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1. Introduc'on 

This study presents a workflow to automa<cally compute focal mechanisms for new earthquakes 
by integra<ng machine learning-based polarity picking with advanced focal mechanism 
determina<on methods. The approach is applied to events in northeastern Italy, a seismically 
ac<ve region of the Southeastern Alps, where understanding earthquake mechanics and stress 
distribu<on is crucial. 

 
Fig. 1 – Dataset of focal mechanisms for study area. Modified from Sugan et al., (2024). 

The workflow was developed using the earthquake catalogue from 2014 to 2023 (Sugan et al., 
2024), which contains 162 focal mechanisms derived from manually picked polari<es and 
computed using the FPFIT method (Reasenberg and Oppenheimer, 1985). From this catalogue, 101 
events (magnitude range 2.8–3.6) were selected  for the valida<on and tuning of two innova<ve 
tools, the Convolu<onal First Mo<on (CFM) neural network, a deep learning model for automa<c 
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polarity picking (Messu< et al., 2023) and SKHASH, a grid searching tool for focal mechanism 
determina<on that integrates ray tracing, misfit minimiza<on, and polarity uncertainty modeling to 
enhance accuracy  (Skoumal et al., 2024, Hardebeck and Shearer, 2002; 2003).  

2. Method 

The Convolu<onal First Mo<on (CFM) neural network is a robust tool based on Convolu<onal 
Neural Network (CNN) architecture to automa<cally classify first-mo<on polari<es in seismic 
waveforms. By leveraging CNNs, the CFM network can automa<cally extract relevant features from 
seismic waveforms, making it well-suited for tasks like first-mo<on polarity determina<on. Trained 
on a large dataset of over 140,000 seismic waveforms, the CFM network achieved high accuracy 
(97.4% and 96.3%) on two independent test sets (Messu< et al., 2023). The CFM model outputs a 
predic<on score ranging from 0 to 1, where values near 0 indicate downward first mo<ons, and 
values near 1 represent upward first mo<ons. The threshold for classifying polarity as upward or 
downward is flexible and can be adjusted based on the data characteris<cs. Scores in the range of 
0.6-0.4 are considered less reliable, oaen due to inaccuracies in P arrivals picks or the presence of 
very noisy waveforms. The CFM is sensi<ve to the P-wave arrival picking in the input traces. When 
the P-wave is accurately picked, the model performs excep<onally well, delivering precise and 
reliable predic<ons. The CFM network processes a 1.6 second window (160 samples at 100Hz) 
centered on the provided arrival <me, and it is designed to tolerate arrival <me inaccuracies of 
approximately ±0.1 seconds.  It focuses on this ±0.1 second window, where polarity is most likely 
to be accurately detected. Beyond this margin, predic<on reliability decreases significantly. The 
noise level present in seismic data also influences the model’s accuracy. High levels of noise can 
adversely affect predic<on quality, resul<ng in inconsistencies or errors. To mi<gate this, we 
calculated the Signal-to-Noise Ra<o (SNR) for each record to assess the impact of noise on the 
predic<ons.  

Using the automa<cally classified polari<es as inputs, we applied SKHASH to compute focal 
mechanisms. SKHASH is a new grid-search approach based on HASH (Hardebeck and Shearer, 
2002; 2003; Williams, 2014) designed to enhance focal mechanism determina<on for smaller 
earthquakes. It integrates machine-learning detected, and cross-correla<on consensus polari<es, 
as well as tradi<onal and rela<ve S/P ra<o measurements. SKHASH incorporates three-
dimensional uncertainty in hypocentral loca<ons further refining accuracy. Addi<onally, it allows 
custom weigh<ng of polarity measurements (ranging from -1 to 1) to adjust their significance, 
making it highly compa<ble with CFM predic<on results. A key advantage of SKHASH is its ability to 
compute focal mechanisms using data from mul<ple earthquakes to address poor coverage. 
Furthermore, it automa<cally reports misfits for both individual and collec<ve measurements, 
providing a clear assessment of the reliability of the solu<on. 
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3. Analysis and Results 

The CFM neural network was validated for applica<on in the study area against the manually 
assigned polari<es from Magrin et al. (2024) and achieved an 87% agreement. Fig. 2 (a) illustrates 
the predic<on probability distribu<on for all analysed polari<es, highligh<ng the model’s strong 
confidence in most classifica<ons. The majority of polari<es were assigned probabili<es close to 0 
(Down) or 1 (Up), indica<ng high certainty in the predic<ons. Fig. 2 (b) further emphasizes this, 
showing the number of predic<ons in agreement and disagreement with the manually assigned 
polari<es. Notably, both Up and Down polari<es show a substan<al propor<on of correct 
classifica<ons, valida<ng the efficacy of the CFM model in this specific region. 

 

Fig. 2 - Valida<on results of the CFM neural network for first-mo<on polarity classifica<on. (a) Histogram of predic<on 
probabili<es, showing the confidence of the model in assigning polari<es. High confidence is reflected in the peaks 
near probabili<es of 0 and 1. (b) Agreement between the model-assigned polari<es and the manually assigned 
polari<es from Magrin et al. (2024), demonstra<ng 87% consistency. These polari<es were subsequently used for focal 
mechanism computa<on, highligh<ng the reliability of the CFM model for applica<on in the study area. 

The new focal mechanisms computed with our approach showed strong consistency with the FPFIT 
solu<ons from the Magrin et al. (2024) catalogue, demonstra<ng agreement in strike, dip, and rake 
values. Fig. 3 illustrates a comparison for the event on 2014-07-07 06:46:35 (Md 3.0). Slight 
differences were observed in the sta<on distribu<on on the beachball diagrams. These 
discrepancies were akributed to differences in takeoff angle computa<on between the two 
methods.  

Building on this valida<on, we updated the exis<ng focal mechanism catalogue (Saraò et al., 2021; 
Sugan et al., 2024) with 26 new events (magnitude ≥ 2.5) that occurred in 2024 in northeastern 
Italy. The focal mechanisms for these events were computed automa<cally using the CFM-SKHASH 
workflow, demonstra<ng the feasibility of rapid focal mechanism determina<on for small-to-
moderate magnitude earthquakes. 
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Fig. 3 - Comparison of focal mechanism solu<ons for the event on 2014-07-07 06:46:35 Md 3.0. (a) displays the FPFIT 
solu<on from the Magrin et al. (2024) catalogue, while (b) shows the focal mechanism computed using the SKHASH 
method in our study.  

4. Conclusions 

In this study, we focused on tuning and valida<ng an automated workflow for focal mechanism 
computa<on in northeastern Italy. By calibra<ng the CFM neural network and SKHASH algorithm 
for the region, we achieved robust valida<on against exis<ng solu<ons. The workflow was then 
used to compute focal mechanisms for 26 new events, demonstra<ng its poten<al for improving 
regional seismic analysis and cataloging efforts. The results highlight the poten<al of combining 
machine learning with advanced computa<onal tools for seismological applica<ons. The updated 
catalogue provides a valuable resource for understanding the stress distribu<on and fault 
dynamics in northeastern Italy. Furthermore, the rapid processing capabili<es of the workflow 
improve the speed and reliability of focal mechanism computa<ons, par<cularly in seismically 
ac<ve regions with dense seismic monitoring networks. 
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