ω

2 − iω(b1 + b2),
H12 = H21 = (Q1 + Zd2)k2

p − ρ01ω
2 + iωb1,

H13 = H31 = (Q2 + Zd3)k2
p − ρ02ω

2 + iωb2,

H22 = (R1 + R1φ2d2)k2
p − ρ11ω

2 − iωb1,

H23 = H32 = R1φ2d3k2
p,

H33 = (R2 − R2φ1d3)k2
p − ρ22ω

2 − iωb2.

(19)

The condition det(H) = 0 gives three complex roots of the unknown wavenumbers k1, k2 and k3, corresponding to the fast P wave (P1)
and two slow P waves (P2 and P3). The related velocities, being complex, describe the attenuation characteristics. By solving eq. (18), the
relative relations between the amplitudes of two fluid-phase potentials and that of the solid phase are(

A1/A0

A2/A0

)
=

(
(H13 H21 − H11 H23)/(H12 H23 − H13 H22)
(H11 H22 − H21 H12)/(H12 H23 − H13 H22)

)
=

(
ν

δ

)
. (20)

Because there are three compressional waves, the potentials are coupled as⎧⎪⎨
⎪⎩

ϕs = ϕI + ϕII + ϕIII,

ϕf1 = ν1ϕI + ν2ϕII + ν3ϕIII,

ϕf2 = δ1ϕI + δ2ϕII + δ3ϕIII,

(21)

where ϕI, ϕII and ϕIII are the solid-phase potentials of the P1, P2 and P3 waves specified with wavenumbers k1, k2 and k3, respectively; ν i and
δi are amplitude ratios defined in eq. (20) using the wavenumber ki, with ‘s’, ‘f1’ and ‘f2’ denoting the solid and two fluid phases, respectively.

Similarly, substituting eq. (17) into (16) yields

Q · B = 0, (22)

where, B = [B0, B1, B2]T, and the components of Q are⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Q11 = Nk2
s − ρ00ω

2 − iω(b1 + b2),
Q12 = Q21 = −ρ01ω

2 + iωb1,

Q13 = Q31 = −ρ02ω
2 + iωb2,

Q22 = −ρ11ω
2 − iωb1,

Q23 = Q32 = 0,

Q33 = −ρ22ω
2 − iωb2.

(23)

The condition det(Q) = 0 gives one complex wavenumber (denoted as k4), corresponding to the shear wave (SV), and the relative-
amplitude ratio is(

B1/B0

B2/B0

)
=

(
−Q21/Q22

(Q21 Q12 − Q11 Q22)/(Q13 Q22)

)
=

(
ν4

δ4

)
. (24)

Following Carcione (2014), the corresponding phase velocities and attenuation factors are given in terms of the complex wavenumber
as,

Vi =
[

Re(
ki

ω
)

]−1

, Q−1
i = 2

Im(ki )

Re(ki )
, i = 1, 2, 3, 4, (25)

where ‘Re’ and ‘Im’ denote real and imaginary parts and indexes 1–4 indicate the wave modes P1, P2, P3 and SV, respectively.
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Figure 2. Reflection and transmission problem at a plane interface between (a) two fluid-saturated cracked media and (b) water half-space overlying a
fluid-saturated cracked medium. The solid and dashed arrows represent the propagation and attenuation directions, respectively. P1, P2 and P3 represent the
fast and two slow compressional wave modes in the porous medium, whereas SV indicates the shear wave mode.

4 S C AT T E R I N G ( R E F L E C T I O N – T R A N S M I S S I O N ) C O E F F I C I E N T S

We consider two cases (see Fig. 2), namely, an interface separating two porous media, and an interface separating a fluid and a porous medium.
The latter case can be used to estimate seafloor properties from reflected data (Qi et al. 2021). In the first case, we consider a gas–water
contact (Dutta & Odé 1983), as well as a contact between two media having the same fluid but different rock frames.

4.1 Interface between two porous media

As shown in Fig. 2(a), we consider an interface defined by z = 0, separating two media �1(z > 0) and �2(z < 0), and a P1 wave (denoted
with index 0) in �1 incident at the interface with an oblique angle. This wave generates four reflected waves (P1, P2, P3, SV, denoted with
the indexes 1, 2, 3 and 4) in �1 and four transmitted waves (P1, P2, P3, SV, denoted with the indexes 5, 6, 7 and 8) in �2.

Due to the presence of wave-induced fluid flow, the media behave anelastic to wave propagation, implying that all the incident, reflected
and transmitted waves are inhomogeneous, in the sense that the propagation and attenuation directions do not coincide. Following Carcione
(2014), a general representation of an inhomogeneous wave can be specified by its direction of propagation as well as direction of maximum
attenuation. For the incident P1 wave, we have⎧⎪⎨
⎪⎩

ϕ(0)
s = A(0)

s exp [iω(p0x − q0z) − iωt)] ,

ϕ
(0)
f1 = ν

(�1)
1 A(0)

s exp [iω(p0x − q0z) − iωt)] ,

ϕ
(0)
f2 = δ

(�1)
1 A(0)

s exp [iω(p0x − q0z) − iωt)] ,

(26)

where A(0)
s is the amplitude, ν

(�1)
i and δ

(�1)
i are the amplitude ratios in medium �1, determined in eq. (20) using wavenumber ki (here i = 1),

and

p0 = |P0|
ω

sinθ0 + i
|A0|
ω

sin(θ0 − γ0), (27)
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Seismic reflection in cracked media 1485

is the horizontal complex slowness, where θ 0 is the propagation direction, γ 0 is the inhomogeneity angle (Sharma 2013; Carcione 2014). The
propagation vector P0 and attenuation vector A0 are obtained from

⎧⎪⎪⎨
⎪⎪⎩

2|P0|2 = ω2

[
Re(v−2

0 ) +
√(

Re(v−2
0 )

)2 + (
Im(v−2

0 )/cosγ0

)2
]

,

2|A0|2 = ω2

[
−Re(v−2

0 ) +
√(

Re(v−2
0 )

)2 + (
Im(v−2

0 )/cosγ0

)2
]

,

(28)

where v0 = ω/k1 is the complex velocity of the incident P1 wave.
The vertical slowness is

q0 = GR + iGI, G = ±pv
√

v−2
0 − p2

0, (29)

where ‘pv’ denotes the principal value and GR and GI are the real and imaginary parts of G, respectively. In this way, the sign for q0 in eq. (26)
is negative, which ensures the propagation and energy decay of the wave along the negative z-direction.

The potentials for the reflected waves are similarly written as

⎧⎪⎨
⎪⎩

ϕ(i)
s = A(i)

s exp [iω(pi x + qi z) − iωt)] ,

ϕ
(i)
f1 = ν

(�1)
i A(i)

s exp [iω(pi x + qi z) − iωt)] , i = 1, 2, 3

ϕ
(i)
f2 = δ

(�1)
i A(i)

s exp [iω(pi x + qi z) − iωt)] ,

(30)

for the compressional P1, P2 and P3 waves with i = 1, 2, 3, respectively. For the reflected SV wave,

⎧⎪⎨
⎪⎩

� (4)
s = A(4)

s exp [iω(p4x + q4z) − iωt)] ,

�
(4)
f1 = ν

(�1)
4 A(4)

s exp [iω(p4x + q4z) − iωt)] ,

�
(4)
f2 = δ

(�1)
4 A(4)

s exp [iω(p4x + q4z) − iωt)] ,

(31)

where, ν
(�1)
4 and δ

(�1)
4 are the amplitude ratios in medium �1, determined in eq. (24) using wavenumber k4.

Similarly, the potentials for the transmitted waves are

⎧⎪⎨
⎪⎩

ϕ(i)
s = A(i)

s exp [iω(pi x − qi z) − iωt)] ,

ϕ
(i)
f1 = ν

(�2)
i−4 A(i)

s exp [iω(pi x − qi z) − iωt)] , i = 5, 6, 7

ϕ
(i)
f2 = δ

(�2)
i−4 A(i)

s exp [iω(pi x − qi z) − iωt)] ,

(32)

for the transmitted P1, P2 and P3 waves with i = 5, 6, 7, respectively, and

⎧⎪⎨
⎪⎩

� (8)
s = A(8)

s exp [iω(p8x − q8z) − iωt)] ,

�
(8)
f1 = ν

(�2)
4 A(8)

s exp [iω(p8x − q8z) − iωt)] ,

�
(8)
f2 = δ

(�2)
4 A(8)

s exp [iω(p8x − q8z) − iωt)] ,

(33)

for the transmitted SV wave, where ν
(�2)
i and δ

(�2)
i , i = 1, . . . , 4 are the amplitude ratios in medium �2.

Invoking the Snell law, the horizontal slowness satisfy

p1 = p2 = p3 = p4 = p5 = p6 = p7 = p8 = p0. (34)

Then, the vertical slowness can be obtained from the complex velocity vi = ω/ki as

qi = GR + iGI, G = ±pv
√

v−2
i − p2

i , i = 1, 2, . . . , 7, 8 (35)

In medium �1, the positive signs for qi of the reflected waves in eqs (30) and (31) are chosen such that the propagation is along the
positive z-direction and the energy decays away from the interface (Borcherdt 1982). In medium �2, the signs for qi of the transmitted waves
in eqs (32) and (33) are negative to ensure that the propagation is along the negative z-direction and the energy decays away from the interface.

Substituting the potential functions into the Helmholtz equation, we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u�1 = ∇(ϕ(0)
s + ϕ(1)

s + ϕ(2)
s + ϕ(3)

s ) +
[
−∂� (4)

s

∂z
,
∂� (4)

s

∂x

]T

,

U�1,(1) = ∇(ϕ(0)
f1 + ϕ

(1)
f1 + ϕ

(2)
f1 + ϕ

(3)
f1 ) +

[
−∂�

(4)
f1

∂z
,
∂�

(4)
f1

∂x

]T

,

U�1,(2) = ∇(ϕ(0)
f2 + ϕ

(1)
f2 + ϕ

(2)
f2 + ϕ

(3)
f2 ) +

[
−∂�

(4)
f2

∂z
,
∂�

(4)
f2

∂x

]T

,

(36)
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1486 E. Wang et al.

for medium �1, and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u�2 = ∇(ϕ(5)
s + ϕ(6)

s + ϕ(7)
s ) +

[
−∂� (8)

s

∂z
,
∂� (8)

s

∂x

]T

,

U�2,(1) = ∇(ϕ(5)
f1 + ϕ

(6)
f1 + ϕ

(7)
f1 ) +

[
−∂�

(8)
f1

∂z
,
∂�

(8)
f1

∂x

]T

,

U�2,(2) = ∇(ϕ(5)
f2 + ϕ

(6)
f2 + ϕ

(7)
f2 ) +

[
−∂�

(8)
f2

∂z
,
∂�

(8)
f2

∂x

]T

,

(37)

for medium �2. By substituting eqs (36) and (37) into (4), the expressions for the stresses τ ij and fluid pressures Pf1 and Pf2 in media �1 and
�2 can be obtained.

There are eight unknown amplitudes of the potentials A(i)
s , i = 1, 2, . . . , 8, which can be determined via eight boundary conditions

(BCs) at z = 0. Following Deresiewicz & Skalak (1963), these conditions are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ�1
xz = τ�2

xz ,

τ�1
zz = τ�2

zz ,

u�1
x = u�2

x ,

u�1
z = u�2

z ,

w�1,(1)
z = w�2,(1)

z ,

w�1,(2)
z = w�2,(2)

z ,

P�1
f1 − P�2

f1 = ZI ẇ
�2,(1)
z ,

P�1
f2 − P�2

f2 = ZI ẇ
�2,(2)
z ,

(38)

where ZI is the so-called interface impedance. If ZI = 0, the boundary becomes fully open, that is perfect hydraulic contact. If ZI = ∞, eq. (38)
becomes the sealed-pore boundary condition, where no relative fluid flow takes place across the interface.

The eight boundary conditions result in a system of linear equations, which has the matrix form

8∑
j=1

Gi j y j = ei , i = 1, 2, . . . , 7, 8, (39)

where y consists of the eight unknown amplitudes of the displacement potentials, that is y j = A( j)
s . The explicit expressions for the elements

of G and vector e are given in Appendix B. Once y is solved, the R/T coefficients can be obtained as

R j = A( j)
s k j

A(0)
s k1

= |R j |eiθ j , j = 1, 2, 3, 4,

Tj = A( j)
s k j

A(0)
s k1

= |Tj |eiθ j , j = 5, 6, 7, 8, (40)

which are defined as the ratio of the solid displacement amplitude of a reflected or transmitted wave to that of the incident wave. The |Rj| and
|Tj| represent the magnitudes, whereas θ j defines the phase angle.

4.2 Interface between a fluid and a porous medium

Fig. 2(b) illustrates the problem. The incident wave (denoted with index 0) is homogeneous and hits the interface at the angle θ0, generating
a reflected homogeneous wave (denoted with index 1) in medium �1 and four transmitted inhomogeneous waves (denoted with indexes 5, 6,
7 and 8 for P1, P2, P3 and SV waves, respectively) in medium �2. The displacement potential of the incident wave is

ϕ(0)
s = A(0)

s exp [iω(p0x − q0z) − iωt)] , (41)

where

p0 = sinθ0

v0
, q0 = cosθ0

v0
, (42)

v0 =
√

Kf

ρf
is the fluid velocity and θ0 is the incidence angle.

The potential of the reflected wave is

ϕ(1)
s = A(1)

s exp [iω(p0x + q0z) − iωt)] , (43)

where the positive sign for q0 indicates that the wave propagates along the positive z-direction. The four transmitted waves are inhomogeneous
and have the same form of eqs (32) and (33) and eqs (34) and (35) hold.

From eqs (41) and (43), the P-wave displacement in the fluid is

U�1 = ∇(ϕ(0)
s + ϕ(1)

s ). (44)
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Seismic reflection in cracked media 1487

Then, the fluid pressure is

pf = −Kf∇ · U�1 . (45)

The corresponding boundary conditions become⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

τ�2
xz = 0,

−p�1
f = τ�2

zz ,

U�1
z = u�2

z + w�2,(1)
z + w�2,(2)

z ,

p�1
f − P�2

f1 = ZI ẇ
�2,(1)
z ,

p�1
f − P�2

f2 = ZI ẇ
�2,(2)
z .

(46)

The first three equations represent the continuity of the normal and shear stresses and the conservation of mass. The last two describe the
natural BCs for the fluid pressure, where, ZI = 0 and ZI = ∞ correspond to open and sealed boundary conditions, respectively (Qi et al.
2021). These five BCs form a system of linear equations, from which the R/T coefficients can be determined. The matrix form is

5∑
j=1

Mi j x j = ci , i = 1, 2, . . . , 5, (47)

where x = [A(1)
s , A(5)

s , A(6)
s , A(7)

s , A(8)
s ]T consists of five unknown amplitudes of the displacement potentials. Elements of matrix M and vector

c are given in Appendix C.

5 E N E RG Y PA RT I T I O N S

We consider the energy balance or partition, calculating the energy flux, which is the scalar product of the traction and particle velocity across
a surface element of unit area. The time average of the energy flux over a period defines the average energy intensity:〈

E
〉
= 1

2
Re(τzz u̇′

z + τxz u̇′
x − Pf1ẇ

′
1z − Pf2ẇ

′
2z), (48)

where the tilde denotes complex conjugate, and w1z and w2z are the z-components of w(1) and w(2), respectively.
For an interface between two media, the energy partitions in medium �1 are obtained by solving a square matrix of order five as follows:〈

E�1

〉
=

〈
E�1

i j

〉
= 1

2
Re(X · Ẏ′), i, j = 0, 1, . . . , 4, (49)

where

X =

⎛
⎜⎜⎜⎜⎜⎝

τ (0)
zz τ (0)

xz −P (0)
f1 −P (0)

f2

τ (1)
zz τ (1)

xz −P (1)
f1 −P (1)

f2

τ (2)
zz τ (2)

xz −P (2)
f1 −P (2)

f2

τ (3)
zz τ (3)

xz −P (3)
f1 −P (3)

f2

τ (4)
zz τ (4)

xz −P (4)
f1 −P (4)

f2

⎞
⎟⎟⎟⎟⎟⎠ , Y =

⎛
⎜⎜⎜⎝

u(0)
z u(1)

z u(2)
z u(3)

z u(4)
z

u(0)
x u(1)

x u(2)
x u(3)

x u(4)
x

w
(0)
1z w

(1)
1z w

(2)
1z w

(3)
1z w

(4)
1z

w
(0)
2z w

(1)
2z w

(2)
2z w

(3)
2z w

(4)
2z

⎞
⎟⎟⎟⎠ . (50)

The diagonal components
〈
E�1

i i

〉
identify the energy intensities of the incident wave (i = 0), and the reflected P1, P2, P3 and SV waves (i =

1, 2, 3, 4), whereas the off-diagonal components are the interaction energies, resulting from the interference between waves.
For the fluid, we have〈

E
〉
= 1

2
Re(−p f U̇ ′

z). (51)

Hence, for a fluid/solid interface, we have〈
E�1

〉
=

〈
E�1

i j

〉
= 1

2
Re(X · Ẏ′), i, j = 0, 1, (52)

where

X =
(

−p(0)
f

−p(1)
f

)
, Y =

(
U (0)

z , U (1)
z

)
. (53)

Similarly, the corresponding matrix for medium �2 is〈
E�2

〉
=

〈
E�2

i j

〉
= 1

2
Re(C · Ḋ′), i, j = 0, 1, 2, 3, (54)

where

C =

⎛
⎜⎜⎜⎝

τ (5)
zz τ (5)

xz −P (5)
f1 −P (5)

f2

τ (6)
zz τ (6)

xz −P (6)
f1 −P (6)

f2

τ (7)
zz τ (7)

xz −P (7)
f1 −P (7)

f2

τ (8)
zz τ (8)

xz −P (8)
f1 −P (8)

f2

⎞
⎟⎟⎟⎠ , D =

⎛
⎜⎜⎜⎝

u(5)
z u(6)

z u(7)
z u(8)

z

u(5)
x u(6)

x u(7)
x u(8)

x

w
(5)
1z w

(6)
1z w

(7)
1z w

(8)
1z

w
(5)
2z w

(6)
2z w

(7)
2z w

(8)
2z

⎞
⎟⎟⎟⎠ . (55)
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1488 E. Wang et al.

Table 1. Porous-medium properties.

Ks (GPa) μs (GPa) ρs (kg m–3) φ10 φ20 c1 κ1 (darcy) κ2 (darcy) R0 (m)

Rock 37.9 32.6 2650 0.25 0.32 11 0.1 100 0.01

Table 2. Fluid properties.

Kf (GPa) ηf (Pa·s) ρf (kg m–3)

Water 2.22 0.001 1000
Gas 0.0001 1.82 × 10−5 1.2

In eq. (54), the sum of all the off-diagonal entries is the interaction energy resulting from the interference between four transmitted

waves, whereas the diagonal elements
〈
E�2

i i

〉
define the energy partition of the four transmitted waves in medium �2.

Then, we scale the energy intensities to that of the incident wave
〈
E�1

00

〉
, to obtain the energy ratios. In medium �1, the energy-ratio

matrix F�1
i j =

〈
E�1

i j

〉
/
〈
E�1

00

〉
corresponds to the partition of energy among the incidence and reflected waves. Note that with F�1

00 = 1, the

diagonal element F�1
i i (i = 1, 2, 3, 4, if �1 is a porous medium, and i = 1, if �1 is for a fluid) corresponds to the reflected waves, whereas the

sum of all the other off-diagonal components corresponds to the partition among the incidence and reflected waves. Particularly, when �1 is
a porous medium, the interference energy ratio of the incidence wave with the reflected waves F�1

I R , and interference among the four reflected
waves F�1

RR , are

F�1
I R =

4∑
i=1

(
F�1

i0 + F�1
0i

)
, and F�1

RR =
4∑

i=1

4∑
j=1, j �=i

F�1
i j , (56)

For the fluid half-space, the corresponding equations are

F�1
I R = F�1

10 + F�1
01 , and F�1

RR = 0. (57)

A similar matrix F�2
i j =

〈
E�2

i j

〉
/
〈
E�1

00

〉
gives the energy partition among the four transmitted waves in the porous medium �2. The

corresponding partition among the four transmitted waves is

F�2
T T =

3∑
i=0

3∑
j=0, j �=i

F�2
i j . (58)

Energy conservation is satisfied as

4∑
i=0

4∑
j=0

F�1
i j −

3∑
i=0

3∑
j=0

F�2
i j = 0, (59)

for the interface between two porous media, and

1∑
i=0

1∑
j=0

F�1
i j −

3∑
i=0

3∑
j=0

F�2
i j = 0, (60)

for the interface between a fluid and a porous medium.

6 E X A M P L E S

We consider the properties given in Table 1, taken from Tang et al. (2012) and Zhang et al. (2019). The fluid is assumed to be either gas or
water, and its properties are given in Table 2 (Gurevich et al. 2004). Following Zhang et al. (2019), the volume fraction is f2 = φ2/φ20, where
φ2 = φc = 2πεγ is the crack porosity, where ε and γ are the crack density and aspect ratio, respectively. Once f2 is obtained, f1 and φ1 can
be determined. In the following, we assume ε = 0.2 and γ = 0.002 (Tang et al. 2012).

Fig. 3 shows the phase velocities of the four waves as a function of frequency, for gas- and water-saturated media. The P1-wave
dissipation factor is displayed in Fig. 4. In the absence of LFF, the results are obtained by setting the inclusion radius R0 equal to infinity. For
the gas saturation case, the LFF mechanism hardly affects the wave propagation, since it induces negligible attenuation, as shown in Fig. 4(a).
In contrast, when the fluid is water, the LFF mechanism induces a significant attenuation and dispersion of the P1-wave mode over [0.1, 10]
kHz. The P2 wave is also affected and the dispersion effect occurs at higher frequencies. At very high frequencies, propagation is not affected
by the LFF.

6.1 Interface between two porous media saturated with different fluids

We consider the gas–water contact (Dutta & Odé 1983) shown in Fig. 2(a), where incident P1 wave travels in the upper gas-saturated medium
and is transmitted into the lower water-bearing medium. We assume the same properties in both layers as given in Table 1. We first investigate
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Seismic reflection in cracked media 1489

Figure 3. Phase velocities of the P1, SV, slow P2 and slow P3 waves as a function of frequency, for the gas-saturated (a) and water-bearing (b) media,
respectively. The solid lines represent the results in the presence of local fluid flow (LFF), whereas open symbols only correspond to results without LFF.

Figure 4. Dissipation factors of the fast P1 wave as a function of frequency, for the gas-saturated (a) and water-bearing (b) media.
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1490 E. Wang et al.

Figure 5. Magnitudes of the P1-wave reflection (a) and transmission (b) coefficients as a function of frequency at normal incidence.

the R/T coefficients at normal incidence. Because the attenuation is negligible in the gas-saturated half-space, the inhomogeneity angle does
not affect the propagation at the interface (Wang et al. 2020), and is set as γ 0 = 45◦. Fig. 5 shows the magnitudes of the P1-wave coefficients
as a function of frequency. We have omitted the results for the reflected and transmitted SV, P2 and P3 waves, since the SV-wave magnitudes
are zero for all frequencies, and the P2- and P3-wave magnitudes are much smaller. We observe that the coefficients with open BCs differ
from those with sealed BCs, and the difference increases with frequency. This effect was also reported in Qi et al. (2021). The LFF affects the
propagation, causing a decreased |R1| at low frequencies for both open and sealed BCs. The reason can be attributed to the velocity dispersion
at low frequencies (see Fig. 3b). The presence of LFF gives a lower P1-wave velocity in the water-bearing medium, and thus induces a smaller
impedance contrast, causing the decrease in the reflected P1-wave magnitude. At high frequencies, the propagation is not affected by the LFF
and the two results overlap.

The corresponding energy ratios are given in Fig. 6. We observe that, the main energy is transmitted as P1 wave. At low frequencies, the
LFF affects the energy partitions, causing an enhanced transmitted P1-wave energy. The BCs affect the energy ratios in the same manner as the
magnitudes. At high frequencies, the total reflected and transmitted P1-wave energy decreases, indicating that part of the energy is transferred
to slow P2 and P3 waves, in agreement with the dispersion analysis. Also, the results of the open BCs exhibit a significantly decreased
P1-wave energy (the absolute sum of F�1

11 and F�2
11 ) than those of the sealed BCs, suggesting that more P1-wave energy is transferred. This

implies that the fluid flow across the interface enhances the energy transfer between slow and fast wave modes. The sum of all the energy
ratios at the interface is –1, indicating that the conservation of energy is satisfied.

Next, we consider oblique incidence. Figs 7 and 8 show the magnitudes and energies of the reflected P1 and SV waves as a function of
the incidence angle. For comparison, two different frequencies (10 Hz and 1 kHz) are considered. As expected from the dispersion analysis in
Figs 3 and 4, at 10 Hz the two slow wave modes hardly propagate and the result is similar to that of two elastic media. Consequently, at 10 Hz,
|R1| and |R4| are hardly affected by the BCs. In contrast, at 1 kHz, the slow P2 wave is wave-like and the porous effect is more significant.

The LFF affects wave propagation in a water-bearing medium, and hence the reflection and transmission. Specifically, the LFF mechanism
generates a remarkable P1-wave attenuation at 1 kHz, and predicts a smaller P1-wave velocity. Consequently, the P1-wave impedance contrast
decreases, which explains why the reflected P1-wave magnitude in the presence of LFF is smaller than that without LFF. The critical angle
is also affected. For f = 10 Hz, the attenuation is negligible and both media behave elastically (lossless). The critical angle can be obtained

as θc = arcsin
vp1

vp2
, where vp1 and vp2 are the P1-wave phase velocities in the upper and lower media. Because vp2 is affected by the LFF, the

critical angle also. Specially, at 10 Hz, we have θ c = 50.8◦ and θ c = 56.6◦, without and with LFF, respectively, in agreement with the angles
where the discontinuity of |R1| firstly occurs. Rubino et al. (2006) alternatively defined a critical angle when the reflected absolute energy
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Seismic reflection in cracked media 1491

Figure 6. Energy ratios of the reflected (a) and transmitted (b) P1 waves as a function of frequency at normal incidence.

Figure 7. Magnitudes of the reflected P1 (upper) and SV (lower) waves as a function of incidence angle at 10 Hz (left-hand column) and 1 kHz (right-hand
column).
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1492 E. Wang et al.

Figure 8. Energy ratios of the reflected P1 (upper two) and SV (lower two) waves as a function of incidence angle at 10 Hz (left-hand column) and 1 kHz
(right-hand column).

ratio becomes 1. Variations of F�1
11 with angle given in Fig. 8 confirm this fact. On the contrary, at f = 1 kHz, when the LFF is present, the

medium behaves anelastically, implying that the transmitted wave is not confined to the interface but propagates into the medium (Sharma
2013). This explains the continuously increasing energy of the reflected P1 wave in the range [45◦, 90◦], in contrast to the discontinuity (the
value increases sharply to 1) when the LFF is absent.

6.2 Interface between two porous media with different rock frames

Crack density and aspect ratio are two key parameters affecting wave propagation as shown in Fig. 9. We observe that, the larger the crack
density the larger the dispersion and attenuation caused by mesoscopic flow, and the peak moves to low frequencies. In contrast, increasing the
aspect ratio, attenuation and dispersion decrease, and the peak moves to high frequencies. At very high frequencies, the attenuation induced
by the Biot global flow is nearly the same for all the crack porosities, since the global flow is mainly affected by the porosity of the host
medium. It is evident that the crack density mainly affects the amount of attenuation, whereas the aspect ratio the location of the peak.

To investigate the influence of these two parameters on the scattering coefficients, we consider an interface between two water-bearing
porous media having different crack density or aspect ratio, keeping all the other properties the same (see Table 1). We assume ε = 0.2 and
γ = 0.002 in the upper layer, different values in the lower layer, and the inhomogeneity angle is set to γ 0 = 45◦. As shown in Fig. 10, where
normal incidence has been assumed, if ε or γ decreases, the P1-wave reflection magnitude at low frequencies increases, due to the fact that the
P1-wave impedance contrast increases. There is dispersion between 0.1 and 10 kHz, due to the mesoscopic-flow attenuation. The difference
between the sealed-pore and open-pore results is mainly observed at high frequencies, since at low frequencies the slow-wave modes are
diffusive and become wavelike at high frequencies. Fig. 11 shows the reflection coefficient as a function of the incidence angle at 10 Hz and
1 kHz. Similarly, decreasing ε or γ enhances the P1- and SV-wave reflection magnitudes at the same incidence angle. At 10 Hz, varying γ

induces a small velocity contrast, and smaller P1 and SV-wave reflection magnitudes, when compared with those induced by variations in ε.
At 1 kHz, the opposite behaviour for P1 wave occurs.

It is worth to note that, the present theory considers randomly oriented penny-shaped cracks, meaning that the rock is macroscopically
isotropic. When the cracks are aligned, the rock can behave anisotropically. For example, Galvin & Gurevich (2009) considered a poroelastic
medium with a distribution of aligned cracks and obtained frequency-dependent anisotropy and attenuation based on a multiple-scattering
theory. Guo & Gurevich (2018) alternatively considered rocks containing two orthogonal sets of intersecting fractures, and confirmed this

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/231/3/1479/6634244 by Istituto N

azionale di O
ceanografia e G

eofisica Sperim
entale - O

G
S user on 13 N

ovem
ber 2023



Seismic reflection in cracked media 1493

Figure 9. P1-wave velocity dispersion (a) and attenuation (b) for different crack densities ε and aspect ratios γ .

Figure 10. Magnitudes of the P1-wave reflection coefficients as a function of frequency at normal incidence for an interface separating two media with
different (a) crack density ε or (b) aspect ratio γ in the lower medium. We assume ε = 0.2 and γ = 0.002 in the upper medium.
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1494 E. Wang et al.

Figure 11. Magnitudes of the reflected P1 (upper panels) and SV (lower panels) waves as a function of incidence angle at 10 Hz (left-hand column) and 1 kHz
(right-hand column), for different ε or γ in the lower layer. We assume ε = 0.2 and γ = 0.002 in the upper medium and open-pore boundary conditions are
assumed.

frequency dependence. Jin et al. (2018) obtained similar results for aligned fractures and two immiscible fluids. In these cases, the reflections
depend on frequency and azimuth.

6.3 Interface between water and a porous medium

Next, we consider water over a fluid-saturated medium, as displayed in Fig. 2(b). This occurs, for instance, when gas migrates from a hydrate
formation into the sea (Pape et al. 2020). First, we consider that the lower medium is saturated with gas. Fig. 12 shows the reflection magnitude
and corresponding energy ratio as a function of frequency at normal incidence. As explained by Qi et al. (2021), at normal incidence the
sealed interface is equivalent to an interface between water and an effective elastic medium, with no frequency effects. On the contrary, the
results for the open BCs depend on frequency and coincide with those of the sealed-pore case at low frequencies, less than 10−4 Hz. A
similar case was investigated by Gurevich et al. (2004) based on Biot classical theory, where they conclude that the effect depends on the
compressibility contrast between the gas and the fluid. At low frequencies, the P3 wave does not propagate and our case becomes equivalent
to that of the Biot theory. This explains why Fig. 12 shows a similar trend to that of Gurevich et al. (2004). The LFF induces an additional
(weak) attenuation peak, as illustrated in Fig. 4(a), and hence yields different results from those without LFF.

Fig. 13 shows the results at two different frequencies, where as in Fig. 12, the LFF has no effect when the interface is sealed. Two
discontinuities occur at θ1 =37.8◦ and θ 2 =67.6◦. Because the sealed interface is equivalent to a water–elastic interface, these correspond to
the critical angles at which the transmitted fast P1 wave and SV wave become evanescent. Contrarily, the results of the open-pore interface
are affected by the LFF and are frequency dependent. The effect is mainly observed at low frequencies (10 Hz), as discussed in Fig. 12. A
similar effect of BCs was observed by Denneman et al. (2002) using the classical Biot theory, due to the large impedance difference between
water and gas. For the open-pore interface, the wave displacements in water are coupled to those in gas. The transmission coefficients are
small at 1 kHz, while |R1| is close to 1. On the other hand, for the sealed-pore interface, the wave displacements in water are mainly coupled
to those of the skeleton, and therefore we have dissimilar results compared to the open case, with the difference disappearing below 10−4 Hz.

Now, we consider water overlying a water-bearing medium. Fig. 14 shows the reflection magnitude and energy as a function of frequency
for normal incidence. Unlike the gas-saturated case, the LFF affects the propagation in the water-bearing medium significantly, causing a
decreased P1-wave velocity at low frequencies and significant dispersion in the range [0.1, 10] kHz, as shown in Fig. 3(b). Consequently,
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Figure 12. Magnitude (a) and energy ratio (b) of the reflected wave at normal incidence for an interface separating water and a gas-saturated medium.

Figure 13. Magnitude (upper panels) and energy ratio (lower panels) of the reflected wave at 10 Hz (left-hand column) and 1 kHz (right-hand column), for an
interface separating water and a gas-saturated medium.
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Figure 14. Magnitude (a) and energy ratio (b) of the reflected wave at normal incidence for an interface separating water and a water-bearing medium.

|R1| is smaller than that when the LFF is absent, since the P1-wave impedance contrast is decreased. In the open-pore case, more energy is
transmitted at high frequencies. Fig. 15 shows the reflection magnitude and energy ratio as a function of the incidence angle for both sealed
and open interfaces. At 10 Hz, the reflection coefficient is independent on the BCs. The result is in agreement with those in Fig. 3(b) in
that the dispersion occurs at frequencies much higher than 10 Hz. The P2 and P3 waves hardly propagate and hence the medium behaves
elastically (lossless). In contrast, at 1 kHz, the slow P2 wave becomes wavelike and the effects of the BCs are significant.

There are two discontinuities at θ1 = 28.4◦ and θ 2 = 70◦in Fig. 15, associated with the transmitted P1- and SV-wave critical angles. At
10 Hz, these angles occur when the LFF is absent, whereas they become θ 1 = 31◦ and θ 2 = 70◦ if the LFF is present. The increase in θ 1 is
due to the fact that the LFF decreases the P1-wave velocity. For 1 kHz, the two angles are θ 1 = 28.4◦ and θ 2 = 70◦ when the LFF is absent
and θ 1 = 30◦ and θ 2 = 70◦ if the LFF is present. When the frequency increases from 10 Hz to 1 kHz, the LFF increases the P1-wave velocity,
thus causing the variation in θ 1. At 1 kHz, F�1

11 deviates from –1 for angles beyond θ2, implying that part of the energy is transmitted in the
form of slow wave modes. The phenomenon is particularly evident when the interface is open.

7 C O N C LU S I O N S

We have analysed the reflection and transmission from interfaces between two fluid-saturated media, as well as between water and a fluid-
saturated medium, including the effects of cracks. The poroelasticity equations are based on a generalization of the Biot-Rayleigh theory from
spherical inclusions to the case of penny-shaped cracks, where the effect of mesoscopic local fluid flow (LFF) plays an important role. The
theory predicts four wave modes, namely, a fast P1, two slow P2 and P3 and SV waves. The reflection coefficients and partitions of energy
as a function of frequency and incidence angle are obtained, and the effects of LFF and BCs are studied. The examples reveal that the LFF
attenuation mechanism affects the wave propagation in the water-bearing medium for frequencies lower than 104 Hz, and hence the frequency
and angle dependences of the reflection coefficients of the water–water-bearing medium interface and the gas–water contact, irrespective of
the type of boundary condition. Differently, for the water–gas-saturated medium contact, the sealed interface is equivalent to a water–elastic
(lossless) medium interface. The open-pore case coincides with the sealed-pore one at frequencies below 10−4 Hz. The crack density mainly
affects the amount of attenuation, whereas the aspect ratio the location of the relaxation peak. Our findings provide insights for acquiring
physical dependencies between reflection signatures and medium properties, which allows for frequency-dependent inversion for parameter
estimations in cracked porous media.
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Figure 15. Magnitude (upper panels) and energy ratio (lower panels) of the reflected wave at 10 Hz (left-hand column) and 1 kHz (right-hand column), for an
interface separating water and a water-bearing medium.
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Dutta, N.C. & Odé, H., 1983. Seismic reflections from a gas-water contact,
Geophysics, 48(2), 148–162.

Dvorkin, J. & Nur, A., 1993. Dynamic poroelasticity: a unified model with
the squirt and the Biot mechanisms, Geophysics, 58(4), 524–533.

Fu, B., Guo, J., Fu, L.Y., Glubokovskikh, S., Galvin, R.J. & Gurevich, B.,
2018. Seismic dispersion and attenuation in saturated porous rock with
aligned slit cracks, J. geophys. Res., 123(8), 6890–6910.

Galvin, R.J. & Gurevich, B., 2009. Effective properties of a poroelastic
medium containing a distribution of aligned cracks, J. geophys. Res.,
114(B7), doi:10.1029/2008JB006032.

Guo, J. & Gurevich, B., 2020. Frequency-dependent P-wave anisotropy due
to wave-induced fluid flow and elastic scattering in a fluid-saturated porous
medium with aligned fractures, J. geophys. Res., 125(8), e2020JB020320,
doi:10.1029/2020JB020320.

Guo, J., Rubino, J.G., Glubokovskikh, S. & Gurevich, B., 2018. Dynamic
seismic signatures of saturated porous rocks containing two orthogonal
sets of fractures: Theory versus numerical simulations, J. geophys. Int.,
213(2), 1244–1262.

Gurevich, B., Ciz, R. & Denneman, A.I.M., 2004. Simple expressions for
normal incidence reflection coefficients from an interface between fluid-
saturated porous materials, Geophysics, 69(6), 1372–1377.

Gurevich, B., Makarynska, D., de Paula, O.B. & Pervukhina, M., 2010. A
simple model for squirt-flow dispersion and attenuation in fluid-saturated
granular rocks, Geophysics, 75(6), N109–N120.

Jin, Z., Chapman, M. & Papageorgiou, G., 2018. Frequency-dependent
anisotropy in a partially saturated fractured rock, J. geophys. Int., 215(3),
1985–1998.

Kumari, M. & Kumar, M., 2020. Reflection of inhomogeneous waves at the
surface of a cracked porous solid with penny-shaped inclusions, Waves
Rand. Complex Media, 32(4), 1–22.

Kumari, M. & Kumar, M., 2021. Wave-induced flow of pore fluid in a
cracked porous solid containing penny-shaped inclusions, Petrol. Sci.,
18(5), 1390–1408.

Liu, X., Li, H., Al-Shuhail, A.A., Liu, B. & Ren, Z., 2021. Reflection
and transmission of plane waves at an interface separating two poro-
viscoelastic materials with continuity and elastic consistence, J. geophys.
Int., 225(2), 829–845.

Mavko, G. & Jizba, D., 1991. Estimating grain-scale fluid effects on velocity
dispersion in rocks, Geophysics, 56(12), 1940–1949.

Mavko, G. & Nur, A., 1975. Melt squirt in the asthenosphere, J. geophys.
Res., 80(11), 1444–1448.

Müller, T.M., Gurevich, B. & Lebedev, M., 2010. Seismic wave attenua-
tion and dispersion resulting from wave-induced flow in porous rocks-a
review, Geophysics, 75(5), 75A147–75A164.

Pape, T. et al., 2020. Shallow gas hydrate accumulations at a Nigerian
deepwater pockmark—quantities and dynamics, J. geophys. Res., 125(9),
e2019JB018283, doi:10.1029/2019JB018283.

Pride, S.R. & Berryman, J.G., 2003a. Linear dynamics of double porosity
dual-permeability materials. I. Governing equations and acoustic attenu-
ation, Phys. Rev. E, 68(3), doi:10.1103/PhysRevE.68.036603.

Pride, S.R. & Berryman, J.G., 2003b. Linear dynamics of double porosity
dual-permeability materials. II. Fluid transport equations, Phys. Rev. E,
68(3), doi:10.1103/PhysRevE.68.036604.

Pride, S.R., Berryman, J.G. & Harris, J.M., 2004. Seismic at-
tenuation due to wave-induced flow, J. geophys. Res., 109(B1),
doi:10.1029/2003JB002639.

Qi, Q., Cao, J., Wang, X. & Gao, J., 2021. Influence of interface condition on
reflection of elastic waves in fluid-saturated porous media, Geophysics,
86(4), MR223–MR233.

Rubino, J.G., Ravazzoli, C.L. & Santos, J.E., 2006. Reflection and trans-
mission of waves in composite porous media: a quantification of energy
conversions involving slow waves, J. acoust. Soc. Am., 120(5), 2425–
2436.

Russell, B.H., Gray, D. & Hampson, D.P., 2011. Linearized AVO and poroe-
lasticity, Geophysics, 76(3), C19–C29.

Santos, J.E., Corbero, J.M., Ravazzoli, C.L. & Hensley, J.L., 1992. Reflection
and transmission coefficients in fluid-saturated porous media, J. acoust.
Soc. Am., 91(4), 1911–1923.

Sharma, M.D., 2013. Effect of local fluid flow on reflection of plane elastic
waves at the boundary of a double-porosity medium, Adv. Water Resour.,
61, 62–73.

Tang, X., 2011. A unified theory for elastic wave propagation through porous
media containing cracks—an extension of Biot’s poroelastic wave theory,
Sci. China Earth Sci., 54(9), 1441–1452.

Tang, X., Chen, X. & Xu, X., 2012. A cracked porous medium elastic
wave theory and its application to interpreting acoustic data from tight
formations, Geophysics, 77(6), D245–D252.

Thomsen, L., 1985. Biot-consistent elastic moduli of porous rocks: low-
frequency limit, Geophysics, 50(12), 2797–2807.

Wang, E., Carcione, J.M., Ba, J. & Liu, Y., 2020. Reflection and transmission
of plane elastic waves at an interface between two double-porosity media:
effect of local fluid flow, Surv. Geophys., 41(2), 283–322.

Xu, D., Han, T. & Fu, L.Y., 2021. Seismic dispersion and attenuation in
layered porous rocks with fractures of varying orientations, Geophys.
Prospect., 69(1), 220–235.

Zhang, L., Ba, J., Carcione, J.M. & Sun, W., 2019. Modeling wave propaga-
tion in cracked porous media with penny-shaped inclusions, Geophysics,
84(4), WA141–WA151.

Zhao, L., Han, D.H., Yao, Q., Zhou, R. & Yan, F., 2015. Seismic reflec-
tion dispersion due to wave-induced fluid flow in heterogeneous reservoir
rocks, Geophysics, 80(3), D221–D235.

Zong, Z., Yin, X. & Wu, G., 2012. AVO inversion and poroelasticity with
P- and S-wave moduli, Geophysics, 77(6), N17–N24.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/231/3/1479/6634244 by Istituto N

azionale di O
ceanografia e G

eofisica Sperim
entale - O

G
S user on 13 N

ovem
ber 2023

http://dx.doi.org/10.1190/1.2194512
http://dx.doi.org/10.1046/j.1365-246X.2002.01769.x
http://dx.doi.org/10.1016/S0020-7225(03)00137-X
http://dx.doi.org/10.1007/s11242-007-9155-y
http://dx.doi.org/10.1190/1.1451800
http://dx.doi.org/10.1785/BSSA0540010409
http://dx.doi.org/10.1785/BSSA0530040783
http://dx.doi.org/10.1190/1.1441454
http://dx.doi.org/10.1190/1.1443435
http://dx.doi.org/10.1029/2008JB006032
http://dx.doi.org/10.1029/2020JB020320
http://dx.doi.org/10.1093/gji/ggy040
http://dx.doi.org/10.1190/1.1836811
http://dx.doi.org/10.1190/1.3509782
http://dx.doi.org/10.1093/gji/ggy399
http://dx.doi.org/10.1016/j.petsci.2021.09.022
http://dx.doi.org/10.1093/gji/ggab009
http://dx.doi.org/10.1190/1.1443005
http://dx.doi.org/10.1029/JB080i011p01444
http://dx.doi.org/10.1190/1.3463417
http://dx.doi.org/10.1103/PhysRevE.68.036603
http://dx.doi.org/10.1103/PhysRevE.68.036604
http://dx.doi.org/10.1029/2003JB002639
http://dx.doi.org/10.1190/geo2020-0624.1
http://dx.doi.org/10.1121/1.2354464
http://dx.doi.org/10.1190/1.3555082
http://dx.doi.org/10.1121/1.403702
http://dx.doi.org/10.1016/j.advwatres.2013.09.001
http://dx.doi.org/10.1007/s11430-011-4245-7
http://dx.doi.org/10.1190/geo2012-0091.1
http://dx.doi.org/10.1190/1.1441900
http://dx.doi.org/10.1007/s10712-019-09572-6
http://dx.doi.org/10.1111/1365-2478.13038
http://dx.doi.org/10.1190/geo2018-0487.1
http://dx.doi.org/10.1190/geo2014-0307.1
http://dx.doi.org/10.1190/geo2011-0214.1


Seismic reflection in cracked media 1499

A P P E N D I X A : E X P R E S S I O N S O F T H E S T I F F N E S S A N D D E N S I T Y C O E F F I C I E N T S

Following Zhang et al. (2019), the stiffness coefficients in eq. (4) are

λc = (1 − φ) Ks − 2

3
μb +

(
2 − Ks

Kf

)
(φ1α1 M1 + φ2α2 M2) −

(
1 − Ks

Kf

) (
φ2

1 M1 + φ2
2 M2

)
,

α1 = βφ1 Ks

γ Kf
+ φ1, α2 = φ2 Ks

γ Kf
+ φ2,

M1 = Kf

(β/γ + 1) φ1
, M2 = Kf

(1/γ + 1) φ2
,

γ = Ks

Kf

[
βφ1 + φ2

1 − φ − Kb/Ks

]
, β = φ20

φ10

[
1 − (1 − φ10) Ks/Kb1

1 − (1 − φ20) Ks/Kb2

]
, (A1)

where φ = φ1 + φ2 is the total porosity, Ks and Kf are the bulk moduli of the solid and fluid, Kb is the dry-rock modulus, which should be
Biot consistent (Thomsen 1985):

Kb = 2

3

1 + vB

1 − 2vB
μb, (A2)

with μb = μs

(
1 − φ1

1 − bB
− BBε

)
, bB = 2

15

4 − 5vB

1 − vB
and BB = 32

45

(1 − vB)(5 − vB)

2 − vB
, where μs is the grain shear modulus, vB is the

Poisson ratio, and ε is the crack density; Kb1 and Kb2 are the dry-rock bulk moduli of the host medium and inclusions, which can be
determined by

Kb1 = (1 − φ10)Ks

1 + c1φ10
,

f2

Kb2
= 1

Kb
− f1

Kb1
, (A3)

where c1 is the consolidation parameter of the host medium.
In the uniform-porosity case, we have

A = (1 − φ)Ks − 2N/3 − Ks(Q1 + Q2)/Kf , N = μb,

Q1 = α1 M1φ1 − M1φ
2
1 , R1 = M1φ

2
1 ,

Q2 = α2 M2φ2 − M2φ
2
2 , R2 = M2φ

2
2 . (A4)

The five density coefficients ρ ij in eq. (10), defined in the same manner as Biot (1962), are

ρ00 = (1 − φ)ρs − ρf (φ − 1)/2,

ρ11 = (φ1 + f1)ρf/2, ρ22 = (φ2 + f2)ρf/2,

ρ01 = (φ1 − f1)ρf/2, ρ02 = (φ2 − f2)ρf/2.

(A5)

A P P E N D I X B : C O M P O N E N T S O F G A N D e I N E Q. ( 3 9 )

By defining

n1 = λc − α1 M1φ1 − α2 M2φ2 + d1(α1 M1φ1φ2 − α2 M2φ1φ2),
n2 = α1 M1φ1 + d2(α1 M1φ1φ2 − α2 M2φ1φ2),
n3 = α2 M2φ2 + d3(α1 M1φ1φ2 − α2 M2φ1φ2),
h1 = −α1 M1 + M1φ1 − M1φ1φ2d1,

h2 = −M1φ1 − M1φ1φ2d2,

h3 = −M1φ1φ2d3,

g1 = −α2 M2 + M2φ2 + M2φ1φ2d1,

g2 = M2φ1φ2d2,

g3 = −M2φ2 + M2φ1φ2d3,

(B1)

the components of matrix G can be expressed by

G11 = 2μ̄p1q1, G12 = 2μ̄p2q2, G13 = 2μ̄p3q3, G14 = μ̄(p2
4 − q2

4 ),
G15 = 2μp5q5, G16 = 2μp6q6, G17 = 2μp7q7, G18 = −μ(p2

8 − q2
8 ),

(B2)
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G21 = 2μ̄q2
1 + (n̄1 + n̄2ν̄1 + n̄3δ̄1)(p2

1 + q2
1 ),

G22 = 2μ̄q2
2 + (n̄1 + n̄2ν̄2 + n̄3δ̄2)(p2

2 + q2
2 ),

G23 = 2μ̄q2
3 + (n̄1 + n̄2ν̄3 + n̄3δ̄3)(p2

3 + q2
3 ),

G24 = 2μ̄p4q4,

G25 = − [
2μq2

5 + (n1 + n2ν1 + n3δ1)(p2
5 + q2

5 )
]
,

G26 = − [
2μq2

6 + (n1 + n2ν2 + n3δ2)(p2
6 + q2

6 )
]
,

G27 = − [
2μq2

7 + (n1 + n2ν3 + n3δ3)(p2
7 + q2

7 )
]
,

G28 = 2μp8q8,

(B3)

G31 = p1, G32 = p2, G33 = p3, G34 = −q4,

G35 = −p5, G36 = −p6, G37 = −p7, G38 = −q8,
(B4)

G41 = q1, G42 = q2, G43 = q3, G44 = p4,

G45 = q5, G46 = q6, G47 = q7, G48 = −p8,
(B5)

G51 = φ̄1(ν̄1 − 1)q1, G52 = φ̄1(ν̄2 − 1)q2, G53 = φ̄1(ν̄3 − 1)q3, G54 = φ̄1(ν̄4 − 1)p4,

G55 = φ1(ν1 − 1)q5, G56 = φ1(ν2 − 1)q6, G57 = φ1(ν3 − 1)q7, G58 = −φ1(ν4 − 1)p8,
(B6)

G61 = φ̄2(δ̄1 − 1)q1, G62 = φ̄2(δ̄2 − 1)q2, G63 = φ̄2(δ̄3 − 1)q3, G64 = φ̄2(δ̄4 − 1)p4,

G65 = φ2(δ1 − 1)q5, G66 = φ2(δ2 − 1)q6, G67 = φ2(δ3 − 1)q7, G68 = −φ2(δ4 − 1)p8,
(B7)

G71 = (p2
1 + q2

1 )(h̄1 + h̄2ν̄1 + h̄3δ̄1), G72 = (p2
2 + q2

2 )(h̄1 + h̄2ν̄2 + h̄3δ̄2),
G73 = (p2

3 + q2
3 )(h̄1 + h̄2ν̄3 + h̄3δ̄3), G74 = 0,

G75 = − [
(p2

5 + q2
5 )(h1 + h2ν1 + h3δ1) + ZI φ1(ν1 − 1)q5

]
,

G76 = − [
(p2

6 + q2
6 )(h1 + h2ν2 + h3δ2) + ZI φ1(ν2 − 1)q6

]
,

G77 = − [
(p2

7 + q2
7 )(h1 + h2ν3 + h3δ3) + ZI φ1(ν3 − 1)q7

]
,

G78 = ZI φ1(ν4 − 1)p8,

(B8)

G81 = (p2
1 + q2

1 )(ḡ1 + ḡ2ν̄1 + ḡ3δ̄1), G82 = (p2
2 + q2

2 )(ḡ1 + ḡ2ν̄2 + ḡ3δ̄2),
G83 = (p2

3 + q2
3 )(ḡ1 + ḡ2ν̄3 + ḡ3δ̄3), G84 = 0,

G85 = − [
(p2

5 + q2
5 )(g1 + g2ν1 + g3δ1) + ZI φ2(δ1 − 1)q5

]
,

G86 = − [
(p2

6 + q2
6 )(g1 + g2ν2 + g3δ2) + ZI φ2(δ2 − 1)q6

]
,

G87 = − [
(p2

7 + q2
7 )(g1 + g2ν3 + g3δ3) + ZI φ2(δ3 − 1)q7

]
,

G88 = ZI φ2(δ4 − 1)p8,

(B9)

where variables with and without a bar correspond to quantities of the upper and lower half-spaces, respectively.
The components of e are

e1 = 2μ̄p0q0 A(0)
s ,

e2 = − [
2μ̄q2

0 + (n̄1 + n̄2ν̄1 + n̄3δ̄1)(p2
0 + q2

0 )
]

A(0)
s ,

e3 = −p0 A(0)
s ,

e4 = q0 A(0)
s ,

e5 = φ̄1(ν̄1 − 1)q0 A(0)
s ,

e6 = φ̄2(δ̄1 − 1)q0 A(0)
s ,

e7 = −(p2
0 + q2

0 )(h̄1 + h̄2ν̄1 + h̄3δ̄1)A(0)
s ,

e8 = −(p2
0 + q2

0 )(ḡ1 + ḡ2ν̄1 + ḡ3δ̄1)A(0)
s .

(B10)

When ZI is zero, the equations correspond to the open BCs, whereas ZI = ∞ to sealed BCs.

A P P E N D I X C : C O M P O N E N T S O F M A N D c I N E Q. ( 4 7 )

The elements of matrix M are

M11 = 0, M12 = 2p5q5, M13 = 2p6q6, M14 = 2p7q7, M15 = −(p2
8 − q2

8 ), (C1)

M21 = K̄f (p2
0 + q2

0 ), M22 = − [
2μq2

5 + (n1 + n2ν1 + n3δ1)(p2
5 + q2

5 )
]
,

M23 = − [
2μq2

6 + (n1 + n2ν2 + n3δ2)(p2
6 + q2

6 )
]
,

M24 = − [
2μq2

7 + (n1 + n2ν3 + n3δ3)(p2
7 + q2

7 )
]
, M25 = 2μp8q8,

(C2)

M31 = q0, M32 = [1 + φ1(ν1 − 1) + φ2(δ1 − 1)] q5,

M33 = [1 + φ1(ν2 − 1) + φ2(δ2 − 1)] q6,

M34 = [1 + φ1(ν3 − 1) + φ2(δ3 − 1)] q7,

M35 = − [1 + φ1(ν4 − 1) + φ2(δ4 − 1)] p8,

(C3)
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M41 = −K̄f (p2
0 + q2

0 ),
M42 = − [

(p2
5 + q2

5 )(h1 + h2ν1 + h3δ1) + ZI φ1(ν1 − 1)q5

]
,

M43 = − [
(p2

6 + q2
6 )(h1 + h2ν2 + h3δ2) + ZI φ1(ν2 − 1)q6

]
,

M44 = − [
(p2

7 + q2
7 )(h1 + h2ν3 + h3δ3) + ZI φ1(ν3 − 1)q7

]
,

M45 = ZI φ1(ν4 − 1)p8,

(C4)

M51 = −K̄f (p2
0 + q2

0 ),
M52 = − [

(p2
5 + q2

5 )(g1 + g2ν1 + g3δ1) + ZI φ2(δ1 − 1)q5

]
,

M53 = − [
(p2

6 + q2
6 )(g1 + g2ν2 + g3δ2) + ZI φ2(δ2 − 1)q6

]
,

M54 = − [
(p2

7 + q2
7 )(g1 + g2ν3 + g3δ3) + ZI φ2(δ3 − 1)q7

]
,

M55 = ZI φ2(δ4 − 1)p8.

(C5)

The components of c are

c1 = 0,

c2 = −K̄f (p2
0 + q2

0 )A(0)
s ,

c3 = q0 A(0)
s ,

c4 = K̄f (p2
0 + q2

0 )A(0)
s ,

c5 = K̄f (p2
0 + q2

0 )A(0)
s .

(C6)
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