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A B S T R A C T   

This study provides an assessment of the efficiency of the biofouler Lepas (Lepas) anatifera Linnaeus, 1758 in 
capturing microplastics and microfiber particles floating in the water column. In this context, we collected 
pelagic gooseneck barnacles at fixed moorings in the Capo Milazzo Marine Protected Area (MPA). Fibers and 
fragments were found in the digestive tract of 30% of the 120 specimens collected. The ingested debris were 
mainly fibers (85.9%) of synthetic (30.6%) and natural (11.7%) origin, with length ranging between 1 and 2 mm 
(33.3%) and transparent (47.2%). The highest concentration of fibers was recorded in barnacles collected in the 
western sector of the MPA that is more affected by the input of organic matter coming from several urban 
wastewaters. No correlation was found between the presence of artificial polymers in L. (Lepas) anatifera and the 
size of individuals. The great diversity of fibers and plastic fragments by typology, size, shape and color, as well 
as the large number of bivalve and ostracod shells found in the digestive tract of the samples, confirm the 
opportunistic diet of these organisms, which can indiscriminately ingest any type of prey and cannot distinguish 
between microplastics and food. The results obtained, as well as the wide distribution and abundance, and ease 
of sampling of these barnacle species in macrofouling suggest that including this species in monitoring programs 
could be a cost-effective and easy method for assessing the presence of microplastics and microfibers in coastal 
marine waters to monitor the ecological status of pelagic and coastal ecosystems, including MPAs.   

1. Introduction 

Microplastics include a wide range of particles, <5 mm in size, that 
differ in shape, color and polymer. They can have different origin and 
sources and may result from multiple production processes and 
anthropogenic activities (Lima et al., 2021; Sharma et al., 2021). Many 
of these particles contain additives, which have been added to the 
original natural or synthetic material, to improve their performance and 
prolong their life (Hahladakis et al., 2018). Stabilizing additives, plas-
ticizers, pigments, flame retardants, antioxidants and antimicrobials can 
leach from the plastic material and spread into the environment. For 
these reasons, microplastics, with any associated additive, are consid-
ered as environmental pollutants (Gunaalan et al., 2020; Teuten et al., 
2009) and require a comprehensive risk assessment (Burns and Boxall, 

2018; Gunaalan et al., 2020). The two most common forms of micro-
plastics in the aquatic environment are small fragments (particles) and 
fibers (microfibers) (Barrows et al., 2018). Studies on the presence of 
microplastics in natural environments evidenced that fibers (>5 mm) 
(synthetic and natural) are usually the dominant fraction (Bagaev et al., 
2017; Barrows et al., 2018, Gago et al., 2018; Woods et al., 2018). 

Nowadays, fibers (macro and micro) are considered the most wide-
spread anthropogenic particles in the world’ oceans (Gago et al., 2018), 
but in spite of this, they have received little attention to date due to the 
difficulties to quantify and characterized them or avoid airborne 
contamination leading to an overestimation of the results (Rebelein 
et al., 2021). 

On a global scale, the proportion of plastic fibers and microfibers in 
marine and surface water samples is about 70%; remaining 30% consists 
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of natural fibers (Barrows et al., 2018). In the Mediterranean Sea, an 
important fraction of microfibers (35–72%) is represented by cotton, 
wool or cellulose (Musso et al., 2019; Pedrotti et al., 2020). 

The spatial concentration of synthetic and natural fibers in the sea 
varies according to atmospheric and hydrodynamic conditions (Enders 
et al., 2015; Silvestrova & Stepanova, 2021; Wang et al., 2020). In 
general, higher concentrations are usually found in coastal areas than 
offshore (Desforges et al., 2014; Lusher et al., 2014; Manbohi, et al., 
2021), probably influenced by the presence of urban settlements along 
the coast (Mathalon and Hill, 2014; Zhao et al., 2015). The concentra-
tion of synthetic fibers in the oceans also shows an increasing latitudinal 
gradient from north to south and the Mediterranean appears to be a 
large sink for this form of microplastic (Suaria et al., 2020). Further-
more, Silvestrova & Stepanova (2021) observed that fibers are usually 
concentrated in the subsurface layer, while microplastic particles 
remain concentrated in the surface layer. Conversely, Barrows et al. 
(2017) reported that most of the microplastics in superficial waters 
appear to be microfibers, with a length between 100 µ and 5 mm and a 
width of about 1.5 orders of magnitude lower. 

However, regardless of their spatial distribution, synthetic and nat-
ural fibers have been found in many marine species (vertebrates and 
invertebrates) (Avio et al., 2020; Bour et al., 2020; Collard et al., 2018; 
Compa et al., 2018; Halstead et al., 2018; Horton et al., 2017; Remy 
et al., 2015; Savoca et al., 2019; Silva-Cavalcanti et al., 2017) and this 
raise concern on the potential impacts they may have on animal com-
munities and human health (Cox et al., 2019). 

Thus, considering the ubiquitous presence and distribution and 
wide-ranging effects of microplastics and microfibers on marine or-
ganisms, there is an urgent need to develop long-term monitoring pro-
grams taking into account the different components (water, sediment 
and biota) of the marine ecosystem (Gallo et al., 2018) and, in partic-
ular, by selecting species with large distribution range and high abun-
dances, sessile, easy to sample and tolerant to a wide range of 
environmental conditions (Beyer et al., 2017). 

Barnacle crustaceans, due to their high tolerance to environmental 
stresses, are commonly used in marine pollution monitoring programs in 
coastal areas (Chen et al., 2015; Powell and White, 1990; Rainbow and 
Blackmore, 2001; Xu et al., 2020). In particular, barnacles of the genus 
Lepas (family Lepadidae) have a cosmopolitan distribution and are 
among the most abundant and widespread biofouling organisms glob-
ally (Thiel and Gutow, 2005), accounting for 90% of the biomass of the 
fouling community found on mooring systems (Martin et al., 2020). 
They are organisms that implant themselves on floating objects (Gil and 
Pfaller, 2016) and dominate assemblages over time (Astudillo et al., 
2009; Goldstein et al., 2014), thanks to their greater resistance to pre-
dation due to the presence of hard plates (Iljin et al., 2013). 

These barnacles are omnivorous (Barreiros and Teves, 2005; Mesa-
glio et al., 2021; Setsaas and Bester, 2006), feeding opportunistically on 
neustonic zooplankton, and any other organism in neuston (Bieri, 1966). 

L. (Lepas) anatifera exhibits a coordinated behavior of cirri and 
mouthparts in the capture and ingestion of heterogeneous food of 
various sizes (Gruvel, 1893). Food capture occurs through a synchro-
nous movement between the cirri, which are very active in combing the 
surrounding water, and the peduncle that is very mobile and oscillates in 
all directions. The probability of obtaining food by casual contact with 
organisms is increased as the movement of the cirri results in foraging 
for food towards the mouth. 

L. (Lepas) anatifera not only captures and feeds on large prey but it 
has a heterogeneous diet including crustaceans, polychaetes and mol-
luscs. The feeding pattern can be traced to opportunistic rather than a 
selective behavior (Howard and Scott, 1958). Due to their feeding effi-
ciency combined with their surface position in the water column and 
opportunistic behaviour they can be prone to the ingestion of micro-
plastics and, therefore, they could be considered as suitable species to 
assess the presence and distribution of microplastics and fibers in the 
surrounding waters. Indeed, although the present study does not provide 

data on the concentrations of microplastics in the environment, recent 
studies (Xu et al., 2020; Zhang et al., 2022) on the efficiency of some 
species of barnacles that have the same feeding habits of Lepas anatifera 
have highlighted the role of these species as bioindicators of surface and 
subsurface pollution by microplastics and microfibers. Indeed, thanks to 
their elongated shape, the fibers have the potential to be entangled in 
appendages, gill filaments and within the gastrointestinal system of 
numerous and heterogeneous organisms, and consequently they can 
harm them directly or cause negative physiological effects (Rebelein 
et al., 2021). 

In this study, starting from the opportunistic feeding strategy and the 
subsurface position of L. (Lepas) anatifera, adhered to the several sub-
strates, including buoys, we aim validating the hypothesis that this 
species is able to ingest floating microplastics and microfibers and to 
suggest the use of L. (Lepas) anatifera in assessing the presence of micro 
plastics and micro fibers in coastal marine waters.. 

2. Materials and methods 

2.1. Sampling area 

The study area is the Capo Milazzo MPA located in the north-eastern 
sector of Sicily (Fig. 1). Having been established in 2019, it is the 
youngest MPA established in Italy. 

The promontory of Capo Milazzo extends approximately 6 km 
offshore and, due to its conformation, represents a separating element 
between the Gulf of Patti and the Gulf of Milazzo. Both are highly ur-
banized areas and receive significant contributions from urban and in-
dustrial wastewater due to the presence of an important industrial pole 
in Milazzo, which in 2005 has been declared as a Contaminated Site of 
National Interest (SIN) (D’Agostino et al., 2020). The pressure of plastic 
pollution along the beaches is strong and is often associated with the 
transport of large quantities of waste from rivers during rainfall events. 

2.2. Lepas (Lepas) anatifera sampling 

Between April and May 2021, individuals of L. (Lepas) anatifera were 
sampled at 4 sites within the Capo Milazzo MPA. Sampling was carried 
out on 2 buoys installed in July 2020 for the mooring of diving boats on 
the Secca di Ponente (B1Bs_W) (BS zone - special general reserve) and 
Secca di Levante (B2B_E) (Zone B - general reserve). The two buoys are 
respectively about 0.25 and 0.30 nm from the coast and 0.97 nm be-
tween them. The other 2 sampling buoys, also positioned in July 2020, 
delimit zone A (B3A_W and B4A_E) (integral reserve) and are 0.7 nm and 
0.37 nm respectively from the coast and 0.60 nm between them 
(Table 1). 

Under each buoy, 30 individuals of L. (Lepas) anatifera were 
collected and immediately frozen at − 20◦ C, for a total of 120 in-
dividuals (Fig. 2). 

2.3. Microplastics analysis 

In the laboratory, the length (mm) of capitulum and peduncle of each 
individual were measured, and the stomach and intestinal tracts were 
taken. Then, the Gastro-intestinal tract (GIT) of each individual was 
weighed, opened and placed in glass beakers at 1:3 (w/v) with 10% 
KOH. The solutions were incubated in an oven at 60 ± 5 ◦C for 6 h and 
subsequently left at room temperature overnight. Samples were filtered 
through glass fiber filters (1.6 μm pore size, Whatman GF / A, GE 
Healthcare, UK) using a vacuum pump (Schirinzi et al., 2020). 

The filters obtained from the digestion of the GIT samples were 
examined under a Zeiss Discovery V.8 stereo microscope coupled with 
AxioVision digital image processing software. All particles recovered on 
the filter were photographed, counted and measured (length and width). 
Subsequently, they were classified based on their shape (fibers, frag-
ments, tangled fibers and sheets) and color (Galgani et al., 2013). Fibers 
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with length between 100 µm and 5 mm were classified as “microfibers”, 
all fibers produced by chemical synthesis of petroleum products were 
classified as “synthetic microfibers”, while fibers from natural materials 
not chemically synthesized (cotton, wool, cellulose) were classified as 
“natural microfibers”. A taxonomic identification of organisms with 
shells and valves that did not undergo the digestion process with KOH 
was also performed. 

All procedures were carried out following strict measures to avoid 
airborne contamination of the samples and using filter papers in Petri 
dishes exposed to the laboratory air, as control blanks during analysis 
(Giani et al., 2019; Lusher et al., 2017; Manbohi et al., 2021; Xu et al., 
2020). 

Fourier transform infrared (FTIR) spectroscopy technique was used 
to identify polymers nature in L. anatifera samples using a Cary 630 FTIR 
Spectrometer (Agilent) and analyzed using the software Micro Lab FTIR 
(Agilent). Only spectra with a percentage of matching with the spectra in 
the library > 80% were considered in the analysis, 

Pearson’s test was applied to evaluate possible correlations between 
the morphological data of the crustacean’s and the fiber length. In 
addition, the recorded fragments ingestion density was calculated for 
each sampling area (R version 4.0.4 packages PerformanceAnalytics, 
ggplot2; hrbrthemes; dplyr; tidyr; viridis). 

3. Results 

Thirty-six out of a total of 120 individuals analysed (30%) have fibers 
and fragments within the digestive tract (Table 2). 

In only one individual, fibers were attached to the cirri (Fig. 3). 
The highest recovery percentages were found in L. (Lepas) anatifera 

collected in stations B4A_E and B1Bs_W (60%), followed by that in 
B3A_W (46%) and B2B_E (43.3%). 7.4% (8 ind.) had more than one fiber 
type and 18.5% (20 ind.) ingested more than one fiber. The highest 
density of organisms that ingested multiple fibers was recorded at sta-
tion B1Bs_W, while the highest density of organisms that did not ingest 
fibers was found in station B2B_E (Fig. 4). 

Overall, plastic particles were found within the GIT of L. anatifera in 
two different shapes: fibers (85.9%) and fragments (14.1%). In four 
specimens, the fibers were twisted to form a tangle (3.3% of specimens) 
(Fig. 5). 

Due to their small size, 57.7% of the extracted fibers were indeter-
minate, as they did not show an identifiable spectrum. Regarding the 
other microfibers, Fig. 6 shows their qualitative composition obtained 
by FTIR analysis: 30.6% synthetic fibers (Polyamide, Nylon, Polyvinyl 
chloride, Polyethylene) and 11.7% natural fibers (cellulose and cotton) 
(Fig. 6). The predominant colour is transparent (47.2%) followed by 
blue (25%) and white (9.26%) (Fig. 6). The fibers appear isolated and 

Fig. 1. Study area. The red dots represent the sampling sites and green polygons the different protection zones (A, B, C) of the Capo Milazzo MPA. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Sampling sites of L. (Lepas) anatifera and level of protection of the area.  

Protection level Area A Latitude Longitude 

Integral reserve (Zone A) B3A_W 38,2768583333 
N 

15,2176666667 
E 

Integral reserve (Zone A) B4A_E 38,2768277778 
N 

15,2326305556 
E 

Special general reserve (Zone 
Bs) 

B1Bs_W 38,2743610422 
N 

15,2226331199 
E 

General reserve (Zone B) B2B_E 38,2751525914 
N 

15,2435842183 
E  
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only in one case intertwined. 
Regarding the size of the particles, overall, the main percent abun-

dance of fibers ranged between ≥ 1 and < 2 mm (33.3 %), followed by 
fibers comprised between 0 and 1 mm (29.6%) and ≥ 2 and < 3 mm. 
Only 1.9% of the identified fibers were bigger than 5 mm. No significant 
correlations were found between the length of the fragments in the GIT 
of L. (Lepas) anatifera and the morphological parameters of the exam-
ined organisms (Fig. 7). Average number of polymers and natural fibers 
was 1.74 ± 0.80 items/individual. 

Other than the plastic particles, the qualitative analysis on the 

undigested material has shown that Lepas anatifera can access hetero-
geneous food resources. In the study area, indeed, the availability of 
food is high and the diet of the individuals examined consists mainly of 
Ostracoda, and larval shell of pelagic mollusc Oxygyrus sp. (fam. 
Atlantidae) and Creseis spp. (fam. Creseidae) (Fig. 8). 

4. Discussion 

Sessile organisms such as L. (Lepas) anatifera are the most common 
component of marine fouling. Their life as “suspension feeders” leads 
them to consume a wide variety of suspended food particles, including 
small zooplancton (Ye & Andrady 1991, Tsikhon-Lukanina et al., 2001), 
and their survival is linked to physical (light, temperature) and biolog-
ical (food availability) processes (Inatsuchi et al., 2010). The present 
study, carried out on L. (Lepas) anatifera sampled on a fixed mooring 
system, provides a precise estimate of the efficiency of these biofoulers 
in capturing microplastic particles and microfibers floating in the water 
column. Considering that the buoys were positioned in July 2020, it is 
possible to state that the individuals sampled come from larvae that 
settled immediately after the buoys were installed and therefore the 
maximum age for larger individuals is<1 year since the sampling was 
performed in April and May 2021. 

Within the Capo Milazzo MPA, L. (Lepas) anatifera is only observed 
under the buoys in areas exposed to strong currents in the northern 
sector of the promontory bordering the Gulf of Patti. The presence of 
microfibers in the 30% of the total 120 individuals examined coincides 
with other surveys of L. (Lepas) anatifera and L. pacifica in the north 
Pacific area, where 33.5% of individuals ingested microplastic (Gold-
stein and Goodwin, 2013). 

Our results revealed that in the four sampling sites the greater con-
centration of fibres in L. (Lepas) anatifera is recorded in the western 
sector of the MPA (B1Bs, B3A_W), while L. (Lepas) anatifera in the 
eastern sector seems to be less impacted by the presence of micro fibers 
and / or fragments. The western sector of the area, due to the hydro-
logical conditions, is more exposed to the contribution of organic matter 
coming from the several urban wastewaters of the adjacent Gulf of Patti, 
which could be among the most responsible for the presence of fibers, 
microfibres and microplastics in the water column. 

However, there is little information on the presence of microplastics 
in the waters of the study area. A study, conducted by Savoca et al 
(2020) in the nearby Gulf of Patti, reported the presence of microplastics 
and artificial microfibers in the gastrointestinal tract of late larval and 
juvenile stages of clupeid fishes Sardina pilchardus (0.53 items/sample) 
and Engraulis encrasicolus (0.26 items/sample). According to our results, 

Fig. 2. L. (Lepas) anatifera attached to one of the sampling buoy.  

Table 2 
Percentage of fibers/fragments found in L. (Lepas) anatifera.   

number % 

Tot individuals 120  
Ind. with micro fibers/fragment 36  30.0 
Ind without fibers 84  70.0 
Synthetic fibers 34  30.6 
Tot fibers 111  
Indeterminate fibers 64  57.7 
Number of natural fibers 13  11.7 
Individuals who have ingested multiple types of fiber 8  6.7 
Individuals who have ingested more than 1 fiber 20  16.7  

Fig. 3. Fibers attached to the cirri of an individual of L. (Lepas) anatifera.  
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these concentrations are lower than that observed in the GIT of Lepas 
anatifera. However, the typology of polymers found in our study seems 
to match with those recorded by Savoca et al. (2020): polyester, poly-
propylene, polyacrylonitrile, polyethylene, polyamide, nylon, rayon, 
and polyurethane. Moreover, in the same area Savoca et al. (2019) re-
ported the presence of artificial cellulose microfibres also in 19 

individuals out of a sample of 30 individuals (63.3%) of another fish 
species, Boops boops, and for a total of 80 fibres. These differences could 
be due to both the high volume of tourists and the presence of numerous 
streams that exist on the Gullf of Patti and are capable of discharging 
large amounts of debris into the sea, including possibly plastics and land 
waste, especially during flash floods (Savoca et al., 2019; Pierdomenico 

Fig. 4. Comparation of anthopogenic particles densities found in each sampling area.  

Fig. 5. Examples of extracted MPs (fragments and fibers),  
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et al., 2022). 
In addition, due to their position along the air-sea and subsurface 

interface, barnacles are likely to encounter floating microplastics more 
frequently than pelagic and mesopelagic fish which usually perform 
vertical migrations along the water column. In addition, the mean 
numbers of plastics recorded in our study is greater than those observed 
in L. anatifera in Galapagos Island (0.71 ± 0.29) (Jones et al., 2021) and 
barnacles Balanus glandula (1.2 ± 1.9) in British Columbia, Canada 
(Davies et al., 2021). 

Most of the microfibers identified during the present study, due to 

their size, were found to be below the detection limit of the FT-IR 
Spectrometer used during the analyses. 

However, the wide variety, by type, shape and color, of fibers and 
plastic fragments that we found in individuals of L. (Lepas) anatifera 
together with the high abundances of mollusc and ostracod shells, 
confirm the non-food selectivity of these organisms. Lepas anatifera can 
indifferently capture any type of prey (Goldstein and Goodwin, 2013) 
and therefore are unable to differentiate between microplastics and 
prey. For this reason, it is necessary to encourage studies on the habits of 
many invertebrates in capturing microplastics and fibers in natural 

Fig. 6. Composition of polymers and natural fibers (right) and percentage of colour typology of fragments (left) found in L. (Lepas) anatifera GIT.  

Fig. 7. Pearson correlation matrix plot of morphological parameters (stomach. weight, capitulum and pedunculum length) and length of fragments. Bold data 
represent P < 0.05; *, P < 0.01; **, P < 0.001; ***. 

Fig. 8. Prey found in GITs of L. (Lepas) anatifera: a) Larval shell of pelagic molluscs Creseis sp., b) Ostracoda.  
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conditions and not only under controlled conditions and to better un-
derstand the role of biological interactions within the community in 
sequestering the fraction of microplastics present in the oceans and to 
determine the levels of contamination to which they are subject. 

However, as highlighted by several authors, the toxicological effects 
and the implications on fitness of exposure to microplastics are more 
consistent in all those animals that occupy the lowest trophic levels. 
Filter-feeding crustaceans, such as copepoda, amphipoda and cirripeda 
are more exposed to the consumption of microplastics and micro-fibers 
(Foley et al., 2018; Setälä et al., 2016; Walkinshaw et al., 2020). 

5. Conclusion 

Few studies have been conducted on microplastics in barnacles, but 
the results are suggesting the ability of these organisms to ingest 
microplastics (Zhang et al., 2021). According to current research results, 
uptake of microplastics by barnacles is ubiquitous, and the degree of 
pollution of the habitat is the main influencing factors (Gajahin et al., 
2017; Xu et al., 2020). This relationship has already been highlighted in 
other studies, in Mediterranean and extra-Mediterranean contexts who 
results highlighter as synthetic fibers are more present along the coasts, 
on a global scale, with higher concentrations in densely populated areas 
and where there are urban treated wastewaters (Browne et al., 2011; 
Henry et al., 2019; Pedrotti et al., 2020). 

Furthermore, belonging to different ecotypes seems to determine the 
mechanism of microplastics accumulation in barnacles (Xu et al., 2020). 
Among barnacles, L. anatifera is the one that ingests the largest di-
mensions of microplastics and microfibres (Goldstein, 2013). Probably 
due to its larger body size or feeding strategy, but this aspect needs 
further confirmation. 

However, the retention and egestion times of ingested microplastics 
and microfibers in barnacles are not known and we are not able to 
directly compare the concentrations of microplastics in the surface 
waters in which the L. anatifera samples were collected. Our finding 
evidenced that L. (Lepas) anatifera, and barnacles in general, thanks to 
its opportunist feeding behaviour and the consequent ingestion of 
microplastic particles, to its abundance in macrofouling assemblages, 
wide distribution and to the ease of sampling, should be used in the 
assessment of the ecological status of pelagic and coastal ecosystems as 
already pointed out also in other areas of the world (Xu et al., 2020). It is 
therefore necessary to work to provide data to select the most suitable 
organisms for monitoring the presence of microplastics, emphasizing 
that most living organisms, both vertebrates and invertebrates, come 
into contact, directly or indirectly, with these particles which can cause 
harmful effects throughout the food chain. 
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