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S U M M A R Y 

Shor t-ter m ear thquake clustering is one of the most essential features of seismicity. Clusters 
are identified using v arious techniques, generall y deterministic and based on spatiotemporal 
windo wing. Con versely, the leading approach in shor t-ter m ear thquake forecasting has a 
probabilistic view of clustering, usually based on the epidemic type aftershock sequence 
(ETAS) models. The ef fecti veness of the deterministic techniques and whether or not to prefer 
a probabilistic approach is often debated in the literature: sharp cutoffs or randomness degree? 
In this study, we contribute to the debate by “measuring” (inferring) seismic clusters, identified 

b y two dif ferent deterministic window-based techniques, in terms of the ETAS probabilities 
associated with any event in the clusters, to investigate the consistency between deterministic 
and probabilistic approaches. Inference is performed by considering, for each event in an 

identified cluster, the corresponding probability of being independent and the expected number 
of triggered events according to ETAS. Results show no substantial differences between 

the two deterministic cluster identification procedures, and an ov erall consistenc y between 

the identified clusters and the relative events’ ETAS probabilities. A consistency between 

probabilistic and deterministic declustering approaches is also important for seismic hazard 

analyses, where the latter approach is routinely used for its simplicity. 

Ke y words: Statistical methods; Earthquak e dynamics; Earthquak e interaction, forecasting, 
and prediction. 
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 I N T RO D U C T I O N  

he epidemic type aftershock sequence (ETAS) model represents
 benchmark in statistical seismology, very often used to forecast
arthquake sequences at various spatiotemporal scales (Ogata 1998 ;
onsole & Murru 2001 ; Console et al. 2003 , 2007 ; Lombardi &
arzocchi 2010 ; Omi et al. 2014 ). It is a branching, self-exciting
awkes process, according to which any seismic event may gener-

te its own aftershocks independently of the other events and the
ackground (“spontaneous”, independent) ones. The ETAS model
s based on four simple constitutive laws, that is, (i) the Omori–Utsu
or the aftershocks’ temporal decay, (ii) a spatial distribution usu-
lly of Gaussian type, (iii) the exponential Gutenberg–Richter law
or the events’ frequency magnitudes, and (iv) the productivity law
or the expected number of aftershocks generated by an event with
 given magnitude (Omori 1895 ; Gutenberg & Richter 1944 ; Utsu
957 ; Ogata 1988 , 1998 ; Zhuang et al. 2002 ). This model specifi-
ally provides the conditional intensity function, which completely
epresents the point process of earthquakes occurrences in a fixed
pace–time–magnitude domain. 
C © The Author(s) 2024. Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License (
permits unrestricted reuse, distribution, and reproduction in any medium, provided
One key strengths of ETAS relies on its capability to account for
he main characteristic of seismicity, that is, events’ clustering in
pace and time. Due to its probabilistic nature, the ETAS model is
ften used to decluster an earthquake catalogue through a stochas-
ic approach. Ho wever , it is important to stress that a stochastic
eclustered catalogue is not unique, as it depends on the random
umbers used to identify the events that constitute the background
omponent of seismicity (Zhuang et al. 2002 ). Indeed, precisely
ecause of its probabilistic nature, selecting a specific probability
hreshold to identify clusters using ETAS leads to a distortion of
he hypothesis upon which this model is built. Instead, the clus-
er identification procedures typically adopted in the literature rest
n deterministic window-based methods, according to which some
onstitutive equations are selected to set up the spatiotemporal ex-
ent of any cluster. Several different window-based methods have
een proposed in the literature, mainly differing on the specific set
f equations adopted (e.g. Gardner & Knopoff 1974 ; Keilis-Borok
t al. 1980 ; Uhrhammer 1986 ; Zaliapin et al. 2008 ; van Stiphout
t al. 2012 ). 
oyal Astronomical Society. This is an Open Access 
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Recent studies hav e inv estigated some classification similarities 
and differences between different clustering determination tech- 
niques, including both the stochastic earthquake declustering (SD) 
(Zhuang et al. 2002 ) and other window-based clustering methods 
like the nearest-neighbour (NN) approach (Zaliapin & Ben-Zion 
2013 ). Spatiotemporal statistical measures and tools from network 
analysis are used by Varini et al. ( 2020 ) to prove that SD and NN 

produce similar partitions of the seismic catalogue into background 
events and earthquake clusters, but their topological structure could 
be dif ferent, especiall y in terms of complexity. Dif ferent declus- 
tering algorithms are performed and compared to investigate the 
spatiotemporal features of background seismicity in several cat- 
alogues worldwide, like for example in Benali et al. ( 2023 ) and 
Nas et al. ( 2019 ), where Monte Carlo simulations and tests are ap- 
plied to show that, both SD and a modification of the method by 
Uhrhammer ( 1986 ), perform better than other methods to remove 
time clustering structures in Northern Algeria (Benali et al. 2023 ) 
and Turkey (Nas et al. 2019 ). A Markov Chain Monte Carlo mixture 
model is instead implemented in Bayliss et al. ( 2019 ) to create a 
new probabilistic approach to categorizing nearest neighbour event 
pairs aimed at constructing distinct seismic clusters, whose nature 
is then examined. A new probabilistic measure of clustering is fi- 
nall y proposed b y Talbi et al. ( 2013 ) to rate different declustering 
algorithms according to their reference background model, to make 
possible comparing approaches based on different hypotheses and 
modelling. In practice, all these studies compare sets of clusters 
identified by deterministic and probabilistic techniques: the cluster- 
ing structure is first identified by means of the different approaches, 
then the comparison is performed. 

In this work, we do not set a probabilistic threshold to construct 
clusters stochastically. Unlike the papers above, we specifically 
detach ETAS from clustering identification. Instead, we compare 
the independence probability and expected number of descendants 
(aftershocks), that the ETAS model associates with an y e vent in 
the seismic catalogue, to the clustering structure into which these 
e vents are deterministicall y (with probability 1) organized. In other 
words, we first identify clusters by applying only window-based 
techniques. Then, we develop an automatic approach based on two 
simple checks to assess whether the probabilities of each event being 
independent or triggered according to the ETAS model coherently 
reflect the structure of the identified clusters. We aim to interpret 
the deterministic results from a probabilistic perspective, providing 
new insights into the effectiveness of window-based techniques and 
determining whether a probabilistic method might be preferable. 

It is worth mentioning that window-based models construct clus- 
ters starting from a strong e vent, usuall y named the “mainshock”, 
and they occasionally merge more clusters. In contrast, in the ETAS 

model, events are not labelled as “mainshocks, aftershocks or fore- 
shocks”. ETAS just assigns to every event a probability of being 
background (independent) or triggered (dependent). Also in light 
of this difference, it is interesting to investigate whether and how 

the window-based clustering structure complies with the events’ 
independence ETAS probabilities. 

The specific formulation of the ETAS rate density we consider 
in this paper is given in Section 3 (see also Console et al. 2010 ). 
To (deterministically) identify clusters, we use instead a specific 
module of the software NESTOREv1.0 (Gentili et al. 2023 ), which 
allows the user to define the spatiotemporal laws describing the 
clusters’ extent. As we will explain in Section 4.1 , we will consider 
here the sets of laws by Gardner & Knopoff ( 1974 ), mostly used in 
the literature, and those by Uhrhammer ( 1986 ) and Lolli & Gasperini 
( 2003 ), like in Gentili & Di Giovambattista ( 2017 ). As we will see, 
these two models will lead to similar results and will both be better 
at identifying dependent events than independent ones. 

Eventually, window-based declustering algorithms are routinely 
used in probabilistic seismic hazard analysis (PSHA), because of 
their straightforward applications also in the case of historical seis- 
mic catalogues, where the completeness is not uniform with time 
and space. In such catalogues, the more sophisticated declustering 
methods based on ETAS are hardl y applicable. Howe ver, Mizrahi 
et al. ( 2021 ) clearly show that window-based declustering algo- 
rithms lead to a biased estimation of the Gutenberg–Richter b -value 
parameter (Gutenberg & Richter 1944 ), a fundamental parameter 
for PSHA. This bias does not exist if the seismic catalogue is declus- 
tered with a stochastic approach. An ef fecti ve solution to this prob- 
lem is to use the window-based declustered catalogue for the spatial 
estimation of the seismicity, and the complete (i.e. not declustered) 
catalogue for the b -value estimation (Marzocchi & Taroni 2014 ). 
A consistency between probabilistic and deterministic declustering 
approaches will then better justify this practical solution, suggested 
by Marzocchi & Taroni ( 2014 ) and applied in some recent PSHA 

studies (e.g. the national PSHA model for New Zealand, Gersten- 
berger et al. 2023 ). 

2  T H E  E A RT H Q UA K E  C ATA L O G U E  

The earthquake catalogue we consider in this study is ISIDe (Ital- 
ian Seismological Instrumental and Parametric Data-Base, http: 
//terremoti.ingv.it/ISIDe ) including data from 2005 April 18 to 2021 
April 30 over the entire Italian territory and some neighboring areas 
covered by the Italian seismic network (see panel a) of Fig. S1 in the 
Supplemental Material. The minimum and maximum magnitudes 
in the catalogue are ML 0.9 and ML 6.1, respecti vel y. The com- 
pleteness threshold estimated for this catalo gue b y Zhuang et al. 
( 2019 ) is ML 2.9; the incremental and cumulative magnitude dis- 
tributions are given in Fig. 1 ; in the Supplemental Material we also 
include a more detailed analysis to justify the choice of this thresh- 
old by means of the Lilliefors test (see panels b and c of Fig. S1 , 
Suppor ting Infor mation; Marzocchi et al. 2020 ; Herrmann & Mar- 
zocchi 2021 ). We count 5084 events in the ISIDe catalogue above 
the completeness magnitude, which we name “I-events” hereafter. 

3  T H E  S PAT I O T E M P O R A L  E TA S  M O D E L  

The ETAS model we adopt to perform our analysis can be repre- 
sented by a conditional intensity function in the form: 

λ( t, x, y, m | H t ) = f r λ0 ( x , y , m ) + 

∑ 

{ k: t k <t} 
H ( t − t k ) λk ( t, x , y , m ) , 

where 

λk ( t, x, y, m ) = κ( m k ) g( t − t k ) f ( x − x k , y − y k | m k ) f ( m | m k ) 

is the kernel function for the triggered seismicity, λ0 ( x , y , m ) is 
the background intensity function assumed to be independent of 
time, f r is the fraction of spontaneous over the total number of 
events (failure rate), H ( ·) is the step function, and g( t) , f ( x , y | m k )
and f ( m | m k ) are the response functions (i.e. probability density 
functions), respecti vel y for the occurrence time, spatial location 
and magnitude of events triggered by an ancestor (parent event) 
with magnitude m k . 

The magnitude distribution for background events is independent 
of location and identical to that of their offspring (Zhuang et al. 
2002 ). Under these conditions, the model’s conditional intensity 

http://terremoti.ingv.it/ISIDe
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae425#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae425#supplementary-data
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Figure 1. Incremental (triangles) and cumulative (circles) magnitude distributions of the events in the ISIDe earthquake catalogue considered in this study 
(time window: 2005 April 18 – 2021 April 30). The completeness magnitude ML 2.9 and the minimum magnitude for a mainshock to generate a cluster ML 

4.0 are also represented as continuous and dashed black lines, respecti vel y. 
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unction can be decomposed as 

( t, x, y, m | H t ) = f ( m ) λ( t, x, y| H t ) , 

here 

( t, x, y| H t ) = f r λ0 ( x , y ) + 

∑ 

{ k: t k <t} 
H ( t − t k ) κ( m k ) g( t − t k ) 

f ( x − x k , y − y k | m k ) . 

The fact that the k-th event excites a non-stationary Poisson pro-
ess with intensity κ( m k ) g( t − t k ) f ( x − x k , y − y k | m k ) indicates
hat κ( m k ) represents the expected number of aftershocks (descen-
ants) generated by an ancestor with magnitude m k . In our specific
ase, the spatiotemporal 

kernel function for the triggered seismicity is explicitly given by

K 

[
d 2 i 

( x − x i ) 2 + ( y − y i ) 2 + d 2 i 

]q 

( t − t i + c) −p , 

here d i = d 0 10 α( m i −m 0 ) / 2 and ( K , d 0 , q, c, p, α) are free, positive
arameters typically estimated through the maximum likelihood
stimation (MLE) technique. 

In order to assess the consistency between the deterministically
etermined clusters and the ETAS stochastic measures (Console &
urru 2001 ; Console et al. 2003 ), we will associate to any I-event

oth the corresponding ETAS probability of being independent, and
he number of descendants expected by the ETAS model. The first
uantity is obtained as the ratio between the rate density of the
a

ackground events and the total rate density (Zhuang et al. 2002 );
he second quantity is instead simply the e xpected av erage number
f triggered shocks per each event. More precisely, let us assume
hat the seismic events are chronologically numbered from 1 to N .
he probability that event j is triggered b y e vent i can be estimated
aturally as the relative contribution of event i to the 

occurrence rate at the time and location of event j : 

i j = 

κ( m i ) g( t j − t i ) f ( x j − x i , y j − y i | m i ) 

λ( t j , x j , y j , m j ) 
. 

The probability for the event j to be an offspring is then

j = 

∑ j−1 
i= 1 ρi j . Similarly, the probability for this event j being

 background is 

j = 1 − ρ j = 

f r λ0 ( x j , y j ) 

λ( t j , x j , y j ) 
. 

The expected number of descendants (aftershocks) of a parent
vent is finally computed by summing the expected rate of after-
hocks it produces, over all the previous events in the catalogue.
his is expressed by the function 

 j = 

j−1 ∑ 

k= 1 
κ( m k ) g( t j − t k ) f ( x j − x k , y j − y k | m k ) , 

here m k is the magnitude of the parent event. The number of
escendant events can be zero if the parent event is not followed
 y an y aftershocks, emphasizing the importance of both the theo-
etical model and the observed seismic behaviour in determining
ftershock productivity. 

art/ggae425_f1.eps
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To explicitly obtain these stochastic measures, we use the al- 
gorithms de veloped b y Console et al. ( 2010 ) with the parame- 
ters estimated by means of the MLE technique, which is per- 
formed over the entire earthquake catalogue considered here 
(see Section 2 ). The parameter values found in the last it- 
eration are ( f r , K , d 0 , q, c, p, α) = (0 . 25 , 0 . 12 , 1 . 18 , 1 . 89 , 5 . 7 E-
03 , 1 . 09 , 0 . 54) . The choice of not considering space–time varying 
parameters is to be coherent with the window-based methods, for 
which we use fixed equations for the entire territory, as we will 
explain in Section 4.1 . 

4  C LU S T E R  I D E N T I F I C AT I O N  

M E T H O D S  

Most window-based cluster identification methods have a similar 
algorithm. They start from an equation defining the spatiotemporal 
triggering area for the mainshock, set a minimum threshold for the 
mainshock magnitude and define the cluster of a mainshock m i as 
“the set of all the earthquakes after m i within its triggering area”. If 
the cluster of a given mainshock contains a larger earthquake m j , 
the clusters of m i and m j are merged, m j becomes the cluster’s 
mainshock and the events before m j become foreshocks. The space 
window is a circular area around the mainshock, and the radius of 
the circle depends on the cluster identification method: different 
equations may be applied also depending on the seismotectonic of 
the region; both the radius and the time window are generally a 
function of the mainshock magnitude (van Stiphout et al. 2012 ). 

4.1 The two approaches used to identify clusters 

Here, we perform cluster identification by using a module imple- 
mented in the package NESTOREv1.0 (Gentili et al. 2023 ). This 
package allows us to detect clusters of seismicity by choosing the 
equations that define the space and time triggering area. In addition, 
it selects as foreshocks all the events before the mainshock within 
a radius arbitrarily set to 1.5 the radius of the mainshock, and a 
time window of 1 month. How ever, w e will not take into account 
the foreshocks, to av oid possib le multiple assignments of the same 
events to clusters close in space and time. For clarity, we stress that 
a cluster must contain at least two events. The two specific sets 
of equations we use to identify clusters are those by Uhrhammer 
( 1986 ) – Lolli & Gasperini ( 2003 ) and by Gardner & Knopoff ( 1974 ) 
(respecti vel y, “ULG-clusters” and “GK-clusters” hereafter; explicit 
formulas are given in Appendix A and graphed in Fig. S2 of the 
Supplemental Material). We will also set the threshold M m 

= 4 . 0 
as the minimum magnitude for a mainshock to generate its cluster. 
This specific choice is because, in Italy, there is a high percentage 
of background (i.e. random) events, and in the case of mainshocks 
smaller than 4.0, the window-based methods more likely fail to 
assign seismicity induced by the redistributed stress, that is the 
“true” aftershocks; they assign instead the events that occur there 
by chance. 

4.2 Identification of ULG- and GK-clusters and their 
inference in terms of the ETAS independence probability 

4.2.1 ULG-case 

Implementing the ULG method in NESTOREv1.0 allowed us to 
identify 79 clusters above the completeness magnitude ML 2.9 
(hereafter, ULG-clusters), with a minimum threshold for mainshock 
magnitude equal to 4.0. The number of e vents reco gnized as belong- 
ing to one of these clusters is 2516; since the cardinality (i.e. the 
total number of events) of the ISIDe catalogue is 5084, this means 
that there are 2568 “single” events, not associated with any ULG- 
cluster. Table S1 of the Supplemental Material lists some metrics 
of the ULG-clusters with the strongest magnitude ML 4.5 + (22 in 
total), such as the number of events and the first, last and strongest 
shocks involved. An interesting fact to point out is that there are 
some cases of temporal overlapping. For the sake of conciseness, the 
metrics of the remaining clusters are not reported, as these are con- 
sidered less informative. In Fig. S3 of the Supplemental Material, 
we finally show all the ULG-clusters in different colours. 

The 2568 I-events that do not belong to any ULG-cluster (here- 
after, “unclustered-ULG”) are mapped in panel (a) of Fig. 2 , where 
they are coloured according to their independence ETAS probability. 
This makes it possible to compare individual events deterministi- 
cally identified as being independent (unclustered) with their prob- 
ability of being independent as an output of the best-fitting ETAS 

model. Panels (c) and (e) in the same figure concern instead the 
2516 clustered events and all the 5084 events together, respectively. 
Clustered events are much more gathered than the unclustered-ULG 

ones. 
The inset in panel a) of Fig. 2 shows the histogram of the indepen- 

dence probabilities associated with the events in no ULG-cluster, 
with (arbitrary) 0.1-bin length. The pre v alence of unclustered-ULG 

ev ents are observ ed in the bins [0 , 0 . 1] and (0 . 9 , 1] , precisely
76 per cent of the total number, highlighting such events to have 
either a very high or a very low probability of being independent. 
Since we are focusing on the events not assigned to any ULG-cluster, 
the high bar of the histogram at the bin (0 . 9 , 1] is not a surprise.
As regards the “very likely triggered” unclustered-ULG events, i.e., 
those with probability < 0 . 1 , they are even a little more in number. 
Indeed, this group likely includes the events triggered by the fore- 
shocks we excluded in the clustering identification procedure (see 
Subsection 4.1 ). Therefore, they are labeled as “non-independent”
by ETAS, but there is no cluster’s mainshock to which they are as- 
signed. The great majority (97.4 per cent) of clustered events even- 
tually have a very low probability of being independent ( < 0 . 1) , 
with the exception of a few of them reasonably representing the 
clusters’ mainshocks. This is shown in panel c) of Fig. 2 and in the 
histogram of the relative inset. 

The results just discussed are confirmed when considering a 
smaller bin-length, and are corroborated by the maps in top and 
middle panels of Fig. 3 , where we plot separately the events with in- 
dependence probability ≤ 0 . 1 , ≤ 0 . 9 & > 0 . 1 , > 0 . 9 (respecti vel y
in left, middle and right panels; blue color for the ULG case). In 
Fig. 3 we also indicate the relati ve percentages, to gether with the 
number of events considered and the sums of their expected de- 
scendants and independence ETAS probabilities. These quantities 
are summarized in Table S2 of the Supplemental Material. The inset 
in panel (e) of Fig. 2 and the bottom panels in Fig. 3 show the same 
results relative to all the events in the ISIDe catalogue. 

4.2.2 GK-case 

The GK-clusters identified by implementing the NESTOREv1.0 
software with eqs ( A2 ) of Appendix A are 82 in total. Their plot 
is given in Fig. S4 of the Supplemental Material. Again, we are 
considering the completeness magnitude ML 2.9 and the minimum 

threshold for mainshock magnitude equal to 4.0. In Table S3 of the 
Supplemental Material we also report some metrics relative to the 

https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae425#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae425#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae425#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae425#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae425#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae425#supplementary-data
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Figure 2. Seismic maps of the ISIDe events colored according to their independence ETAS probability. Top, middle and bottom panels contain the events that 
do not belong to any cluster, that belong to some clusters, and all the events together, respectively. The left (right) panels concern the ULG- (GK-) case. In the 
insets, the corresponding histograms relative to the ETAS independence probabilities associated with the events are shown. 
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lusters with the strongest magnitude ML 4.5 + (not smaller, for
onciseness), such as the number of events and the first, last and
trongest shocks. Like in the ULG-case, we count a total of 22 of
hese clusters, some of them do overlapping in time. 

The total number of clustered events is 2653. Recalling that
he cardinality of the ISIDe catalog is 5084, we deduce that there
re 2431 “single” events not associated with any GK-cluster (i.e.
unclustered-GK e vents”). These e vents are either “very likely in-
ependent” or “very likely triggered”, indeed 76.3 per cent of the
nclustered-GK ev ents hav e independence probability in the inter-
als [0 , 0 . 1] or (0 . 9 , 1] . This can be observed by looking at panel
b) of Fig. 2 , where dots are mainly yellow or dark blue, at the
istogram of the relative inset, and the red dots in the top panels of
ig. 3 . Panel (d) of Fig. 2 , and the middle panels of Fig. 3 , show

nstead that almost all the GK-clusterd events are “very likely trig-
ered” (95.6 per cent). Besides the percentages, in Fig. 3 we also
eport the number of events considered and the sums of the expected
escendants and independence ETAS probabilities. These statistics
re finally summarized in Table S2 of the Supplemental Material. 

.2.3 ULG versus GK 

 indo w-based methods (ULG and GK) agree well with the prob-
bilities of clustered events being triggered in the ETAS model, in
act, most of the data in any cluster have independence probability
 0 . 1 . Vice-versa, if we consider events not in clusters according
o ULG and GK, the methods’ response does not agree well, be-
ause ∼1/3 of them still has an independence probability < 0 . 1 .
his result may suggest that the deterministic declustering methods
re better at identifying triggered events than independent ones,
ith a high residual proportion of events being labeled independent

ikely to be triggered. An additional analysis on the spatiotemporal
ocation of the unclustered-ULG and unclustered-GK events with
ndependence probability in [0 , 0 . 1] is also discussed in the Sup-
lemental Material ( F ig. S5 ), w here we also compare the frequency
agnitude distributions of unclustered and clustered events, both in

he ULG- and the GK-cases ( Fig. S6 , Supporting Information). 
We now focus on the clusters with the strongest magnitude ML
 5.0 (hereafter, “strongest -ULG” and “strongest -GK”). We found

recisely six strongest -ULG and seven strongest -GK clusters, ba-
ically containing the main sequences that occurred in Italy since
005, like the 2009 L’Aquila sequence, the 2012 Emilia sequence
nd the 2016 Central Italy sequence. The complete list and relative
etails are reported in Appendix B . The GK procedure identifies an
dditional strongest cluster (seven instead of six) because it splits
he 2012 Emilia sequence into two different clusters, each con-
aining one of the two strongest (ML 5.8 + ) events that occurred
see Appendix B ). This sequence is instead associated with a single
luster by the ULG procedure. Assuming that one cluster should
ntirely contain a single seismic sequence, as for the 2012 Emilia
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Figure 3. Seismic maps of the ISIDe events that do not belong to any cluster (top) or belong to some clusters (middle). The bottom panels refer to all the 
ISIDe e vents to gether. Left, middle and right panels correspond to the independence probability ≤ 0 . 1 , in (0 . 1 , 0 . 9] , and > 0 . 9 , respecti vel y (the percentage of 
events is also shown). Blue (red) is used for the ULG- (GK-) case. The number of events, the sum of expected descendants and the sum of all the independence 
probabilities are finally given for each case. 
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case (Scognamiglio et al. 2012 ), the GK procedure could have failed 
in this identification. 

The spatiotemporal extensions of the strongest -ULG and 
strongest -GK clusters are compared in Figs 4 and 5 . As regards 
the splitting of the Emilia 2012 sequence by GK, in the plots we 
considered only the longest strongest -GK cluster, which contains 
the strongest (ML 5.9) event. The maps show that the GK proce- 
dure generally associates events occurring in a slightly wider area 

art/ggae425_f3.eps
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Figure 4. Seismic maps of the strongest -ULG and strongest -GK clusters (x markers and circles, respecti vel y), that is clusters with the strongest magnitude 
ML > 5.0. Involved sequence, clusters ID and the magnitude of the strongest event are specified for each case. 
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nd produces longer clusters with respect to the ULG method. On
he other hand, the ULG method usually creates spatially smaller
lusters, which are also shorter in time in the considered magnitude
ange. Compared to the alternate method, ULG may therefore fail
o cluster together some aftershocks that are further away in space
nd time. For example, the bottom left panel in Fig. 5 shows that
he ULG cluster containing the Central Italy sequence does not in-
lude the events from 2017 April on; these events are instead likely
o be aftershocks of the sequence, and are indeed included in the
orresponding GK cluster. 

 A S S E S S I N G  C O N S I S T E N C Y  B E T W E E N  

I N D OW- B A S E D  I D E N T I F I E D  

LU S T E R S  A N D  T H E  E TA S  M O D E L  

he previous procedures allowed us to identify, in a deterministic
ay, a total of N = 79 ULG-clusters and N = 82 GK-clusters above

he completeness magnitude ML 2.9, with a minimum threshold
or a mainshock to generate a cluster equal to 4.0. We now aim
o assess if the clustering structure is consistent with the events’
TAS stochastic measures. To do that, as explained in Section 3 ,
e consider the events in each of the n = 1 , .., N clusters and, for
ll of them, we trace back to both: the corresponding probability
f being independent, and the expected number of triggered events
ccording to the ETAS model, computed through the approach by
onsole et al. ( 2010 ). 
Let us assume that the n 

th cluster (nCL) contains NR events. For
his nCL cluster to be consistent with the ETAS model, we consider
he following two simple statements. 

- TEST 1: the sum S1 of the expected numbers of events trig-
ered by the NR events in the current nCL cluster should be close
o the number of elements in nCL. Id est , we define TEST 1 as
he ratio S1/NR, and TEST 1 should be close to 1. This is because
he expected offspring in the current cluster should reflect its car-
inality. If we find that S1 > NR, we are in the case of a productive
eismic sequence spreading over a large area, likely larger than the
harp cutoffs defining the clustering domain in the window-based

art/ggae425_f4.eps
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Figure 5. Magnitude VS time plot of the strongest -ULG and strongest -GK clusters (x markers and circles, respecti vel y), that is clusters with the strongest 
magnitude ML > 5.0. Involved sequence, clusters ID and the magnitude of the strongest event are specified for each case. 
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procedure. The aftershocks of the sequence are labelled as depen- 
dent e vents b y ETAS, but they are not all included in the cluster 
because of its limited domain. This could be ascribed to strong, 
widely spreading sequences. 

- CHECK 2: The sum S2 of the independence probabilities of 
all the NR events in the current nCL cluster should be close to 1. 
Id est , we define CHECK 2 as | S2-1 | , and CHECK 2 should be 
close to 0. This is because we expect a “single” cluster to have a 
“single” independent event. If we find that S2 > 1, we can say that 
the current nCL cluster has more than one independent event, and 
this could be the case of a complex seismic activity characterized by 
events which ETAS splits into different earthquake sequences (each 
with its own independent starting event), but that fall within the 
sharp cutoffs defining the clustering domain in the window-based 
procedure. Several ETAS-like clusters are then combined into one 
by the window-based clustering algorithm, thus identifying clusters 
containing more than one ETAS-independent event. 

The first of the above statements is also statistically tested, which 
is why we named it “TEST 1”. 

In Fig. 6 , we show the results of the two checks (TEST 1, x 
markers; CHECK 2, circles), top and bottom panels, respecti vel y 
for ULG- and GK-clusters. The histograms of the test statistics are 
also shown in the central insets; the explicit numbers of the two 
checks, rounded to the second decimal, are instead summarized in 
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Figure 6. Graphical results of the two checks (TEST 1, x markers; CHECK 2, circles) for the ULG- and the GK-clusters in top and bottom panels, respecti vel y. 
In the insets, the histograms of the test statistics. 
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ables S4 and S5 of the Supplemental Material, respecti vel y for
he 22 ULG- and GK-clusters with strongest magnitude ML 4.5 +
again, not smaller for conciseness). Comparing the two panels of
ig. 6 , we can see that for the majority of ULG-clusters TEST 1
anges between 0.5 and 1.5 (Mean = 0.805, Median = 0.8, Standard
eviation (Std) = 0.308); in the GK-case, we observe instead a
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slightly higher number of clusters for which TEST 1 ≤ 1, precisely 
ranging between 0.5 and 1 (Mean = 0.737, Median = 0.75, Std = 

0.324). This shows that the GK algorithm tends to systematically 
slightly overestimate the number of events in the clusters expected 
by ETAS, more than the ULG procedure does. 

For both ULG and GK, the largest number of clusters has CHECK 

2 close to 1 (ULG: Mean = 0.596, Median = 0.67, Std = 0.708; 
GK: Mean = 0.647, Median = 0.395, Std = 1.427). Except for a 
very few outliers for which CHECK2 > 1, in the remaining cases 
CHECK 2 is distributed between 0 and 1: a clearer pick around 
this latter value is observed in the ULG case than in the GK one, 
which instead shows a more uniform distribution. A slightly higher 
number of GK-clusters proven consistent with ETAS according to 
CHECK 2 is then inferred. 

In what follows, we will present and discuss more detailed results 
of the two consistency checks. For clarity, we will also graph the 
clusters with the strongest magnitude ML > 5.0 ( strongest ), and all 
the others, separately. 

6  C O N S I S T E N C Y  R E S U LT S  

6.1 TEST 1 

The number of events NR in each cluster versus the corresponding 
sum S1 of expected descendants are given in Fig. 7 , respecti vel y 
panels (a) and (b) for ULG- and GK-clusters. In both panels, the 
strongest clusters (i.e. those with the strongest magnitude > 5.0) 
are represented in the top-right thick orange axes, whereas the other 
clusters are given in the bottom-left thin black axes. The largest 
differences in absolute value between the two numbers NR and S1 
are obtained for two strong earthquake sequences: L’Aquila 2009 
and the Central Italy 2016 (see Appendix B for these senquences’ 
details). These represent the strongest sequences experienced in 
Italy in the last decades, and the discrepanc y observ ed between NR 

and S1 is mainly due to the strong temporary incompleteness they 
entailed into the catalogue. 

Although smaller, a difference is obtained also for the ULG- 
cluster with ID 65, which contains the moderate Muccia sequence 
that occurred in 2018 April (Macerata province, Marche region; 
strongest event on 2018 April 10 with ML 4.7, M w 4.6). This se- 
quence is related to the Central Italy one, which indeed was charac- 
terized by a strong seismic activity that extended for several years. 
The Muccia sequence (2018) is in fact included in the GK-cluster 
containing the Central Italy sequence, for which the largest discrep- 
ancy between NR and S1 is observed. 

A quite significant difference is also observed for the two GK- 
clusters containing the two strongest events (ML 5.9 and ML 5.3) 
of the Emilia sequence 2012 (see Appendix B ). We recall that the 
GK procedure associates these events to separate clusters. 

Overall, although the shor t-ter m aftershock incompleteness 
clearly plays a relevant role in TEST 1, the comparison between 
NR and S1 suggests that the number of triggered ev ents, e xpected 
by the ETAS model, well reflects the clustering structure determin- 
istically identified. 

In fact, the consistency of both the ULG- and GK-clusters with 
ETAS as regards TEST 1 is statistically significant: a correlation 
test returned that S1 is highly positively correlated with NR ( p - 
value = 1.76e − 140 and 1.87e − 107 for ULG- and GK-cases, 
respecti vel y), and the linear fit of the points (S1, NR) has slope 1. 
Results are shown in the top panels of Fig. 8 (ULG- and GK-cases 
in left and right columns, respecti vel y), where the linear fit is very 
close to the bisector. Residuals are given in the bottom panels of 
the same figure. The correlation results are also not sensitive to the 
high-leverage points (Rousseeuw & Van Zomeren 1990 ), that is, 
clusters whose number of events is far away from the other cases, 
like for example the ones with the Central Italy 2016 sequence. 
This is demonstrated in detail in Section S1 of the Supplemental 
Material. 

6.2 CHECK 2 

In the majority of both ULG- and GK-clusters, CHECK 2 ranges 
between 0 and 1, as shown in Fig. 9 , panels (a) and (b), respecti vel y 
for the strongest clusters and the others, and red/blue for GK-/ULG- 
cases. Mean, Median and Std of S2 in the case of ULG-clusters 
are 0.594, 0.4 and 0.833, respecti vel y. The same quantities for the 
GK-clusters are instead 0.978, 0.833 and 1.568: this latter value 
outlines a variable behaviour from one GK-cluster to the other. 
Interestingly, the GK-clusters with S2 much larger than 1 are more 
in number than in the ULG case; for example, the GK-clusters with 
S2 > 1 . 2 are 13 more than in the case of ULG. This is related to
the fact that GK-clusters are usually larger and longer than ULG. 
Therefore, they typically contain a higher number of events, thus 
resulting in a higher value of the sum S2 of the events’ independence 
probabilities. 

By looking at panels (a) and (b) of Fig. 9 , we also observe two 
clusters, common to the two procedures ULG and GK, for which 
the quantity S2 is notably larger than 1 (see also the red squares 
in Fig. 6 ). The first contains the Central Italy sequence, and this is 
certainly due to the high productivity of the sequence itself. The 
second cluster contains instead the moderate Viagrande sequence 
(Catania province, Sicilia region) that occurred in 2018 Decem- 
ber, with the strongest event on 2018-12-26 with ML 4.8 ( M w 

4.9). The proximity of this sequence to the Etna volcano allows 
us to ascribe it to a seismic activity of volcanic type, which is 
known to be driven by mechanisms not well captured by the ETAS 

model. 
Regarding only the GK case, two additional clusters are not well 

inferred by S2. These are the one with L’Aquila sequence 2009 
(we infer this is due again to the high productivity), and the clus- 
ter containing a small sequence occurring between the provinces 
of Forl ́ı-Cesena (Emilia-Romagna region) and Arezzo (Toscana re- 
gion) in the spring of 2006, with the strongest event on 2006 April 
16 having magnitude ML 4.1 ( M w 4.3). Since this sequence was 
neither not so highly productive, nor characterized by very strong 
events (about five events with ML 3 + and one event with ML 4 + 

within a radius of 50 km from the strongest one, in the period 2006 
April–August ), further investigations are needed to explain this 
result. 

The histograms given in panels (c) and (d) of Fig. 9 , respecti vel y 
for ULG- and GK cases, show that the highest frequencies of S2 are 
observed around 0 and 1. In the ULG-case, we precisely find a total 
of 53 (out of 79) clusters with S2 < 0.1 or 0.9 < S2 ≤ 1.1, while 
for the GK-case this total is 41 (out of 82). Recalling that CHECK 

2 is satisfied when S2 ∼1 (see Section 5 ), the high bars around 
1 imply consistency between the corresponding deterministically 
identified clusters and their events’ ETAS independence probability. 
Ho wever , these panels also show a high bar around 0, suggesting that 
the clusters in this group are inconsistent with ETAS. This result 
may be a consequence of excluding foreshocks in the clustering 
identification procedure (see Section 4.1 ). A further discussion will 
be given in Section 6.2.2 below. 
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Figure 7. Histograms relative to the number of events and the sum S1 for each cluster, panels (a) and (b), respecti vel y for the ULG- and the GK-case. In each 
panel, bottom-left thin black (top-right thick orange) axes concern the clusters with the strongest event having ML ≤ 5.0 (ML > 5.0). 
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The bimodal behaviour of S2 shown in the histograms of panels
c) and (d) of Fig. 9 , that is, the high frequencies around both 0
nd 1, clearly invalidate any possible statistical test in favour of S2
eing distributed as a random variable with mean 1, a condition that
ould statisticall y v alidate CHECK 2 (see Section 5 ). In the next
ection, we then examine more in detail the results obtained for S2,
o search for a possible correlation between its distribution, and the
istribution of some clusters’ characteristics. 
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Figure 8. Correlation analysis between the sum S1 of expected descendants and the number of events in the cluster, in support of TEST 1 results, relative to 
the ULG- and GK-clusters in left and right panels, respecti vel y, in lo garithmic x-scale. Top panels show the linear fit of the data (dashed line, equation line 
written in top left), the comparison with the bisector (continuous line) and the correlation test results. Bottom panels show instead the residuals of the data with 
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6.2.1 In-depth analysis of S2 distribution 

One of the main quantities that are worth investigating to search for 
a possible pattern driving the S2 distribution is surely the magni- 
tude. In particular, the distribution of the magnitude of the clusters’ 
mainshocks, combined with the number of events, may correlate 
the quantity S2 with the size of the seismic sequence involved in 
the cluster. The maximum magnitude is also related to the type of 
zone (compressional and extensional) where the cluster occurs. In 
Fig. 10 , we plot the independence probability S2 versus the number 
of events in each cluster and the clusters’ mainshocks’ magnitude, 
for the ULG- and the GK-cases in panels (a) and (b), respecti vel y. 
Just for a more straightforward graphical interpretation of the figure, 
two clusters with > 400 events (one ULG and one GK) are not repre- 
sented; otherwise, all the other points in the scatter plot would have 
appeared crowded around the minima of x - and y -axes. No clear 
correlation is observed between the three considered variables, ex- 
cept for a very slight tendency of clusters with a high cardinality to 
have a smaller S2. Besides, the higher the mainshocks’ magnitude, 
the clearer it is that the great majority of S2 values are either very 
close to 0, or very close to 1. 

To verify the existence of a spatial pattern, we mapped the clusters 
with S2 approaching these two v alues. Specificall y, clusters with S2 
> 0.9 and S2 < 0.1 are given in Fig. 10 , panels (c) and (d) for ULG- 
and GK-cases, respecti vel y. In both the maps, a high density of S2 
larger than 0.9 can be observed in the Central Apennines, while 
S2 < 0.1 stands out in the Nor ther n par t of this Mountain Chain. 
Interestingly, an opposite S2 behaviour is observed in the Emiliana 
Po valley for ULG- and GK-clusters, the latter showing S2 > 0.9, 
the former S2 < 0.1. The higher ETAS independence probability 
of the events involved in the GK case, actually agrees with the 
fact that, dif ferentl y from ULG, the GK procedure splits the two 
strongest events of the 2012 Emilia sequence into separate clusters, 
thus resulting in more than one mainshock. Further analyses are 
required to better investigate any possible correlation between the 
S2 values and a physical characteristic of the seismic process, to be 
framed also from a statistical point of view. This will be the object 
of future studies. 

6.2.2 CHECK 2 inconsistency cases: S2 ∼ 0 or S2 � 1 

The results illustrated in Section 6.2 have shown that some ULG- 
and the GK-clusters are inconsistent with the ETAS independence 
probability. In fact, in some cases, the sum S2 of clusterized events’ 
probability of being independent is not close to 1, as required in 

art/ggae425_f8.eps


Windo w-based c luster s ver sus ETAS 1021 

0 10 20 30 40 50 60 70
Cluster ID

0

0.5

1

1.5

2

2.5

3

3.5

S
2

Viagrande
(2018)

Viagrande
(2018)

GK
ULG

Forlì-Cesena
(2006)

GK

0 2 4 6 8 10 12 14
Sum of independence probabilities S2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

F
re

qu
en

cy

ULG

0 1 2 3 4 5 6 7
Sum of independence probabilities S2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

F
re

qu
en

cy

(a)

(b)

(c) (d)

Strongest

Others

Figure 9. Panels (a) and (b), respecti vel y for the strongest clusters and all the others, show the comparison between the sums S2 of the independence 
probabilities relative to GK-clusters (red points) and ULG-clusters (blue points). Panels (c) and (d) show instead the histograms of the sum of independence 
probabilities S2, respecti vel y for ULG- and GK-clusters. 
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The largest number of inconsistency cases consists of clusters
ot containing any event labelled as “very likely independent” ac-
ording to ETAS, that is all the clusterized events are triggered, and
onsequently S2 is close to 0. As anticipated in Section 6.2 , a reason
or that could be the exclusion of foreshocks in the clustering identi-
cation procedure, in order to avoid creating multiple assignments.
t therefore could happen that a strong earthquake, considered as a
oreshock, generates the events included in a cluster, but is iden-
ified by the clustering algorithm as an independent event because
f how we setup the method. Consequently, the included events
ave low-ETAS independence probabilities, and the relative sum
2 approaches 0. 
Another situation that could lead to S2 ∼ 0 is when a strong
ainshock is followed by a strong aftershock, and the identifi-

ation procedure splits these events, and the other aftershocks,
nto different clusters. Because multiple assignments are pre-
ented, the mainshock is included in just one of the possible clus-
ers of aftershocks. At the same time, the entire sequence could
pread just beyond the sharp cutoffs imposed by the window-based
ethods. Sharpness is generally bound to cause a problem due

o the distances in space and time being mixed (Bayliss et al.
019 ). 

Although fewer, some ULG- and GK-clusters are proven incon-
istent with respect to CHECK 2 not because S2 ∼ 0 but, on the
ontrary, because the sum S2 of their events’ independence proba-
ility is much higher than one. This implies that they contain more
han one “very likely independent” event, that is a mainshock in
he ETAS setting. At first glance, a high value of S2 ( �1) could
e thought of as the effect of a particularly high number of trig-
ered events, higher than those expected by the Omori law for a
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Figure 10. Panels (a) and (b) show the 3-D scatter plots of the number of events in each cluster versus the independence probability S2 ( x -axis) and the clusters’ 
mainshocks’ magnitude ( y -axis), respecti vel y, for the ULG- and the GK-cases. To prevent points from being crowded around the minima of x - and y -axes, two 
clusters with > 400 events (one ULG and one GK) are e xcluded. P anels (c) and (d) show instead seismic maps of clusters’ events with S2 > 0.9 (red points) 
and S2 < 0.1 (blue points), respecti vel y for ULG- and GK-cases. 
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single sequence (Spassiani & Marzocchi 2018 ). Ho wever , an in- 
depth analysis showed that, in our case, the real influence on S2 
is given by the events with high-independence probability, even if 
they are a few and no matter how numerous the aftershocks are. 
An example is given in Fig. 11 , where we plot the cumulative in- 
dependence probability of the GK-cluster containing the Central 
Italy sequence. The first event in this cluster has an independence 
probability close to 1, implying that it is a “real mainshock”. After 
a series of events with low independence probability, including the 
strong shocks of 2016 October and November, the sequence starts 
its second phase of epicentres’ spatiotemporal scattering, charac- 
terized by events with high-independence probability, reaching its 
maximum on 2018 May. More than 50 per cent of S2 consists of 
the ten strongest events, thus confirming that, in our case, a clus- 
ter with CHECK 2 larger than 1 contains more than a “very likely 
independent” event. Besides, the clusterized events’ independence 
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Figure 11. Cumulative ETAS probability of independence for the GK-cluster containing the Central Italy sequence (2016). 
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robability increases with their spatiotemporal distance. The cu-
ulative independence probability for the other strongest clusters,

oth for GK and ULG cases, is given in Fig. S7 of the Supplemental
aterial. 

.3 Focus on two interesting clusters 

n interesting focus can be on two clusters involving two sequences
f interest for the Italian territory. The first one started with the
ontecilfone event (Campobasso province, Molise region), which

ccurred on 2018 August 16 with ML 5.2 ( M w 5.1). This sequence
ctually belongs to one of the strongest clusters (see Appendix B )
ntroduced in Subsection 4.2.3 , and was characterized by some pecu-
iar statistics, such as the number of aftershocks that was lower than
xpected from the classical decreasing power Omori law adopted
n statistical seismology (Moretti et al. 2018 ). The ULG- and GK-
lusters including the Montecilfone sequence (respecti vel y with ID
7 and ID 70) contain a few events: 14 and 15, respectiv ely. The y
re precisely the same ev ents, e xcept for the last one in GK, which
ets this cluster a bit longer and wider than ULG (see also bottom
ight panels of Figs 4 and 5 ). Because of this single event, the GK
luster lasts about two months instead of the ∼10 d of the ULG case.
nterestingl y, this e vent has no expected aftershocks according to
TAS. Consequently, the sum S1 of expected descendants is the
ame in the two cases and, since it is computed equal to 14, the
atio S1/NR for TEST 1 turns out to be precisely 1 for the ULG
luster, and ∼1 for the GK one. This highlights that the number
f expected aftershocks reflects well the cardinality of the cluster,
herefore consistency is proven in this case. 

As regards the second check, the single additional event belong-
ng to GK has a 77 per cent probability of being independent. In
ection 6.2.2 , w e ha ve shown that the sum S2 of independence
robability is influenced almost only by the events with a high-
ndependence probability, and this is indeed confirmed in the Mon-
ecilfone sequence, for which we find S2 = 0.02 in the ULG case
nd 0.8 in the GK one. The consistency with ETAS in terms of
HECK 2 is then not satisfied regarding GK, whereas, for ULG, it
till needs to be completely convincing because S2 is higher than
efore but still lower than 1. The ETAS independence probability
or the last event in GK is indeed not definitely high (e.g. > 0 . 9 ).
his may suggest that the Montecilfone sequence was not character-

zed by a “true mainshock” according to ETAS. The reason could
e related to a previous 4.2 event, which struck the same region
our months before, followed by a very low-magnitude sequence.
his is the topic of another paper, based on enhanced earthquake
atalogues (Gentili et al. 2024 ). 

The second cluster that is worth focusing on, is the one contain-
ng the Pollino sequence (Cosenza province, Calabria region), which
ccurred in 2012 September–October with the strongest earthquake
n 2012-10-25 having magnitude ML 5.0 ( M w 5.2) – (ULG cluster
D 38 and GK cluster ID 43). This sequence was characterized by a
 ery productiv e seismic activity of moderate-to-low size. The cardi-
ality of the ULG- and GK-clusters involved is in fact about double
hat of the previous case. The ULG-cluster contains 31 events; these
ame events and three additional ones are instead in the GK-cluster,
hese latter three events making again the GK cluster a quite longer
nd wider cluster than ULG (the map is given in Fig. S8 of the Sup-
lemental Material). The temporal extent is about 2 and 5 months,
especti vel y, in the ULG and GK-cases. The three additional events
n GK have respecti vel y 0.68, 0.004 and 0.91 probability of being
ndependent, and 0, 0.11 and 0.006 expected number of descendants
ccording to ETAS. The ratios S1/NR for the ULG- and GK clusters
nvolved are then similar, because so are the sums of expected de-
cendants and the cardinalities. Precisely, we found S1/NR = 1 and
.91, respecti vel y, thus proving consistency concerning TEST 1 for
oth ULG and GK. 

As regards CHECK 2, we instead find a different situation. The
LG- and GK- clusters containing the Pollino sequence have S2 =
.23 and 1.83, respecti vel y. Two of the three additional events have a
igh-ETAS independence probability, one of which definitely high
 = 0.91). Since the ULG-cluster does not contain these two likely
ndependent events, and all the others are very likely aftershocks,
ccording to ETAS it does not contain a “true mainshock” of the
onsidered sequence. The event with independence probability of
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0.91 is even unclustered by the ULG procedure. CHECK 2 is there- 
fore not satisfied in this case. The same holds true for the GK-cluster, 
but inconsistency has now been proven because of the opposite sit- 
uation. Again, two of the three additional events in GK are likely 
independent and, even if one is more likely independent than the 
other, they both play a rele v ant role in S2, which indeed is closer to 
2 than to 1. According to ETAS, the GK cluster contains then two 
events that may have generated the Pollino sequence. 

A window-based, probabilistically consistent cluster could have 
been the ULG one that also included the ev ent with v ery high- 
independence probability. This example shows again that the deter- 
ministic methods better identify dependent events than independent 
ones. In the case of certain complex seismic sequences, we can- 
not apply the deterministic techniques, which inevitably lose much 
information about the sequence itself. Instead, it could be recom- 
mendable to relax the framed concept of window-based clusters, 
resorting to the purely probabilistic approach that better stands to 
reason when describing the behaviour of these complex earthquake 
sequences. 

7  C O N C LU S I O N S  

In this paper, we used a (probabilistic) ETAS-based approach to 
make inferences about the clustering structures obtained through 
the deterministic, window-based method. The catalog used in our 
analysis is the Italian ISIDe catalog from 2005 April 18 to 2021 April 
30. In order to check for consistency between the deterministic and 
the probabilistic approaches, we first identify clusters by applying 
tw o windo w-based clustering procedures: Gardner–Knopoff (GK) 
and Uhrammer–Lolli–Gasperini (ULG). Then, independently of the 
clustering structures identified, we associate with all the events in the 
catalog both the probability of being independent and the expected 
number of aftershocks derived from the ETAS model. Finally, we 
develop an automatic approach based on two simple checks (TEST 

1 and CHECK 2) to assess whether the ETAS stochastic measures 
associated with the clustered e vents coherentl y reflect the identified 
clustering structures. 

It is important to stress that the methodologies adopted here are 
completel y unaw are of an y underl ying physical process. In fact, 
on the one hand the ETAS model just assigns a probability to 
the events being triggered or independent according to a purely 
data-driven stochastic process; on the other hand the window-based 
approach simply gathers events that are close in space and time. 
They unconsciously consider any type of interaction (stress trans- 
fer, fluid migration, aseismic creep, ecc.) as a possible cause for 
earthquake clustering, as long as events occur in limited spatiotem- 
poral windows. A future development may include the physics be- 
hind the seismic process for example in the parameters’ physical 
modelling. 

Our analysis has shown that no substantial difference is observed 
in the application of the two window-based procedures by ULG and 
GK. The cardinality and mainshocks of the corresponding identi- 
fied clusters are comparable (see for example Tables S1 and S3 
of the Supplemental Material, which concern the clusters with 
the strongest magnitude ML ≥ 4.5). The only discrepancy can 
be appreciated in the fact that GK identifies quite longer and 
wider clusters when considering strong mainshocks than ULG, and 
this is a direct consequence of the specific different set of equa- 
tions used to determine clusters’ extension (explicit formulas in 
Appendix A ; graphical representation in Fig. S2 of the Supplemental 
Material). 
Results concerning the comparison between the deterministic and 
the probabilistic approaches hav e prov en an overall consistency in 
terms of the number of expected descendants (TEST 1). Indeed, the 
sum S1 of aftershocks expected by the ETAS model for the events 
in any cluster well reflects the cardinality NR of the cluster itself. 
S1 is significantly positively correlated to NR, the pairs (S1, NR) 
being also fitted by a linear model with slope 1. 

The second check we applied showed less clear results. In this 
case, consistency was proven when the sum S2 of the events’ inde- 
pendence probabilities within a cluster is close to 1, implying the 
presence of a single “very likely independent” event (e.g. main- 
shock). Both for ULG and GK procedures, we find S2 close to 1 for 
several clusters, but there are also several other cases for which S2 ∼
0 or S2 > 1. These inconsistencies may be related to excluding fore- 
shocks in the clustering identification procedure so as not to create 
multiple assignments. It therefore may happen that a strong earth- 
quake, labelled as foreshock and with a high-independent ETAS 

probability, generates events in a cluster to which it is not assigned. 
Another situation that could lead to inconsistency in terms of S2 
is that of a complex seismic activity characterized b y e vents which 
ETAS splits into different earthquake sequences, each generated by 
a different mainshock, but falling within the sharp cutoffs defining 
the clusters’ extent in the window-based procedure, thus resulting 
in S2 > 1. 

We have shown that the independence probability tends to in- 
crease in the final part of a sequence (higher spatiotemporal dis- 
tances between events) and that early aftershocks do not signifi- 
cantly contribute to S2, regardless of how many there are. This is 
also consistent with the smaller values of CHECK 2 obtained for 
the ULG approach than for the GK one, this latter generally con- 
structing quite longer and wider clusters. The identified clusters’ 
response to CHECK 2, and precisely the fact that ETAS recog- 
nizes more than a single independent event in some clusters (S2 
> 1), may reflect also that the window-based identification pro- 
cedures require the labelling of an event as a mainshock to be 
performed, while ETAS does not account for such labelling. A 

slight tendency of the spatial pattern is finally obtained for clus- 
ters with S2 > 0.9, which more densely occur in the Central 
Apennines. 

The results we obtained are not biased by the specific choice of 
M m 

= 4 . 0 as the minimum magnitude for a mainshock in a cluster. 
In fact, we repeated all the analyses performed in this paper by 
setting M m 

= 2 . 9 , that is, equal to the completeness threshold. For 
conciseness, these results are not included here, but they show no 
substantial difference with those illustrated above, and the conclu- 
sions to be drawn remain the same. 

Taking stock, we can state that although the application of the 
tw o windo w-based clustering procedures is some what subjecti ve 
due to the subjectivity of the equations adopted, the inconsisten- 
cies inferred between deterministic and probabilistic approaches are 
mainly associated with the overlapping populations of dependent 
and independent events in the stochastic declustering procedure. 
Deterministic methods are found better at identifying dependent 
events than independent ones, with a significant number of events 
identified as being independent, having a high probability of being 
triggered in the ETAS model. On the other hand, the window-based 
method imposes a sharp cutoff to include events or not in a cluster, 
therefore this method could ne ver entirel y capture the stochastic 
measures associated with the events by the ETAS declustering al- 
gorithm. 

A rele v ant point to stress is that sequences with a single “main- 
shock” are not al wa ys easily discernible from sequences contain- 
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ng many of small-to-moderate events (swarms). Such distinction
s generally better captured by a probabilistic approach such as
TAS. Similarly, a strong event following an earlier strong one
an be associated with this latter’s same cluster, or to a differ-
nt cluster, depending on the cluster identification method adopted
nd the specific magnitudes considered (an example here is the
milia sequence). Instead, aside from that, the ETAS model would
ssociate with both these events a specific probability of being
ndependent. In general, the probabilistic approach better stands
o reason in the case of certain complex seismic sequences, for
hich much information is lost when adopting a deterministic
rocedure. 

To conclude, deterministic and probabilistic approaches allow
s to pursue the analysis from two different perspectives, and
ighlight different aspects of seismicity. Except for selecting the
tochastic model to consider, the purely probabilistic view is less
ubjective because it does not account for a specific threshold to
haracterize events, for example, being in a cluster or not. Still,
he concept of probability is challenging to understand and inter-
ret, and of course, by definition, it carries a cer tain deg ree of
ncertainty. 

Object of a work in preparation (for reference, see Tavani & Spas-
iani 2023 ) is the analysis of network properties of seismic clusters
ased on a third approach, less parameter-dependent, that is the NN
y Zaliapin et al. ( 2008 ) and Zaliapin & Ben-Zion ( 2013 ) (see also
aiesi & Paczuski 2004 ). It has been successfully applied to Italy

or declustering (e.g. Essing & Poli 2024 ), its power relying in the
apability to preserve the characteristics of the inhomogeneous and
otentially non-stationary background seismicity. Dif ferentl y from
he window-based methods, that create notable gaps in declustered
atalogues following major events because all the earthquakes in-
ide a space–time window are removed from the catalogue (Peresan
 Gentili 2020 ), the NN method merges the spatial and temporal

istances between events in the same parameter. Therefore, a very
mall distance between events may compensate for a large tem-
oral distance, merging together different clusters (Gentili et al.
024 ). 

A consistency between probabilistic and deterministic declus-
ering approaches is valuable in PSHA context, where the deter-

inistic declustering methods are applied, despite the problem they
ave with the Gutenberg–Richter b -value estimation (Mizrahi et al.
021 ). The similarity of the methods justifies the use of the deter-
inistic ones in PSHA, with the correction for b -value estimation

uggested by Marzocchi & Taroni ( 2014 ). 
The message we want to conv e y is that there is no general

ule for one approach being preferable to the other, but it is es-
ential to be aware of the meaning behind the selected approach
nd the implications it entails, to correctly interpret the results
btained. 
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A P P E N D I X  A :  S PAT I O T E M P O R A L  

E Q U  A  T I O N S  D E F I N I N G  T H E  T W O  

W I N D OW- B A S E D  C LU S T E R I N G  

A P P R  O  A C H E S  

The two specific sets of equations we consider here to identify the 
clusters are the following: 

(i) The law by Uhrhammer ( 1986 ) for space and the law by Lolli 
& Gasperini ( 2003 ) for time, as successfully applied in Italy by 
Gentili & Di Giovambattista ( 2017 ): 

d = e 0 . 804 ·M m −1 . 024 , 

t = 60 + 60( M m 

− 4) . (A1) 

We named this set of clusters “ULG-clusters”. 
(ii) The widely known equations by Gardner & Knopoff ( 1974 ), 

according to which the functional form of the spatiotemporal win- 
dows is obtained as: 

d = 10 0 . 1238 ·M m + 0 . 983 , 

t = 10 A ·M m + B , (A2) 

where 

A = 0 . 032 , B = 2 . 7389 i f M m 

≥ 6 . 5; 

A = 0 . 5409 , B = −0 . 547 i f M m 

< 6 . 5 . 

We named this set of clusters “GK-clusters”. 

In both cases, M m 

is the mainshock magnitude, t is expressed in 
days, and d is in kilometers. Fig. S2 of the Supplemental Material 
gives a graphical comparison of the sets of eqs ( A1 ) and ( A2 ). 

A P P E N D I X  B :  L A RG E S T  U L G -  A N D  

G K - C LU S T E R S  A N D  T H E I R  

C O M PA R I S O N  

As explained in Section 4.2.3 , we identified six ULG-clusters 
and seven GK-clusters with the strongest magnitude ML ≥ 5.0 
(“str ongest -ULG” and “str ongest -GK” clusters, respecti vel y). They 
are listed below: 

(i) ML 5.2 ( M w 4.9) in Neviano degli Arduini (Parma province, 
Emilia-Romagna region), 2008 December 23 sequence, corre- 
sponding to the ULG cluster ID 9 and GK cluster ID 14, this latter 
being about five months longer than the former one. 

(ii) L’Aquila sequence (Abruzzo region), 2009; strongest event 
on 2009 April 06 with ML 5.9 ( M w 6.1); this sequence is in ULG 
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luster ID 10 and GK cluster ID 15, the latter being about eight
onths longer than the former (ULG-)one. 
(iii) Emilia sequence (Nor ther n Italy, Emilia–Romagna region),

012; strongest events on 2012 May 20 with ML 5.9 ( M w 5.8), and
n 2012 May 29 with ML 5.8 ( M w 5.6), this latter followed a few
ours later by another strong event with ML 5.3 ( M w 5.3); in the
ase of ULG, this sequence is contained in a “single” cluster with
D 34, while the GK procedure split this sequence into two clusters
ith ID 35 (containing the ML 5.3 event), and ID 39 (containing

he ML 5.9 and ML 5.8 events). 
(iv) ML 5.2 ( M w 5.1) in Carrara (Massa-Carrara province,

oscana region), 2013 June 21; this sequence is in ULG cluster
D 43 and GK cluster ID 49, the latter being about 1 month longer
han the former one; 
C © The Author(s) 2024. Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License ( h
permits unrestricted reuse, distribution, and reproduction in any medium, provided
(v) Central Italy sequence (Lazio, Abruzzo, Toscana, Umbria and
arche re gions involv ed), 2016; strongest ev ents on 2016 August

4 with ML 6.0 ( M w 6.0), and on 2016 October 30 with ML 6.1
 M w 6.5); other strong events on 2016 October 26 with ML 5.9 ( M w 

.9) and on 2017 January 18 with ML 5.4 ( M w 5.5); this sequence
s in ULG cluster ID 60 and GK cluster ID 66, the latter being about
 yr longer than the former (ULG-)one; 
(vi) ML 5.2 ( M w 5.1) in Montecilfone (Campobasso province,
olise region), 2018 August 16; this event is in ULG cluster ID 67

nd GK cluster ID 70, the latter being about 1.5 months longer than
he former. 

The seismic map and referenced ID are given in the Supplemental
aterial ( Fig. S9 , Tables S1 and S3 ). 
oyal Astronomical Society. This is an Open Access 
ttps://cr eativecommons.or g/licenses/by/4.0/ ), which 
 the original work is properly cited. 
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