

Direzione Regionale della Protezione Civile

Contratto n. 58/2008

Gestione della rete di controllo sismico, studio della sismicità regionale e ricerca sismologica a fini di protezione civile Anno 2008

a cura di Adriano Snidarcig e di Pier Luigi Bragato Autori: Carla Barnaba, Paolo Bernardi, Michele Bertoni, Gianni Bressan, Paolo Comelli, Elvio Del Negro, Paolo Di Bartolomeo, Giorgio Durì, Marco Garbin, Stefania Gentili, Peter Klin, Giovanna Laurenzano, Lara Lovisa, Paolo Marotta, Francesco Palmieri Laura Peruzza, Damiano Pesaresi, Cristian Ponton, Fausto Ponton, Enrico Priolo, Andrea Restivo, Marco Romanelli, Angela Saraò, Monica Sugan, Sandro Urban, Aldo Vesnaver, Alessandro Vuan, David Zuliani

Relazione 2009/39 CRS 3 SIRE

Udine, 12 marzo 2009

Visto si approva, il Direttore del Dipartimento CRS: Ing. Paolo Comelli

Istituto Nazionale di Oceanografia e di Geofisica Sperimentale Dipartimento Centro di Ricerche Sismologiche

Indice

	Intr	oduzione	1							
1	Configurazione e caratteristiche tecniche della Rete Sismometrica del Friuli-									
	Ven	ezia Giulia (RSFVG)	3							
	1.1	Configurazione della RSFVG	3							
	1.2	Caratteristiche tecniche delle stazioni a corto periodo della RSFVG	5							
	1.3	Caratteristiche del sistema di acquisizione Mars-88	6							
	1.4	Caratteristiche tecniche delle stazioni a larga banda della RSFVG	7							
	1.5	Calibrazione dei sensori	9							
	1.6	Sviluppi tecnologici: un nuovo sistema costruttivo per le stazioni a banda larga	15							
2	Fun	zionamento della RSFVG	18							
	2.1	Stazioni sismometriche e sistema di trasmissione dei dati	18							
	2.2	Gestione del sistema Antelope a Palmanova	18							
	2.3	Allarme automatico e servizio di reperibilità	19							
3	Elal	porazione dati	22							
4	Ana	lisi della sismicità regionale	27							
5	Atti	vità di ricerca	51							
	5.1	Meccanismi focali dei terremoti avvenuti nel corso del 2008	52							
	5.2	Catalogo dei meccanismi focali per il Nord-Est Italia dal 1928 al 2008 .	54							
	5.3	Magnitudo di completezza probabilistica per l'Italia Nord-Orientale	56							
	5.4	Assetto spaziale della deformazione sismica nella regione Friuli-Venezia								
		Giulia e Slovenia occidentale	59							
	5.5	Un programma per il calcolo dei parametri di sorgente di eventi di bassa								
		magnitudo	65							
	5.6	Valutazione della risposta sismica locale per i siti della rete	67							

6	Attività didattico-divulgativa	78
7	Commenti conclusivi	79
	Bibliografia	81

Elenco delle figure

1.1	Configurazione della Rete Sismometrica del Friuli-Venezia Giulia. Le linee nere rappresentano i collegamenti radio tra le stazioni sismome-	
	le stazioni della Rete Sismometrica del Veneto e quelle a banda larga	
	gestite dal CRS. Il collegamento con la Sala Operativa Regionale della Protoziona Civila a Palmanova à realizzata tramita collegamento radio	
	spread-spectrum	4
1.2	Schema a blocchi dei collegamenti che fanno capo al "gateway" del	
	sistema di acquisizione Lennartz Mars-88 utilizzato per le stazioni a	
	corto periodo di Friuli-Venezia Giulia e Veneto.	7
1.3	Visione globale della tavola vibrante	12
1.4	Sensore laser di spostameto (Laser Doppler Optodyne)	12
1.5	Sismometro durante la fase di taratura della componente orizzontale	13
1.6	Risposta in frequenza (modulo e fase) della taratura relativa alla com-	
	ponente orizzontale di un sismometro Willmore	13
1.7	Taratura della componente verticale di un sismometro.	14
1.8	Risposta in frequenza (modulo e fase) della taratura relativa alla com-	
	ponente verticale di un sensore Willmore.	14
1.9	Schema progettuale per la stazione ZOU2	15
1.10	Scavo alla profondità di 5 m per la realizzazione della stazione a banda	
	larga di Zoufplan (sx) e stazione finita (dx).	16
1.11	Serbatoio in polietilene e sistema di drenaggio (tubi verdi) utilizzati per	17
1 10		1/
1.12	Alloggiamento dei sensori (sx) e dell'acquisitore (dx) presso la stazione	17
	2002	1/
2.1	Segnalazione via fax relativa al terremoto di Trasaghis del 29 febbraio	0.1
	2008	21
4.1	Mappa degli epicentri dei terremoti del 2008 localizzati nell'Area Friuli- Venezia Giulia.	31

4.2	Mappa degli epicentri dei terremoti del 2008 localizzati nell'Italia nord orientale.	32
4.3	Grafico del numero cumulativo di terremoti	33
4.4	Numero giornaliero di terremoti registrati e localizzati nell'Italia nord orientale.	34
4.5	Numero giornaliero di terremoti registrati e localizzati nell'Area Friuli- Venezia Giulia.	34
4.6	Numero mensile di terremoti registrati e localizzati nell'Italia nord ori- entale	35
4.7	Numero mensile di terremoti registrati e localizzati nell'Area Friuli- Venezia Giulia.	35
4.8	Numero dei terremoti in funzione della magnitudo registrati nell'Italia nord orientale.	36
4.9	Numero dei terremoti in funzione della magnitudo registrati nell'Area Friuli-Venezia Giulia	37
4.10	Numero di terremoti localizzati in funzione della profondità nell'Italia nord orientale e nell'Area Friuli-Venezia Giulia	38
4.11	Sezione nord-sud relativa alla zona tra Trasaghis e Gemona	38
5.1	Meccanismi focali dei principali eventi localizzati nell'area regionale nel 2008. Accanto a ciascun meccanismo è riportata la data e tra par- entesi la magnitudo locale. Sono riportate anche le principali zone sismotettoniche (Bressan et al., 2003)	52
5.2	Mappa dei meccanismi focali riportati nel catalogo da Saraò (2008) realizzata utilizzando il software GMT (Wessel and Smith, 1991)	54
5.3	Magnitudo di completezza probabilistica (Mp) calcolata alla data del 31/12/2007 in riferimento all'intervallo temporale 2000-2007. I triangoli bianchi identificano le stazioni utilizzate per la stima.	58
5.4	Confronto tra la mappa di probabilità per M_L =1,5 ottenuta da INGV per tutto il territorio nazionale (Schorlemmer et al., 2008) e quella ottenuta da OGS per il settore del Nord-Est Italia. Mappe calcolate alla data del 31/12/2007.	58

5.5	Assetto tettonico; linee piene e tratteggiate: faglie sub-verticali, linee dentate: sovrascorrimenti e faglie inverse. Le principali zone di de-	
	formazione sono evidenziate con numerazione da 1 a 10. I punti grigi	
	rappresentano la sismicità dal 1977 al 2006, con M_D (magnitudo) vari-	
	abile da 1.0 a 5.6 ed errore di localizzazione minore o uguale a 3 km.	
	Nel riquadro più piccolo sono riportati I due cunei tettonici giustapposti,	
	marcati dalle principali paleofaglie. PC-VB: linea Pieve di Cadore - Val	
	Bordaglia; TV-BC: linea Tramonti - But-Chiarsò; D-I: linea Dogna -	
	Idria; IL: lineamento orientale Insubrico (linea della Gailtal); ML: linea Mojstrana - Ljubljana. BL: Belluno; PN: Pordenone; UD: Udine; GO:	
	Gorizia; TS: Trieste.	60
5.6	Zone di deformazione. Le sfere focali rappresentano i meccanismi fo-	
	cali risultanti dalla sommatoria dei momento tensori. Le frecce nere	
	indicano compressione, le frecce bianche indicano estensione. Gli altri	
	simboli sono come in Fig. 5.5.	63
5.7	Interfaccia grafica del programma PROCSOR.	66
5.8	Densità spettrali per finestre di rumore acquisite nel corso del 2008 per	
	le stazioni della rete a corto periodo del FVG. A tratteggio sono rap-	
	presentati i limiti di Peterson, entro cui il rumore ambientale del sito	
	dovrebbe mantenersi	69
5.9	Come in Fig. 5.8	70
5.10	Come in Fig. 5.8	71
5.11	Come in Fig. 5.8	72
5.12	Variazione stagionale e diurna del rumore ambientale nei siti delle stazioni	
	broad-band (rosso:estate notte; rosa:estate giorno; blu:inverno notte;	
	azzurro:inverno giorno).	73
5.13	Come in Fig. 5.12	74
5.14	Come in Fig. 5.12	75
5.15	Rapporti spettrali HV per i siti della rete a corto periodo del FVG. La linea grigia rappresenta il limite al di sotto del quale non c'è amplifi-	
	cazione	76
5.16	Rapporti spettrali HV per i siti della rete a banda larga del FVG. La linea	
	grigia rappresenta il limite al di sotto del quale non c'è amplificazione	77

Elenco delle tabelle

1.1	Descrizione dei siti e sensori installati sulle stazioni a corto periodo del- la RSFVG. Tutte le stazioni sono dotate di acquisitore Lennartz Mars88- MC	5
1.2	Descrizione dei siti che ospitano le stazioni a banda larga della RSFVG.	8
1.3 1.4	Strumentazione installata presso le stazioni a banda larga della RSFVG. Tabella riassuntiva delle caratteristiche dei geofoni a corto periodo della	8
	fondo scala di 1 g.	10
3.1	Stazioni ausiliarie usate nell'elaborazione dei dati della RSFVG	26
4.1 4.2	Terremoti di magnitudo $M_D \ge 2,8$ localizzati dalla RSFVG nella regione Friuli-Venezia Giulia durante l'anno 2008. I dati qui riportati sono quel- li della localizzazione definitiva, e possono quindi discostarsi da quelli comunicati dal sistema di allarme automatico	28 50
5.1	Componenti del tensore velocità di deformazione $\dot{\varepsilon}$. La colonna F _S in- dica il fattore/anno moltiplicativo. Valori positivi indicano estensione o ispessimento, valori negativi indicano compressione o assottigliamento.	62
5.2	Componenti del tensore di velocità V. Tutti i valori sono in mm/anno. La colonna F_V indica il fattore moltiplicativo. Valori positivi indicano estensione o ispessimento, valori negativi indicano compressione o as-	
	sottigliamento.	62

Elenco degli Allegati

- Allegato 1 Carta in scala 1:250.000 degli epicentri dei terremoti avvenuti nel 2008 nella Regione Friuli-Venezia Giulia.
- Allegato 2 CDROM contenente i dati ipocentrali degli eventi sismici registrati nel 2008.

Introduzione

Nella presente relazione si riporta l'attività svolta durante l'anno 2008 dall'Istituto Nazionale di Oceanografia e di Geofisica Sperimentale–OGS per conto della Direzione Generale per la Protezione Civile (DRPC) della Regione Autonoma Friuli-Venezia Giulia (FVG) secondo la Convenzione n. 58 del 19/02/2008.

La Convenzione prevede lo svolgimento da parte del Dipartimento 'Centro di Ricerche Sismologiche' (CRS) dell'OGS di:

- attività di servizio incentrata sulla manutenzione e gestione della Rete Sismometrica del Friuli-Venezia Giulia (RSFVG) e sul monitoraggio sismico H24, con relativo servizio di allarme automatico e di reperibilità e pronto intervento del personale;
- attività di ricerca sulla base dei dati forniti dalla RSFVG finalizzata ad ottenere una maggior comprensione del fenomeno sismico in regione e nelle zone limitrofe.

L'attività sismica del 2008 nella regione Friuli-Venezia Giulia è stata caratterizzata da una sismicità modesta con eventi di magnitudo da durata sempre inferiore a 4, cinque dei quali di magnitudo compresa tra 2,8 e 3,7. All'esterno della regione si segnalano: ad est, in Slovenia, gli eventi di M_D =4,3 Nova Vas e di M_D =3,6 Pivka; ad occidente, in Lombardia, l'evento di M_D =3,5 localizzato nel comune di Salò e gli eventi localizzati nell'Appennino Tosco-Emiliano, tra cui spiccano gli eventi di: Barberino del Mugello (FI) di M_D =4,2; Neviano degli Arduini (PR) di M_D =5,5; di Rossena (RE) di M_D =5,1.

Per quanto riguarda l'attività di servizio, nel corso del 2008 sono stati assolti tutti i compiti previsti senza rilevare particolari problemi, ed in particolare si è provveduto a:

- *i*) fornire il servizio di 'sorveglianza sismica' secondo la modalità stabilite dalla Convenzione;
- *ii)* effettuare la manutenzione ordinaria/straordinaria alle stazioni sismometriche della rete;
- *iii)* verificare il buon funzionamento di tutti i sensori della rete mediante una procedura di calibrazione indiretta degli stessi.

Dal punto di vista tecnologico, vi è stato un grosso impegno del CRS nella gestione della propria rete di trasmissione radio con tecnologia *spread-spectrum*, una rete totalmente indipendente che collega circa il 70% delle stazioni e che consente ritardi di acquisizione alla stazione centrale inferiori al minuto (le altre stazioni sono collegate mediante frequenze radio UHF, con ritardi di alcuni minuti). Nel corso dell'anno si è anche provveduto al miglioramento del sito di Zouf Plan posizionando un sensore broad band e relativa stazione d'acquisizione in una camera interrata a circa 5 metri dal piano di campagna

Dal punto di vista della ricerca, l'attività del CRS nell'ambito della Convenzione si è articolata sui seguenti temi principali:

- *i*) determinazione dei meccanismi focali dei principali terremoti ed il loro inquadramento nel contesto sismotettonico regionale;
- *ii)* un'analisi spazio/temporale della magnitudo di completezza fornita dalla rete di monitoraggio;
- *iii)* la messa a punto di un programma per la stima dei parametri di sorgente dei terremoti di bassa magnitudo;
- *iv)* la valutazione della risposta sismica locale per i siti della RSFVG.

Per quello che riguarda le collaborazioni a livello nazionale, il CRS ha partecipato a diversi progetti sismologici e vulcanologici nell'ambito della convenzione stipulata tra il Dipartimento Nazionale della Protezione Civile e l'Istituto Nazionale di Geofisica e di Vulcanologia (INGV). Queste collaborazioni sono importanti in quanto permettono un confronto con le altre realtà sismologiche nazionali e quel travaso di 'know-how' indispensabile per la crescita tecnico-scientifica del dipartimento. Lo stesso dicasi per le collaborazioni in atto a livello locale sia con il Dipartimento di Scienze della Terra (DST) dell'Università di Trieste, gestore della rete accelerometrica del FVG (RAF), che con le istituzioni d'oltre confine in Slovenia (Agencija Republike Slovenije za Okolje, ARSO) e Austria (Zentralanstalt fur Meteorologie und Geodynamik, ZAMG).

Questa relazione è organizzata come segue: dapprima si descrivono le caratteristiche tecniche e di funzionamento della rete sismica e del sistema automatico di allarme (sezioni 1 e 2) ed il percorso di elaborazione dati (sezione 3); successivamente si fornisce un quadro esaustivo della sismicità che si è verificata nel corso del 2008 (sezione 4); segue quindi una descrizione delle attività di ricerca svolte dal CRS nell'ambito di altri progetti, i cui temi sono correlabili a quelli della Convenzione stessa (sezione 5), ed un breve resoconto sull'attività didattica e divulgativa (sezione 6). Le conclusioni (sezione 7) riassumono infine lo stato attuale della rete e danno un'indicazione sugli indirizzi futuri che si intendono perseguire per potenziare il servizio che la rete fornisce alla DRPC.

1 Configurazione e caratteristiche tecniche della Rete Sismometrica del Friuli-Venezia Giulia (RSFVG)

1.1 Configurazione della RSFVG

La Rete Sismometrica del Friuli-Venezia Giulia (RSFVG) è attualmente costituita da 23 stazioni, di cui 15 a corto periodo e 8 a banda larga (Fig. 1.1). Tra queste ultime includiamo anche la stazione di Cima Grappa, situata in Veneto ma realizzata con strumentazione di proprietà della Regione Autonoma Friuli-Venezia Giulia e la cui gestione è prevista dalla presente Convenzione.

Le 15 stazioni a corto periodo sono descritte in dettaglio nella sezione 1.2. Di esse, 13 sono equipaggiate con sismometro Lennartz da 1 Hz a tre componenti (Tab. 1.1). La stazione di Talmassons (TLI) è dotata di sismometro verticale Mark L4C da 1 Hz monocomponente, collocato in un pozzo profondo 74 metri. Presso la stazione di Udine, estremamente rumorosa, è installato un sensore accelerometrico. Questo tipo di sensore affianca il sismometro a corto periodo nelle stazioni di Bernadia (BAD) e Bordano (BOO). La trasmissione dei dati verso il CRS, avviene mediante collegamento radio su frequenze UHF (6 stazioni, velocità di trasmissione 19.200 bit/s) oppure con la tecnologia spread-spectrum (8 stazioni, velocità 4Mbit/s, la stazione di Udine è collegata via cavo). Le stazioni a banda larga sono dotate di strumentazione sismologica eterogenea (si veda la successiva sezione 1.4). Sono comunque tutte collegate con la modalità spread-spectrum o mediante linea numerica dedicata (stazione di Trieste), il che consente un'acquisizione continua con ritardi di trasmissione inferiori al minuto.

I dati di tutte le stazioni confluiscono in un unico sistema di archiviazione ed elaborazione dei segnali basato sul software BRTT Antelope, un software adottato da alcune tra le più importanti istituzioni sismologiche mondiali e che consente, tra l'altro, una facile integrazione in tempo reale con le reti nazionali dell'Austria e della Slovenia. Per garantire la massima affidabilità il sistema è installato su di un cluster con hardware

Figura 1.1: Configurazione della Rete Sismometrica del Friuli-Venezia Giulia. Le linee nere rappresentano i collegamenti radio tra le stazioni sismometriche ed il centro di acquisizione dati ad Udine. Sono visibili anche le stazioni della Rete Sismometrica del Veneto e quelle a banda larga gestite dal CRS. Il collegamento con la Sala Operativa Regionale della Protezione Civile a Palmanova è realizzato tramite collegamento radio spread-spectrum.

SUN e sistema operativo Solaris che garantisce opportuna ridondanza sia in termini di nodi di elaborazione (attualmente due) che di unità disco.

Il monitoraggio sismico del Friuli-Venezia Giulia trae grande vantaggio, soprattutto per la parte occidentale delle regione, dalle 9 stazioni della Rete Sismometrica del Veneto (RSV), anch'esse mostrate in Fig. 1.1, tutte di proprietà della Regione Veneto e gestite dal CRS. Sia le stazioni a corto periodo (8) che quella a banda larga hanno caratteristiche tecniche simili a quelle della RSFVG, con trasmissione via radio su frequenze UHF (7 stazioni) oppure via modem GPRS (2 stazioni). Sempre in Veneto, nell'ambito di una collaborazione con INGV, il CRS ha realizzato una stazione a banda larga ad Agordo (collegamento via modem GPRS).

nome	codice	lat	long	quota	materiale di	età geologica	inizio	sensore
		°N	°E	[m]	fondazione		registrazioni	
Bernadia	BAD	46°14′03″	13°14′36″	590	Calcare	Eocene	06/05/77	Lennartz Le3DLite
								Kinem. FBA23
Bordano	BOO	46°19′11″	13°05′55″	444	Calcare	Cretaceo	09/05/77	Lennartz Le3DLite
								Kinem. EpiSensor
Buia	BUA	46°13′00″	13°07′25″	320	Flysch	Eocene	06/05/77	Lennartz Le3DLite
Caneva	CAE	46°00′31″	12°26′17″	870	Calcare	Werfeniano	23/04/83	Lennartz Le3DLite
Cas. Mimoias	CSM	46°30′44″	12°39′07″	1640	Arenaria marn. e	Werfeniano	12/10/94	Lennartz Le3DLite
					Calcare			
Casso	CSO	46°16′24″	12°19′26″	1070	Calcare	Cretaceo	01/01/88	Lennartz Le3DLite
Colloredo	COLI	46°07′56″	13°22′36″	250	Flysch	Eocene	06/05/77	Lennartz Le3DLite
Drenchia	DRE	46°10′24″	13°38′40″	810	Arenaria marn. e	Eocene Medio	20/12/82	Lennartz Le3DLite
					calcare fratt.			
Lussari	LSR	46°28′30″	13°31′38″	1750	Porfiriti,diabasi,	Ladinio Sup.	01/01/88	Lennartz Le3DLite
					spiliti			
Malnisio	MLN	46°09′00″	12°36′53″	814	Calcare	Cretaceo	14/11/95	Lennartz Le3DLite
Monte Prat	MPRI	46°14′26″	12°59′14″	762	Calcare	Cretaceo	20/06/77	Lennartz Le3DLite
Paularo	PLRO	46°32′56″	13°08′53″	1420	Diabasi	Carbon. Medio	01/01/88	Lennartz Le3DLite
Talmassons	TLI	45°55′15″	13°06′12″	-74	Alluvioni sciolte	Quaternario	27/11/85	Mark L4C
					e parz. Cem.			
Udine	UDI	46°02′14″	13°15′10″	90	Ghiaie	Quaternario	24/06/77	Guralp CMG-5T
Zoùfplan	ZOU	46°33′27″	12°58′26″	1896	Dolomia	Carbon. Medio	17/10/82	Lennartz Le3DLite

Tabella 1.1: Descrizione dei siti e sensori installati sulle stazioni a corto periodo della RSFVG. Tutte le stazioni sono dotate di acquisitore Lennartz Mars88-MC

1.2 Caratteristiche tecniche delle stazioni a corto periodo della RSFVG

Le stazioni remote della rete a corto periodo (Tab. 1.1) sono composte da:

- un sistema di alimentazione a pannelli solari (o allacciamento rete ENEL) con batterie tampone;
- un sismometro a 3 componenti (verticale, N–S, E–W), che trasforma il movimento del terreno in un segnale elettrico (TLI ha ancora un sismometro ad 1 componente verticale situato in pozzo);
- un acquisitore (Lennartz Mars88-MC) con la dinamica di 120 dB ed una banda passante programmabile da 0 a 200 Hz. I dati vengono registrati in continuo e memorizzati in una memoria circolare (ring buffer) della capacità di 4 MB. L'acquisitore individua gli eventi sismici basandosi su un algoritmo di trigger, che calcola continuamente la media dell'ampiezza dei segnali su un corto intervallo STA (Short Term Average) e su un lungo intervallo LTA (Long Term Average) predefiniti. Quando il rapporto STA/LTA supera una soglia prefissata i blocchi dati vengono trasmessi al CRS. Attualmente su 12 stazioni, il segnale è campionato a intervalli di 16 millisecondi, per una banda passante da 0 a 25 Hz, sulle

rimanenti 3 stazioni il campionamento è di 8 millisecondi per una banda passante da 0 a 50 Hz;

- il sistema di trasmissione radio (frequenze UHF condivise per 6 stazioni, spreadspectrum per 8 stazioni, la stazione di Udine è collegata via cavo);
- un radioricevitore GPS per allineare il segnale orario delle stazioni al tempo universale (GMT) con accuratezza dell'ordine dei millisecondi.

1.3 Caratteristiche del sistema di acquisizione Mars-88

Indipendentemente dalla modalità di trasmissione (radio UHF, radio spread-spectrum o cavo), i dati delle stazioni a corto periodo della RSFVG vengono acquisiti presso il CRS per mezzo del sistema Lennartz Mars-88, un software installato su una workstation SUN Blade 100 con sistema operativo Solaris. Per quel che riguarda la parte radio UHF, la condivisone delle frequenze (3 per 6 stazioni) avviene mediante un meccanismo di passaggio del testimone (token passing). Una volta stabilita, la connessione tra stazione remota e la stazione centrale è di tipo half duplex. La comunicazione secondo le diverse modalità è resa possibile da un complesso sistema di instradamento che tiene conto dell'esistenza di ponti radio e che viene effettuato da un computer con funzione di "gateway" (Fig. 1.2).

Come descritto nella sezione precedente, le stazioni remote registrano in continuo ma trasmettono solo i dati selezionati mediante l'algoritmo di trigger. La trasmissione avviene in blocchi da 1024 byte: 1000 di dati (500 campioni da 2 byte) e 24 di testata, contenente tra l'altro il tempo a cui si riferisce il primo campione ed una sequenza di bit per la verifica dell'integrità del pacchetto e l'eventuale ritrasmissione dello stesso. La memoria della stazione remota (4 MB) può contenere circa tre ore di registrazione continua, il che consente di far fronte a temporanee interruzioni del collegamento radio e dà modo all'operatore in sede di forzare l'acquisizione di dati non selezionati dall'algoritmo di trigger, come ad esempio misure di rumore o segnali di calibrazione.

Le stazioni remote registrano e trasmettono in continuo anche un canale monitor campionato ad una frequenza 1/50 di quella di lavoro, e ciò allo scopo di fornire un'immagine complessiva dell'attività sismica e del funzionamento del sistema nell'arco delle 24 ore. Inoltre, la stazione remota del sistema Mars88 può essere commutata in "modalità di servizio", che permette di effettuare dei test di funzionamento sia in campagna che dalla sede centrale.

Tutti i dati delle stazioni a corto periodo acquisiti per mezzo del sistema Lennartz Mars88 vengono fatti poi confluire, insieme a quelli delle stazioni a banda larga, nel sistema principale di archiviazione ed elaborazione di dati sismologici basato sul software BRTT Antelope. Quest'ultimo passo avviene per mezzo di una serie di programmi sviluppati presso il CRS.

Figura 1.2: Schema a blocchi dei collegamenti che fanno capo al "gateway" del sistema di acquisizione Lennartz Mars-88 utilizzato per le stazioni a corto periodo di Friuli-Venezia Giulia e Veneto.

1.4 Caratteristiche tecniche delle stazioni a larga banda della RSFVG

Le stazioni a larga banda della RSFVG (Fig. 1.1 e Tab. 1.2) sono situate a Trieste (TRI), Villanova (VINO), Cimolais (CIMO), Cima Grappa (CGRP, stazione in Veneto ma inclusa nella presente Convenzione), Monte Sabotino (SABO), Fusea (FUSE), Acomizza (ACOM), e Zouf Plan (ZOU2). Di queste, CIMO, FUSE, e ZOU2 sono proprietà dell'OGS, TRI e VINO sono in comproprietà con il Dipartimento di Scienze della Terra (DST) dell'Università di Trieste, ACOM, CGRP e SABO sono state realizzate (la prima nel 2003, le altre nel 2006) nell'ambito del progetto INTERREG III/A *Reti sismologiche senza frontiere nelle Alpi sud-orientali* con strumentazione di proprietà della Regione Autonoma Friuli-Venezia Giulia.

Le stazioni sono collocate in siti poco rumorosi e di buona qualità dal punto di vista sismologico. La stazione TRI è situata all'interno della Grotta Gigante (Sgonico - TS); VINO e CIMO in due grotte naturali rispettivamente in provincia di Udine e Pordenone;

ACOM in un bunker in cima al monte Acomizza; CGRP in una galleria della Grande Guerra in cima al monte Grappa; SABO in un ex serbatoio d'acqua di una casermetta in cima al monte Sabotino; FUSE è collocata in un pozzetto interrato. ZOU2, stazione del Zouf Plan, è collocata in un pozzo interrato in vicinanza della stazione a corto periodo. Per essa, nel corso del 2008, è stato realizzato un nuovo tipo di installazione descritto in dettaglio nella sezione 1.6.

nome	codice	lat °N	long °E	quota [m]	materiale di fondazione	età geologica	inizio registrazioni
			_	[]	Tontuillione		
Acomizza	ACOM	46°32′53″	13°30′55″	1715	Calcare	Paleozoico	26/09/03
Cima Grappa	CGRP	45°52′50″	11°48′17″	1757	Calcare	Malm-Cretaceo	01/07/06
Cimolais	CIMO	46°18′41″	12°26′40″	610	Calcari dolomitici	Norico	18/05/02
Fusea	FUSE	46°24′51″	13°00′04″	520	Dolomia dello Schlern	Triassico Med.	13/12/07
Monte Sabotino	SABO	45°59′15″	13°38′01″	621	Calcari bioclastici	Cretaceo	21/03/05
Trieste	TRI	45°42′32″	13°45′61″	161	Calcare	Cretaceo	29/07/63
Villanova	VINO	45°42′32″	13°15′10″	608	Calcare	Eocene	01/08/95
Zouf Plan	ZOU2	46°33′30″	12°58′22″	1911	Dolomia	Carbon. Medio	01/11/08

Tabella 1.2: Descrizione dei siti che ospitano le stazioni a banda larga della RSFVG.

codice	acquisitore	vel	ocimetro	accelero	ometro
		modello	banda	modello	banda
ACOM	Q330	STS-2	120sec-50Hz	FBA ES-T	0–200Hz
CGRP	Q330	STS-2	120sec-50Hz	FBA ES-T	0–200Hz
CIMO	Q4128	STS-2	120sec-50Hz	FBA ES-T	0–200Hz
FUSE	Q330	TRI40	40sec–50Hz	FBA ES-T	0–200Hz
SABO	Q330	STS-2	120sec-50Hz	FBA ES-T	0–200Hz
TRI	Q4126	STS-1	360sec-10Hz	CMG-5T	0–100Hz
VINO	Q4126	CMG-3T	120sec-50Hz	CMG-5T	0–100Hz
ZOU2	Q4126	TRI120	120sec-50Hz	CFBAES-T	0–200Hz

Tabella 1.3: Strumentazione installata presso le stazioni a banda larga della RSFVG.

Tutte le stazioni trasmettono in continuo in tempo reale mediante collegamenti radio spread-spectrum. Fa eccezione la stazione TRI, collocata in fondo alla Grotta Gigante in corrispondenza alla sede centrale dell'OGS, con la quale è collegata mediante una linea a fibra ottica. Da qui i dati giungono in tempo reale al CRS via linea dati dedicata. TRI fa inoltre parte della rete sismologica MedNet (International Mediterranean Network) ed è in linea all'indirizzo http://bbtri.inogs.it. Tutti i dati delle stazioni a banda larga sono acquisiti direttamente dal sistema Antelope.

Per quel che riguarda la strumentazione sismologica (Tab. 1.3), tutte le stazioni sono dotate di doppio sensore velocimetrico/accelerometrico a tre componenti ed acquisitore a 24 bit. Il sensore velocimetrico a banda larga permette la registrazione di oscillazioni molto lente (periodi di 40, 120 o 360 secondi per i diversi modelli utilizzati). L'accelerometro garantisce la leggibilità del segnale anche per forti scuotimenti. Tutte le stazioni sono a registrazione continua e dotate di oltre 1 GB di memoria su disco, il che consente un'ampia autonomia (da qualche settimana a qualche mese a seconda delle

frequenze di campionamento utilizzate) in caso di problemi nella trasmissione dei dati ad Udine.

1.5 Calibrazione dei sensori

Disporre di sensori ben calibrati è fondamentale per qualsiasi studio che si avvale delle forme d'onda registrate. Poiché le caratteristiche dei sensori possono essere soggette a variazioni nel tempo, è necessario procedere a calibrazioni periodiche degli stessi, con il metodo indiretto oppure diretto. Nel 2008 tutti i sensori delle stazioni a corto periodo della RSFVG sono stati calibrati con il metodo indiretto, molto veloce in quanto non richiede l'intervento in loco. Esso si basa sull'attivazione a distanza (tramite telemetria) di una sequenza di impulsi di calibrazione. Tali impulsi producono segnali di risposta da confrontare con un segnale standard di riferimento e permettono di verificare eventuali scostamenti significativi rispetto a quest'ultimo. Per la calibrazione del 2008, tale confronto ha evidenziato il corretto funzionamento di tutti i sensori, per i quali si possono assumere validi i valori nominali dei parametri fondamentali (frequenza naturale, smorzamento e costante di trasduzione) forniti dalla casa costruttrice e riportati in Tab. 1.4.

Con cadenza pluriennale (5-10 anni) i sismometri vengono anche calibrati con il metodo diretto, molto più preciso e accurato, che utilizza un sistema a tavola vibrante progettato e realizzato presso il CRS (Fig. 1.3). L'ultima calibrazione di questo tipo è del 2006. La cadenza pluriennale si giustifica con la complessità dell'operazione, che deve essere effettuata presso il laboratorio del CRS, e richiede quindi la rimozione temporanea del sensore dalla stazione.

Il sistema di taratura diretta comprende due sottosistemi, uno per la calibrazione dei sensori verticali, ed uno per quelli orizzontali. Ciascuno di essi è costituito da:

- 1. uno shaker elettrodinamico che muove la piastra sulla quale è fissato il sismometro;
- 2. un sensore laser (vedi Fig. 1.4) per la misura continua ad alta precisione (ordine del nanometro) dello spostamento del sismometro;
- 3. un personal computer che, mediante opportune schede hardware e software sviluppato in Matlab, pilota la tavola vibrante in modo da ottenere un determinato tipo di scuotimento (attualmente rumore di tipo gaussiano opportunamente filtrato), acquisisce i segnali del sismometro e del sensore laser, e, dal confronto tra i due, calcola la funzione di trasferimento del sismometro.

Nelle Figg. 1.5–1.8 sono mostrati l'assetto della tavola vibrante ed i risultati relativi alla taratura di un sensore Willmore a tre componenti.

1

	Geofono	Comp.	Polarità ¹	\mathbf{f}_0	Smorz.	Trasdu	zione
stazione	modello/numero			Hz	h	V/m/s	V/g
7011	Lannantz LE2DL ita	V	normale 1	1.00	0.7	400	
19/11/09	P 122	L	normale	1.00	0.7	400	
16/11/06	B-122	Т	normale	1.00	0.7	400	
BAD	Lannartz I E3DL ita	V	normale	1.00	0.7	400	
17/11/08	E 273	L	normale	1.00	0.7	400	
1//11/08	1-275	Т	normale	1.00	0.7	400	
BAD	Kinem. FBA23 36156	V	normale	52.7	0.65		2.5
BAD **	Kinem. FBA23 36155	L	normale	52.1	0.67		2.49
	Kinem. FBA23 36157	Т	normale	53.7	0.65		2.5
DPE	Lannartz I E3DL ita	V	normale	1.00	0.7	400	
18/11/08	E 416	L	normale	1.00	0.7	400	
10/11/00	1-410	Т	normale	1.00	0.7	400	
CAE	Lennartz LE3DLite	V	normale	1.00	0.7	400	
18/11/08		L	normale	1.00	0.7	400	
10/11/00	C-140	Т	normale	1.00	0.7	400	
UDI	Guraln CMG 5T	V	normale	100	0.7		10
**	5225	L	normale	100	0.7		10
	5255	Т	normale	100	0.7		10
BOO	Lennartz G-348	V	normale	1.00	0.7	400	
18/11/08	Kinem. EpiSensor 6702	L	normale	196	0.7		5.0
10/11/00	Kinem. EpiSensor 6691	Т	normale	206	0.7		5.0
CSO	Lennartz I E3DI ite	V	normale	1.00	0.7	400	
18/11/08	G 341	L	normale	1.00	0.7	400	
10/11/08	G-341	Т	normale	1.00	0.7	400	

Tabella 1.4: Tabella riassuntiva delle caratteristiche dei geofoni a corto periodo della RSFVG per l'anno 2008. Il simbolo ** indica le stazioni tarate per fondo scala di 1 g.

¹Per polarità normale si intende: Componente verticale (Z) in movimento da basso verso l'alto: segnale positivo. Componente longitudinale (N-S) in movimento da sud verso nord: segnale positivo. Componente trasversale (E-W) in movimento da ovest verso est: segnale positivo. Inoltre la sequenza standard di acquisizione per i canali tridimensionali è: Ch0 = Verticale (Z); Ch1 = Longitudinale (N–S); Ch2 = Trasversale (E–W).

	Comp.	Polarità ¹	\mathbf{f}_0	Smorz.	Trasdu	zione	
stazione	modello/numero			Hz	h	V/m/s	V/g
MUN	Longertz LE2DL ite	V	normale	1.00	0.7	400	
19/11/09	C 247	L	normale	1.00	0.7	400	
16/11/08	0-347	Т	normale	1.00	0.7	400	
тц		V	normale	1.30	0.72	65.6	
02/012/08	Mark L4 4420	L	assente				
02/012/08		Т	assente				
MDDI	Lennartz LE3DL ite	V	normale	1.00	0.7	400	
18/11/08	E 238	L	normale	1.00	0.7	400	
10/11/00	E-236	Т	normale	1.00	0.7	400	
CSM	Lannartz LE3DL ita	V	normale	1.00	0.7	400	
19/11/09	G-344	L	normale	1.00	0.7	400	
10/11/00		Т	normale	1.00	0.7	400	
	Lennartz I E3DL ite	V	normale	1.00	0.7	400	
19/11/09	G-340	L	normale	1.00	0.7	400	
16/11/08		Т	normale	1.00	0.7	400	
I SP	Lennartz LE3DLite G-346	V	normale	1.00	0.7	400	
18/11/08		L	normale	1.00	0.7	400	
16/11/08		Т	normale	1.00	0.7	400	
BUA	Lannartz LE3DL ita	V	normale	1.00	0.7	400	
10/11/08	C 343	L	normale	1.00	0.7	400	
19/11/08	0-545	Т	normale	1.00	0.7	400	
COLI	Lennartz I E3DL ite	V	normale	1.00	0.7	400	
18/11/09	C 340	L	normale	1.00	0.7	400	
10/11/08	G-349	Т	normale	1.00	0.7	400	

Tabella 1.4: Segue dalla pagina precedente

Figura 1.3: Visione globale della tavola vibrante.

Figura 1.4: Sensore laser di spostameto (Laser Doppler Optodyne).

Figura 1.5: Sismometro durante la fase di taratura della componente orizzontale.

Figura 1.6: Risposta in frequenza (modulo e fase) della taratura relativa alla componente orizzontale di un sismometro Willmore.

Figura 1.7: Taratura della componente verticale di un sismometro.

Figura 1.8: Risposta in frequenza (modulo e fase) della taratura relativa alla componente verticale di un sensore Willmore.

14

Figura 1.9: Schema progettuale per la stazione ZOU2.

1.6 Sviluppi tecnologici: un nuovo sistema costruttivo per le stazioni a banda larga

L'obiettivo di una stazione a larga banda è quello di acquisire segnali nell'intero spettro delle frequenze sismiche, dalle alte frequenze degli eventi regionali ai lunghi periodi degli eventi lontani. Per raggiungere tale scopo vengono impiegati sensori velocimetrici aventi risposta lineare in un intervallo di frequenza che va da 0.0083 (120 s di periodo) a 50 Hz, ed acquisitori ad ampia dinamica ed elevata risoluzione. Tale strumentazione è d'altronde molto sensibile alle variazioni climatiche (temperatura e pressione) e per sfruttare al meglio le sue caratteristiche deve essere installata in siti con minimo rumore antropico, lontano da fonti di disturbo ambientale (corsi d'acqua, vegetazione, ecc.) ed alloggiate in locali possibilmente insensibili alle variazioni climatiche e meteorologiche esterne. Locali adatti sono, ad esempio, le grotte naturali e le gallerie artificiali opportunamente adattate. In assenza di tali locali si può ovviare creando una struttura che soddisfi i requisiti menzionati in precedenza.

Nel corso del 2008 il CRS ha progettato un nuovo tipo di installazione per le stazioni a banda larga (Fig. 1.9), la cui prima realizzazione è stata effettuata presso la stazione di Zoufplan (ZOU2). Qui si è provveduto a creare una camera interrata, ad una profondità di circa 5 metri dal piano di campagna (Fig. 1.10), mediante l'utilizzo di un pozzetto stagno in polietilene (PE), usato normalmente come serbatoio di liquidi vari, opportunamente modificato. Il contenitore (Fig. 1.9 e Fig. 1.11) è alto circa 4,50 m e provvisto di scala interna. Nell'elemento di fondo è stata creata un apertura flangiata che, posizionata su un basamento in calcestruzzo (CLS) alla base dello scavo profondo circa 5 metri, lo mette in continuità con lo strato roccioso indisturbato sottostante. L'impermeabilizzazione tra il fondo in PE e il getto in CLS è ottenuta con tre anelli di guarnizione bentonitica posti alla base del serbatoio e mediante l'uso di additivo impermeabilizzante nel CLS. Nel corso dell'interramento del pozzetto sono stati posizionati su due livelli dei tubi forati per il drenaggio dell'acqua circostante al serbatoio (tubi verdi in Fig. 1.11). Il deflusso viene effettuato sul fianco del monte.

Figura 1.10: Scavo alla profondità di 5 m per la realizzazione della stazione a banda larga di Zoufplan (sx) e stazione finita (dx).

Il pozzetto è stato suddiviso in due camere con l'inserimento di un setto calpestabile in PE dotato di apertura sigillata. Nella camera più profonda, alla base del serbatoio, sono stati alloggiati i sensori (Fig. 1.12, sx), mentre in quella superiore l'acquisitore e il quadro di alimentazione (Fig. 1.12, dx). Il sensore accelerometrico e quello velocimetrico sono dunque posizionati direttamente sul basamento in CSL alla base del pozzetto, in continuità meccanica con la roccia sottostante. Più in dettaglio, l'accelerometro è fisicamente appoggiato su una lastra di vetro cementata direttamente sul basamento in CSL, per ragioni di isolamento elettrico. Anche il velocimetro è appoggiato su un disco in vetro, ma questo è cementato su una base di granito a forma di parallelepipedo, ed è termoisolato con un contenitore in alluminio opportunamente rivestito di materiale isolante. Questo contenitore, imbullonato al basamento con l'interposizione di una guarnizione di gomma, forma una microcamera stagna e termicamente isolata intorno al corpo del velocimetro, riducendo in maniera significativa il rumore indotto dalle correnti convettive. Un cavidotto lungo circa 160 m collega la stazione esistente di ZOU al pozzo. Il cavidotto ospita sia i cavi di alimentazione a 12V, una doppia treccia di rame di 16mm2, il cavo di Ethernet (cat 5e) necessario per portare il segnale digitalizzato alla radio spread-spectrum, in collegamento con il centro di acquisizione dati presso il CRS di Udine.

Figura 1.11: Serbatoio in polietilene e sistema di drenaggio (tubi verdi) utilizzati per la stazione ZOU2.

Figura 1.12: Alloggiamento dei sensori (sx) e dell'acquisitore (dx) presso la stazione ZOU2.

2 Funzionamento della RSFVG

2.1 Stazioni sismometriche e sistema di trasmissione dei dati

Nel corso del 2008 sulle stazioni sismometriche è stata eseguita manutenzione ordinaria e straordinaria, con interventi di riparazione dei guasti e/o manutenzione preventiva (verifica offset, efficienza dell'alimentazione, funzionalità dei ponti radio, ecc.). In generale, durante l'anno si sono effettuati un centinaio di interventi in campagna al fine di garantire il buon funzionamento della RSFVG. Questo ha garantito limitate interruzioni dell'acquisizione su singole stazioni. Fanno eccezione le stazioni di montagna di Lussari (LSR, corto periodo) ed Acomizza (ACOM, banda larga) che hanno sofferto l'intenso innevamento di fine anno, con interruzioni di alcuni giorni.

Nell'ambito dei sistemi di trasmissione, è stato gestito e curato il collegamento spread-spectrum tra il CRS ad Udine e la sede della Protezione Civile a Palmanova, nonché il collegamento tra le stazioni a banda larga realizzate con strumentazione di proprietà della Regione (ACOM, SABO e CGRP) ed il sistema Antelope attivo a Palmanova.

2.2 Gestione del sistema Antelope a Palmanova

Come previsto dalla Convenzione, il CRS ha gestito il sistema di acquisizione ed elaborazione automatica di dati sismometrici Antelope attivo a Palmanova. Oltre alla normale manutenzione, nel mese di agosto è stata effettuata la sostituzione del server, passando da una macchina HP di proprietà del CRS ad una nuova macchina SUN fornita dalla Protezione Civile. Il nuovo sistema, installato per motivi di affidabilità, è un Sun Fire V245 server con sistema operativo Solaris 10, dotato di 1 TeraByte di spazio su disco, più che sufficiente per l'immagazzinamento dei dati raccolti dalle reti sismiche acquisite da Antelope. Attualmente vengono memorizzati on line su disco i dati relativi agli ultimi 3 mesi. L'attivazione del server ha richiesto l'installazione ex-novo della versione più recente del software Antelope: la 4.10. Questa nuova versione permette una gestione semplificata degli algoritmi di detection dei segnali sismici (eliminati i vecchi processi *orbtrigger* e *orbdetev2detection*). Particolare cura poi è stata posta nella definizione dei parametri descrittivi delle stazioni sismiche utilizzate in tempo reale per un'accurata definizione delle magnitudo e nella definizione dei parametri di localizzazione per un'efficiente, rapida e precisa localizzazione automatica degli eventi sismici, partendo dall'attuale configurazione della rete sismica. Il server SUN, denominato *antogs*, è stato quindi configurato per l'acquisizione dati in tempo reale da tutte le stazioni gestite dal CRS in Friuli-Venezia Giulia e Veneto (Fig. 1.1), alcune stazioni della Rete Accelerometrica del Friuli gestita dal DST, dalle reti sismiche slovena e austriaca, nonché della Provincia Autonoma di Bolzano.

Il vecchio server HP è stato mantenuto come terminale video grafico per permettere in locale il monitoraggio dell'acquisizione dati sismici tramite l'applicativo *rtm*, la visualizzazione in tempo reale delle forme d'onda tramite l'applicativo *orbmonrtd* e la visualizzazione degli eventi localizzati su mappa tramite l'applicativo *dbevents*.

Sul server SUN è stato poi installato e opportunamente configurato l'applicativo freeware SeisComP per lo scambio dati sismici in tempo reale con l'Istituto Nazionale di Geofisica e Vulcanologia (INGV) di Roma, tramite il Dipartimento della Protezione Civile Nazionale di Roma. Il collegamento dati ha richiesto il coordinamento tra i responsabili informatici di tutti gli enti coinvolti nello scambio dati, tra i quali, in particolare, i tecnici della Protezione Civile Regionale. I risultati della collaborazione sono stati resi noti alla comunità sismologica internazionale mediante poster presentati ai convegni dell'European Geophysical Union (EGU) e dell European Seismological Commission (ESC) (Pesaresi et al., 2008a) (Pesaresi et al., 2008b).

2.3 Allarme automatico e servizio di reperibilità

Il sistema automatico di allarme *FAAS* (Friuli Automatic Alert System, Bragato and Govoni (2000)) ha localizzato e segnalato tutti gli eventi di magnitudo $M_D \ge 2,8$ avvenuti in regione e nelle aree limitrofe. I messaggi di allerta sono stati notificati alla Protezione Civile Regionale per mezzo di fax alla sala operativa di Palmanova e di SMS ad una lista di destinatari fornita dalla Protezione Civile stessa. In particolare, per l'invio di SMS è stato utilizzato il servizio di un provider esterno. Un esempio di fax è mostrato in Fig. 2.1.

Per la segnalazione degli eventi ad entità esterne (Prefetture, Vigili del Fuoco, Polizia, organi di informazione, ecc.) è stata utilizzata una procedura automatica di invio fax dalla sala operativa della Protezione Civile realizzata dal CRS. La procedura fa uso di un computer con sistema operativo Linux dotato di modem esterno, il quale riceve la segnalazione di allarme prodotta dal sistema FAAS quale file in formato *pdf* e lo inoltra

per mezzo del software di invio fax *HylaFAX* ad una serie di destinatari definiti dalla Protezione Civile. Il sistema gestisce i tentativi di reinvio in caso di linea occupata.

Nel corso dell'anno il sistema ha evidenziato alcune forti limitazioni. In particolare, dalla verifiche giornaliere, in circa 10 occasioni il modem è risultato bloccato, probabilmente a causa di disturbi elettrici sulla linea telefonica. In questi casi è stato necessario riavviare l'intero sistema (computer e modem). Un ulteriore problema è dato dalla lunghezza della lista dei destinatari, per cui gli ultimi fax possono partire anche a più di un'ora dall'evento. Per ovviare ad entrambi i problemi, in collaborazione con i tecnici della Protezione Civile, si sta lavorando ad un potenziamento del sistema con l'introduzione di ulteriori tre modem e relative linee telefoniche da usare in parallelo.

In connessione con il sistema di allarme automatico, per tutto l'anno il CRS ha fornito un servizio di reperibilità H24. Il servizio è stato svolto contemporaneamente da un ricercatore e da un tecnico raggiunti dal sistema automatico di allarme tramite cellulare. Almeno uno dei due è intervenuto presso la sede entro 45 minuti dal verificarsi dei terremoti di magnitudo $M_D \ge 2,8$, e ciò al fine di controllare la precisione delle localizzazioni automatiche e di seguire l'evoluzione della sismicità.

Figura 2.1: Segnalazione via fax relativa al terremoto di Trasaghis del 29 febbraio 2008.

3 Elaborazione dati

Le letture delle fasi degli eventi vengono effettuate utilizzando il programma XPITSA (Scherbaum and Johnson, 1993), il programma SeisGram2K (Lomax, 2004). La qualità della registrazione è tenuta in debito conto tramite l'assegnazione di opportuni pesi alle letture fatte. Si procede alla determinazione ipocentrale degli eventi facendo presente che elaborazioni con un buon grado di affidabilità sono quelle con epicentro avente una distanza non superiore a 100 km da almeno una delle stazioni della rete. L'area dei terremoti localizzati è compresa, dunque, tra le latitudine 44,00°N - 47,15°N e le longitudine 8,30°E - 15,00°E.

Le determinazioni ipocentrali vengono elaborate utilizzando il programma HYPO71 (Lee and Lahr, 1975). Per adattare il processo di localizzazione alle caratteristiche della sismicità del Friuli-Venezia Giulia sono stati modificati alcuni dei parametri del programma come il massimo aggiustamento orizzontale nella localizzazione del terremoto (si ricorda che la localizzazione è un'inversione linearizzata localmente che viene risolta iterativamente mediante aggiustamenti nelle tre coordinate spaziali e quella temporale) o la profondità iniziale media da cui far partire la localizzazione (rispettivamente le variabili Test (10) e Test (05) nel programma) sono stati modificati in modo da riflettere le caratteristiche della rete e della sismicità. I valori dei parametri di input al programma che sono stati modificati rispetto ai valori standard sono presentati nel prospetto che segue mentre ci si rifà al lavoro di Lee and Lahr (1975) per la loro descrizione:

```
Test (01) = 100
Test (02) = 120 km
Test (03) = 0,5
Test (05) = 7 km
Test (06) = 1
Test (10) = 50 km
Test (11) = 12
```

Il modello crostale utilizzato, costituito da due strati ed un semispazio, è definito da:

velocità	(km/s)	prot	Eondità	(km)
5,85		0 -	-22	
6,80		22	2-39,5	
8,00		>	39,5	
Vp/Vs =	1,78			

Il modello di velocità è stato calcolato in base alle conoscenze crostali dell'area friulana ed a quelle della pianura veneta (Slejko et al., 1989). Per ogni terremoto viene calcolata la magnitudo da durata per ogni singola stazione ed il suo valore medio. La formula usata per il calcolo della magnitudo da durata è:

$$M_D = a + b \log T$$

dove T è la durata della registrazione in secondi mentre a e b sono due costanti. I valori delle costanti per ciascuna delle stazioni della rete sono stati calcolati da Rebez and Renner (1991). Per localizzare i terremoti esterni all'aree coperte dalle stazioni della RSFVG e della RSV vengono utilizzati, se utili per una migliore definizione dei parametri ipocentrali, i dati rilevati da ulteriori stazioni europee (vedi Tab. 3.1). Tutte le soluzioni ipocentrali vengono accuratamente analizzate e ritenute accettabili solo quando gli errori statistici loro associati risultano sufficientemente piccoli.

Codice	Nome	Istituto di appartenenza
ABSI	Val Sarentina	Provincia Autonoma di Bolzano
ABTA	Abfaltersbach	Austrian Geophysical Service Vienna
APPI	Appiano	Istituto Nazionale di Geofisica e Vulcanologia Roma
ARSA	Arzberg	Austrian Geophysical Service Vienna
BHG	Bad Reichenhall	Geophisikalisches Observatorium Fustenfeldbrunch
BOJS	Bojanci	Geophysical Survey of Slovenia
BOSI	Bolzano	Provincia Autonoma di Bolzano
BRES	Bressanone	Provincia Autonoma di Trento
BRMO	Bormio	Istituto Nazionale di Geofisica e Vulcanologia Roma
CADS	Cadrg	Geophysical Survey of Slovenia
CARA	Carano	Provincia Autonoma di Trento
CAV	Cavalese	Provincia Autonoma di Trento
CESS	Cesta nad Krskim	Geophysical Survey of Slovenia
CEY	Cerknica	Geophysical Survey of Slovenia
CMPO	Campotto Po	Istituto Nazionale di Geofisica e Vulcanologia Roma
CRES	Cresnjevec	Geophysical Survey of Slovenia
CRNS	Crni Vrh	Geophysical Survey of Slovenia

Tabella 3.1: Stazioni ausiliarie usate nell'elaborazione dei dati della RSFVG.

Logs

Codice	Nome	Istituto di appartenenza
CTI	Castel Tesino	Istituto Nazionale di Geofisica e Vulcanologia Roma
DAVA	Damuels Voralberg	Austrian Geophysical Service Vienna
DDS	Dosso del Sommo	Provincia Autonoma di Trento
DOBS	Dobrina	Geophysical Survey of Slovenia
FETA	Feichten	Austrian Geophysical Service Vienna
FIN	Finale Ligure	Istituto Geofisico e Geodetico Universita' di Genova
FIU	Minerbio Fiu	Istituto Nazionale di Geofisica e Vulcanologia Roma
FUR	Fuerstenfeldbruck	Geophisikalisches Observatorium Fustenfeldbrunch
FVI	Forni Avoltri	Istituto Nazionale di Geofisica e Vulcanologia Roma
GBAS	Gorenja Brezovica	Geophysical Survey of Slovenia
GBRS	Gornja Briga	Geophysical Survey of Slovenia
GCIS	Gornji Cirnik	Geophysical Survey of Slovenia
GMNA	Gemona	Istituto Nazionale di Geofisica e Vulcanologia Roma
GOLS	Golise	Geophysical Survey of Slovenia
GORS	Gorjuse	Geophysical Survey of Slovenia
GROS	Grobnik	Geophysical Survey of Slovenia
HVAR	Hvar	Geophysical Institute Zagreb University
JAVS	Javornik	Geophysical Survey of Slovenia
KBA	Koelnbreinsperre	Austrian Geophysical Service Vienna
KNDS	Knezji Dol	Geophysical Survey of Slovenia
KOGS	Kog	Geophysical Survey of Slovenia
KOSI	Monte Pozza	Provincia Autonoma di Bolzano
LEGS	Legarje	Geophysical Survey of Slovenia
LJU	Ljubljana	Geophysical Survey of Slovenia
MABI	Malga Bissina	Istituto Nazionale di Geofisica e Vulcanologia Roma
MAGA	Magasa	Istituto Nazionale di Geofisica e Vulcanologia Roma
MYKA	Terra Mystica	Austrian Geophysical Service Vienna
MOA	Malln	Austrian Geophysical Service Vienna
MOSI	Grossmontoni	Provincia Autonoma di Bolzano
MOTA	Moosalm	Austrian Geophysical Service Vienna
MOZS	Mozjanca	Geophysical Survey of Slovenia
NOVE	Novellara	Istituto Nazionale di Geofisica e Vulcanologia Roma
OBKA	Hochobir	Austrian Geophysical Service Vienna
OGA	Obergurgl	Geophisikalisches Observatorium Fustenfeldbrunch
OSS	Ova Spin	E.T.H. Zurich
OZOL	Ozol	Provincia Autonoma di Trento

Tabella 3.1: Stazioni ausiliarie usate nell'elaborazione dei dati della RSFVG.

Codice	Nome	Istituto di appartenenza
PAG	Paganella	Provincia Autonoma di Trento
PANI	Panarotta	Provincia Autonoma di Trento
PDKS	Podkum	Geophysical Survey of Slovenia
PERS	Pernice	Geophysical Survey of Slovenia
PTCC	Patocco	Istituto Nazionale di Geofisica e Vulcanologia Roma
PTJ	Puntijarka	Geophysical Institute Zagreb University
RAVA	Ravarino	Istituto Nazionale di Geofisica e Vulcanologia Roma
RETA	Reutte	Austrian Geophysical Service Vienna
RISI	Campo Tures	Provincia Autonoma di Bolzano
RIY	Rijeka	Geophysical Institute Zagreb University
ROBS	Robic	Geophysical Survey of Slovenia
ROSI	Vipiteno	Provincia Autonoma di Bolzano
RNI	Roncone	Provincia Autonama di Trento
SALO	Salò	Istituto Nazionale di Geofisica e Vulcanologia Roma
SAX	Saentis	E.T.H. Zurich
SBPO	S. Benedetto Po	Istituto Nazionale di Geofisica e Vulcanologia Roma
SCE	Schlegeis	Geophisikalisches Observatorium Fustenfeldbrunch
SEST	Monte Rota	Provincia Autonoma di Trento
SGV	S. Giovanni	Provincia Autonoma di Trento
SKDS	Skadanscina	Geophysical Survey of Slovenia
SLE	Schleitheim	E.T.H. Zurich
SOKA	Sobot	Austrian Geophysical Service Vienna
SQTA	St.Quirin	Austrian Geophysical Service Vienna
STLV	Grossmontoni	Provincia Autonoma di Trento
ТМА	Mt. Tamaro	E.T.H. Zurich
VAR	Varagna	Provincia Autonoma di Trento
VDL	Valle di Lei	E.T.H. Zurich
VEA	Veano	Istituto Geofisico e Geodetico Universita' di Genova
VIP	Vipiteno	Provincia Autonoma di Trento
VISS	Visnje	Geophysical Survey of Slovenia
VNDS	Vrh Pri Dolskem	Geophysical Survey of Slovenia
VOY	Vojsko	Geophysical Survey of Slovenia
VOJS	Vojsko	Geophysical Survey of Slovenia
VVI	Villa di Villa	Istituto Nazionale di Geofisica e Vulcanologia Roma
WATA	Walderalm	Austrian Geophysical Service Vienna
WTTA	Wattenberg	Austrian Geophysical Service Vienna

Tabella 3.1: Stazioni ausiliarie usate nell'elaborazione dei dati della RSFVG.

Codice	Nome	Istituto di appartenenza
WET	Wettzel	Geophisikalisches Observatorium Fustenfeldbrunch
ZAG	Zagreb	Geophysical Institute Zagreb University
ZAVS	Zavodnje	Geophysical Survey of Slovenia

Tabella 3.1: Stazioni ausiliarie usate nell'elaborazione dei dati della RSFVG.
4 Analisi della sismicità regionale

Il monitoraggio della sismicità regionale durante il 2008 è stato effettuato con le stazioni appartenenti alla RSFVG e le nove stazioni della rete sismometrica della regione Veneto (Tab. 1.1). La rete del Veneto nel corso del 2008 si è arricchita della stazione di Adria (ADRI), ubicata nel comune di Adria (RO), inizio acquisizione il 26/01/2008. Allo scopo di raffinare le elaborazioni ipocentrali sono stati utilizzati anche i dati relativi alle stazioni riportate in Tab. 3.1, facenti parte di organizzazioni nazionali e internazionali. Questo ha permesso di elaborare localizzazioni con sufficiente precisione nell'ambito di un'area compresa compresa tra il lago d'Iseo e la città di Lubiana, e più precisamente tra le latitudini 44°00'N e 47°15'N e le longitudini 10°00'E e 15°00'E, corrispondente alle regioni: Friuli-Venezia Giulia; Veneto; Lombardia orientale; Emilia Romagna; alle Provincie Autonome di Trento e Bolzano; Slovenia occidentale; la penisola Istriana (Croazia) e la zona meridionale dell'Austria occidentale. Nel seguito quest'area sarà denominata Italia Nord Orientale (INOR) e sarà considerata nel contesto dell'analisi della sismicità regionale.

Nella Tab. 4.1 vengono riportati i terremoti avvenuti nel 2008 in Friuli-Venezia Giulia con magnitudo $M_D \ge 2,8$. Una visione complessiva della sismicità registrata in FVG e una fascia esterna di 20 km viene rappresentata in Fig. 4.1, quest'area viene denominata Area Friuli-Venezia Giulia, mentre in Fig. 4.2 viene rappresentata la sismicità in tutta l'area dell'Italia Nord Orientale (INOR). Nell'Allegato 1 viene riportata la sismicità in FVG alla scala 1:250.000.

Durante il 2008 gli eventi più rilevanti avvenuti nella regione Fiuli-Venezia Giulia sono stati:

- l'evento M_D =3,7, verificatosi il 29 febbraio, alle 12:41 ora locale, localizzato nel comune di Trasaghis (UD);
- l'evento *M_D*=2,8 verificatosi il giorno 6 luglio, alle 14:57 ora locale, localizzato nel comune di Stregna (UD);
- l'evento M_D=2,9 verificatosi il giorno 31 agosto, alle 06:33 ora locale, localizzato nel comune di Villa Santina (UD);

data	ora	lat.	long.	prof.	MD	località
	UTC0	°N	°E	(km)		
29-02-2008	11:41:59,38	46,319	13,009	7,6	3,7	Trasaghis
06-07-2008	12:57:08,35	46,115	13,595	15,4	2,8	Stregna
31-08-2008	04:33:20,26	46,395	12,903	13,8	2,9	Villa Santina
16-10-2008	07:57:47,64	46,296	13,411	9,1	2,9	Cimolais
21-11-2008	02:36:25,38	46,379	13,241	8,3	3,0	Chiusaforte

Tabella 4.1: Terremoti di magnitudo $M_D \ge 2,8$ localizzati dalla RSFVG nella regione Friuli-Venezia Giulia durante l'anno 2008. I dati qui riportati sono quelli della localizzazione definitiva, e possono quindi discostarsi da quelli comunicati dal sistema di allarme automatico.

- l'evento M_D=2,9 verificatosi il giorno 16 ottobre, alle 09:57 ora locale, localizzato nel comune di Cimolais (PN);
- l'evento M_D =3,0 verificatosi il giorno 21 novembre, alle 03:36 ora locale, localizzato nel comune di Chiusaforte (UD);

Gli eventi significativi avvenuti nell'Italia nord orientale sono stati:

- gli eventi M_D =4,2, M_D =4,2, e M_D =4,0 del 01 marzo delle ore 08:43, 909:43 e 11:43 ora locale, in vicinanza della località di Barberino del Mugello (FI);
- l'evento M_D=4,1 del 26 marzo delle ore 10:19, ora locale, in vicinanza della località di Pontremoli (MS);
- l'evento M_D =4,3 del 28 giugno delle ore 07:24, ora locale, in località Nova Vas (Slovenia), a circa 20 km a E di Postojna, a circa 50 km dal confine Italo-Sloveno;
- l'evento M_D=3,5 del 14 luglio delle ore 5:51, ora locale, localizzatò nel comune di Salò (BS);
- l'evento M_D =3,6 del 21 ottobre delle ore 10:12, ora locale, in località Pivka (Slovenia), a circa 5 km a S di Postojna, a circa 25 km dal confine Italo-Sloveno;
- l'evento M_D=3,5 del 23 dicembre delle ore 16:18, ora locale, in vicinanza della località di Rossena (RE);
- l'evento M_D =5,5 del 23 dicembre delle ore 16:24, ora locale, in vicinanza della località di Neviano degli Arduini (PR), a circa 35 km a SW di Reggio Emilia;
- l'evento M_D=5,1 del 23 dicembre delle ore 22:58, ora locale, in vicinanza della località di Rossena (RE), a circa 25 km a SW di Reggio Emilia;

- l'evento M_D =4,0 del 24 dicembre delle ore 00:37, ora locale, localizzato nel comune di Neviano degli Arduini (PR), a circa 30 km a SW di Reggio Emilia;
- l'evento M_D =3,7 del 24 dicembre delle ore 13:22, ora locale, in vicinanza della località di Rossena (RE), a circa 25 km a SW di Reggio Emilia;
- l'evento M_D=4,2 del 25 dicembre delle ore 04:08, ora locale, in vicinanza della località di Rossena (RE), a circa 35 km a SW di Reggio Emilia;

Osservando dettagliatamente la Fig. 4.1, si può notare la distribuzione della sismicità lungo la fascia pedemontana friulana, con un suo proseguimento ad est in Slovenia e ad ovest nel Bellunese. Più precisamente, si nota che la quasi totalità degli eventi è stata localizzata nell'area di Claut-Arta T.-Tolmezzo-Venzone-Gemona-Stupizza. Questa sismicità, comunque, si presenta con una M_D relativamente modesta che raramente supera i 3 gradi della scala Richter.

Nella Fig. 4.2 è riportata la sismicità localizzata in tutta l'area dell'Italia nord orientale. In particolare, ad est, in Slovenia, essa è caratterizzata da sismicità piuttosto concentrata nell'area di Kobarid-Bovec che si propaga fino a Ljubljana e da un cluster di eventi nell'area Postojna-Cerknica, eventi di Pivka e di Nova Vas, distanti circa 50 km dalla città di Trieste. In Croazia si segnalano eventi di modesta intensità a Est e Sud-Est della città di Rijeka. Ad ovest, nella regione Veneto, si nota una sismicità prevalentemente concentrata nell'area Longarone-Belluno. Sismicità sparsa che poi segue il limite pedemontano fino a lambire il lago di Garda con l'evento di $M_D=3,1$, di data 18 maggio, delle ore 04:33 localizzato in prossimità della città di Verona. La sismicità poi si protrae anche sul lato lombardo del lago di Garda con la sismicità inerente all'area di Salò. La zona nord-occidentale, area delimitata dalle città di Susch (CH), Bormio (SO) e Glorenza (BZ) evidenzia una sismicità sparsa e di debole intensità. L'area sud occidentale, appennino Tosco-Romagnolo, è quella che ha evidenziato il maggior grado di sismicità. Significativa è la sequenza sismica di fine dicembre occorsa tra le provincie di Parma e Reggio Emilia. L'evento pricipale del 23 dicembre, delle ore 16:24 (ora locale), M_D =5,5, è stato localizzato in prossimità del centro abitato di Neviano dei Arduini (PR). Le repliche più significative sono state quelle del: 23 dicembre, 22:58 ora locale, di M_D =5,1; 24 dicembre, 00:37 ora locale, di M_D =4,0; 25 dicembre, 04:88 ora locale, di M_D =4,2. In Emilia Romagna, inoltre, si segnala l'attività localizzata in prossimità di S. Felice sul Panaro, a circa 30 km a ovest di Ferrara e dell'area compresa tra le località Sestola-Gaggio Montano-Brisighella. In Toscana si segnalano gli eventi in prossimità di Barberino del Mugello e di Pontremoli.

Allo scopo di evidenziare l'evoluzione nel tempo della sismicità nell'Area Friuli-Venezia Giulia (FVG) e nella più vasta area dell'Italia nord orientale (INOR), vengono di seguito forniti una serie di diagrammi esemplificativi dell'andamento della sismicità.

Il numero cumulativo di eventi nel tempo, rispettivamente registrati e localizzati sia nell'Area Friuli-Venezia Giulia, che nell'area dell'Italia nord orientale, è rappresentato

in Fig. 4.3. Nell'anno 2008, sono stati registrati nell'Area Friuli-Venezia Giulia 679 eventi, di cui 328 con determinazione ipocentrale. Su tutta l'area investigata sono stati registrati 899 eventi, di cui 503 localizzati. Questo indica che la sismicità più consistente si è sviluppata all'interno dell'Area Friuli-Venezia Giulia. Il grafico cumulativo dei terremoti (Fig. 4.3) evidenzia in corrispondenza dei mesi giugno e luglio un decremento della pendenza della curva per poi evidenziare dal mese di settembre al mese di dicembre un incremento della pendenza della curva originaria.

I grafici di Figg. 4.4 e 4.5 mettono successivamente in evidenza il numero giornaliero dei terremoti registrati e localizzati nell'Italia nord orientale e nell'Area Friuli-Venezia Giulia.

Nelle Figg. 4.6 e 4.7 sono riportati il numero mensile dei terremoti registrati e localizzati nelle due aree. Dall'esame dei grafici emerge la buona correlazione tra i due e la presenza di sismicità extra regionale, mese di dicembre, localizzata principalmente sull'appennino Tosco-Romagnolo.

Le Figg. 4.8 e 4.9 riportano gli istogrammi relativi al numero di terremoti registrati e localizzati in funzione delle classi di magnitudo, rispettivamente nell'Italia nord orientale e nell'Area Friuli-Venezia Giulia. Per quanto riguarda i terremoti registrati per l'Italia nord orientale si evidenzia una distribuzione compresa tra le classi di magnitudo 0,1 e 3,1. L'Area FVG invece evidenzia una distribuzione compresa tra le classi 0,1 e 2,1. Per quanto riguarda invece gli eventi localizzati nell'Italia nord orientale si evidenzia una distribuzione compresa tra le classe di magnitudo di 1,6. La distribuzione localizzata dell'Area FVG evidenzia una distrubuzione compresa tra le classi 1,1 e 2,6. Il grafico di Fig. 4.9, inoltre indica che la soglia minima di magnitudo per gli eventi localizzati nell'Area Friuli-Venezia Giulia è di circa 0,4.

Il grafico di Fig. 4.10, relativo al numero di terremoti in funzione della profondità, evidenzia che nell'area dell'Italia nord orientale la sismicità è localizzata tra 3 e 17 km, mentre nell'Area Friuli-Venezia Giulia i terremoti si distribuiscono uniformemente nell'intervallo tra 3 e 16 km.

La sezione verticale, orientata nord-sud, ed ubicata in una fascia geografica compresa tra Trasaghis e Gemona, rappresentata in Fig. 4.11, mette in evidenza nell'area centrale friulana una localizzazione degli ipocentri compresa tra i 6 e i 14 km, evidenziando una diminuzione ed uno spostamento verso la superficie dell'attività sismica verso il nord della sezione.

Figura 4.1: Mappa degli epicentri dei terremoti del 2008 localizzati nell'Area Friuli-Venezia Giulia.

RETE SISMOMETRICA DELL' ITALIA NORD ORIENTALE Mappa degli epicentri – Periodo 01–01–2008 – 31–12–2008

Figura 4.2: Mappa degli epicentri dei terremoti del 2008 localizzati nell'Italia nord orientale.

Figura 4.3: Grafico del numero cumulativo di terremoti.

Figura 4.4: Numero giornaliero di terremoti registrati e localizzati nell'Italia nord orientale.

Figura 4.5: Numero giornaliero di terremoti registrati e localizzati nell'Area Friuli-Venezia Giulia.

Figura 4.6: Numero mensile di terremoti registrati e localizzati nell'Italia nord orientale.

Figura 4.7: Numero mensile di terremoti registrati e localizzati nell'Area Friuli-Venezia Giulia.

Figura 4.8: Numero dei terremoti in funzione della magnitudo registrati nell'Italia nord orientale.

Figura 4.9: Numero dei terremoti in funzione della magnitudo registrati nell'Area Friuli-Venezia Giulia.

Figura 4.10: Numero di terremoti localizzati in funzione della profondità nell'Italia nord orientale e nell'Area Friuli-Venezia Giulia.

Figura 4.11: Sezione nord-sud relativa alla zona tra Trasaghis e Gemona

data	ora	lat.	long.	prof.	MD	località	regione
	UTC0	°N	°E	(km)			
01-01-2008	02:20:32.84	44.485	10.139	21.7	2.6	Corniglio	Emilia
01-01-2008	04:11:59.02	46.025	14.210	7.0	2.3	Horjul	Slovenia
01-01-2008	06:10:07.27	44.493	10.262	25.3	2.4	Ranzano	Emilia
01-01-2008	06:49:42.06	44.500	10.284	24.4	2.5	Ranzano	Emilia
01-01-2008	15:50:09.37	46.245	13.914	10.4	2.2	Rut	Slovenia
01-01-2008	19:14:54.85	46.324	13.640	6.4	1.6	Kobarid	Slovenia
01-01-2008	22:07:44.14	46.321	13.638	7.6	1.8	Kobarid	Slovenia
02-01-2008	10:12:14.66	46.322	13.141	7.0	1.3	Gemona	Friuli
02-01-2008	21:18:58.49	45.581	9.968	11.3	3.0	Rovato	Lombardia
03-01-2008	02:27:11.53	46.187	13.868	8.1	2.1	Rut	Slovenia
04-01-2008	16:59:50.09	46.276	13.640	7.7	1.8	Kobarid	Slovenia
04-01-2008	18:28:53.01	46.216	13.698	7.3	0.8	Drenchia	Friuli
05-01-2008	02:01:52.21	46.153	13.590	12.6	1.5	Stregna	Friuli
05-01-2008	04:07:31.57	46.088	13.881	8.8	2.6	Grahovo	Slovenia
05-01-2008	05:21:53.15	46.548	13.263	3.2	2.0	Pontebba	Friuli
06-01-2008	07:54:38.22	46.315	13.636	8.0	1.3	Kobarid	Slovenia
08-01-2008	17:56:44.59	44.473	10.311	25.9	2.6	Ranzano	Emilia
08-01-2008	21:41:14.23	46.649	10.164	13.1	2.8	Ponte del Gallo	Lombardia
09-01-2008	01:24:59.52	44.476	10.230	21.4	3.0	Ranzano	Emilia
09-01-2008	06:37:21.05	46.139	13.455	15.8	1.8	S.Pietro al Natisone	Friuli
09-01-2008	11:07:29.02	46.311	12.534	6.1	2.1	Claut	Friuli
11-01-2008	19:32:42.71	44.309	11.287	17.2	2.5	Loiano	Emilia
13-01-2008	03:50:24.06	46.263	13.667	14.7	1.5	Kobarid	Slovenia
13-01-2008	06:04:50.30	46.273	13.670	15.9	1.8	Kobarid	Slovenia
14-01-2008	13:39:28.61	46.071	13.705	12.1	1.9	Cepovan	Slovenia
14-01-2008	17:57:21.22	46.315	12.646	13.3	2.1	Clautana	Friuli
14-01-2008	21:12:55.61	46.310	13.541	6.7	2.3	Zaga	Slovenia
14-01-2008	22:22:49.44	46.263	13.599	7.3	1.9	Kobarid	Slovenia
16-01-2008	10:44:45.26	46.315	13.637	9.4	1.5	Kobarid	Slovenia
16-01-2008	11:26:27.94	46.104	14.130	17.5	1.9	Poljane	Slovenia
18-01-2008	12:16:03.91	46.352	13.580	4.7	1.8	Soca	Slovenia
19-01-2008	08:08:55.27	46.118	13.794	9.4	1.6	Most Na Soci	Slovenia
19-01-2008	13:17:24.81	46.304	13.251	6.9	2.0	Lusevera	Friuli
20-01-2008	20:08:01.16	46.372	12.828	10.1	2.0	Villa Santina	Friuli
20-01-2008	22:41:52.63	46.066	15.602	10.5	2.8	Dole	Slovenia
21-01-2008	08:50:32.31	46.312	13.594	6.7	2.1	Kobarid	Slovenia
21-01-2008	09:56:23.20	43.945	10.208	8.3	2.9	Viareggio	Toscana
21-01-2008	16:40:35.23	46.780	9.383	5.8	3.8	Chur	Svizzera
22-01-2008	16:35:19.90	46.329	13.541	14.8	1.7	Zaga	Slovenia
24-01-2008	04:42:26.38	46.733	13.631	8.6	2.3	Paternion	Austria
26-01-2008	15:32:11.53	46.321	13.584	7.1	2.6	Kobarid	Slovenia
26-01-2008	20:57:43.71	44.498	10.263	21.7	2.5	Ranzano	Emilia
27-01-2008	03:36:05.54	46.359	12.884	7.3	1.6	Villa Santina	Friuli
28-01-2008	09:46:15.98	46.392	13.057	11.8	1.3	Tolmezzo	Friuli
28-01-2008	09:46:15.98	46.392	13.057	11.8	1.3	Iolmezzo	Friuli

Tabella 4.2: Terremoti localizzati dalla RSFVG nel 2008.

logs

data	ora	lat.	long.	prof.	MD	località	regione
	UTCO	°N	°E	(km)			
28-01-2008	17:18:37.02	46.113	14.767	11.7	2.4	Moravce	Slovenia
29-01-2008	14:07:23.73	46.078	13.751	26.8	2.1	Cepovan	Slovenia
31-01-2008	18:41:42.07	46.319	13.641	7.6	1.9	Kobarid	Slovenia
02-02-2008	12:27:47.82	46.486	12.783	5.4	1.9	Sauris	Friuli
05-02-2008	08:39:26.03	46.297	13.170	6.5	1.0	Gemona	Friuli
05-02-2008	11:46:27.60	45.118	14.985	10.1	2.8	Dreznica	Croazia
05-02-2008	15:50:52.80	45.751	14.335	12.8	2.5	Cerknica	Slovenia
06-02-2008	10:55:19.68	45.522	13.844	13.5	1.6	S.Sergio	Slovenia
07-02-2008	07:22:58.62	46.313	13.594	0.8	1.5	Kobarid	Slovenia
08-02-2008	12.27.50.45	40.410	13.018	11.8	2.3	Tolmezzo	Friuli
08-02-2008	12:27:59.45	46.405	12.998	13.2	1.8	Ioimezzo	Friuli
12 02 2008	10:19:25.02	44.204	10.945	24.9	3.0	Montese Kabarid	Emilia
13-02-2008	03:33:39.40	40.311	13.390	/.1	1.9	Kobaria Uoriul	Slovenia
13-02-2008	13:19:40.21	40.018	14.287	9.7	2.3	Horjul Shafa Laha	Slovenia
13-02-2008	14:42:17.90	40.104	14.525	12.5	1.9	Skolla-Loka	Slovenia Enivili
14-02-2008	04:02:37:10	40.550	13.160	0.2	0.9	Noggio Udifiese Daisakofal	Austria
14-02-2008	20.37.40.80	40.719	13.132	9.2	2.0	Dengart	Austria
17 02 2008	09.32.37.32	47.240	10.125	7.0 17.8	2.4	Corniglio	Ausula
17-02-2008	04.38.30.83	44.479	12 303	63	2.4	Puos d'Alpago	Veneto
20.02.2008	20.00.28 02	46.157	12.595	8.0	1.9	Gemona	Friuli
20-02-2008	20.00.28.92	46 376	10.868	0.7	1.0 2.3	Male'	Trentino
20-02-2008	10.30.30.24	46 230	13 725	13	1.7	Tolmin	Slovenia
22-02-2008	06:55:28.76	45 702	14 255	12.4	23	Debela-Gora	Slovenia
22-02-2008	10:53:48.66	46 267	13 577	7.0	1.2	Zaga	Slovenia
23-02-2008	11.36.41.33	46 230	13.578	6.4	1.2	Drenchia	Friuli
24-02-2008	00:35:44.58	46.257	13.583	6.5	1.6	Kobarid	Slovenia
25-02-2008	00:06:16.26	46.265	13.589	3.5	1.9	Kobarid	Slovenia
26-02-2008	04:01:57.50	46.223	13.763	7.0	1.1	Tolmin	Slovenia
27-02-2008	11:07:40.23	44.139	11.743	27.9	2.7	Modigliana	Romagna
28-02-2008	08:26:54.76	46.473	12.807	11.2	1.5	Sauris	Friuli
29-02-2008	11:41:59.38	46.319	13.009	7.6	3.7	Trasaghis	Friuli
01-03-2008	05:14:02.53	44.061	11.224	9.2	2.8	Barberino di Mugello	Toscana
01-03-2008	07:43:13.56	44.056	11.258	15.9	4.2	Barberino di Mugello	Toscana
01-03-2008	08:43:47.30	44.046	11.243	10.5	4.2	Barberino di Mugello	Toscana
01-03-2008	10:43:06.32	44.054	11.231	12.7	4.0	Barberino di Mugello	Toscana
01-03-2008	13:26:00.52	46.312	12.992	10.5	1.8	Trasaghis	Friuli
01-03-2008	18:22:34.28	46.320	13.015	8.4	1.2	Trasaghis	Friuli
01-03-2008	19:30:33.24	46.317	13.006	10.2	1.3	Trasaghis	Friuli
01-03-2008	21:03:19.18	46.315	13.028	9.8	1.9	Trasaghis	Friuli
02-03-2008	07:03:43.17	46.316	13.013	11.3	2.1	Trasaghis	Friuli
03-03-2008	00:46:50.10	46.332	13.211	12.1	1.3	Lusevera	Friuli
03-03-2008	02:55:06.54	46.321	13.461	12.4	1.7	Zaga	Slovenia
03-03-2008	13:21:21.33	46.306	12.993	11.7	1.2	Trasaghis	Friuli
03-03-2008	23:49:40.02	46.313	13.012	11.7	2.4	Trasaghis	Friuli

Tabella 4.2: Terremoti localizzati dalla RSFVG nel 2008.

data	ora	lat.	long.	prof.	MD	località	regione
	UTC0	°N	°E	(km)			
05-03-2008	15:20:37.48	46.557	13.223	9.2	1.9	Pontebba	Friuli
05-03-2008	19:41:25.72	45.760	15.880	7.1	3.2	Dvor	Slovenia
07-03-2008	02:01:58.28	46.160	13.520	12.0	0.4	S.Pietro al Natisone	Friuli
07-03-2008	10:39:00.47	46.309	13.295	8.1	1.1	Lusevera	Friuli
09-03-2008	17:28:41.33	47.416	11.498	4.3	2.6	Kastenalm	Austria
10-03-2008	20:17:47.30	46.474	12.792	6.8	2.1	Sauris	Friuli
10-03-2008	20:31:22.02	46.426	13.807	9.3	1.3	Kranjska Gora	Slovenia
10-03-2008	20:48:05.07	46.334	13.276	12.2	1.2	Chiusaforte	Friuli
11-03-2008	15:17:05.71	46.413	13.825	11.7	1.7	Nalogu	Slovenia
11-03-2008	19:17:30.65	44.840	10.718	13.8	2.2	Novellara	Emilia
12-03-2008	16:15:56.07	46.323	13.584	8.4	1.6	Kobarid	Slovenia
14-03-2008	20:33:49.34	46.281	13.628	6.4	1.6	Kobarid	Slovenia
14-03-2008	22:39:46.14	44.312	10.912	16.6	2.1	Montese	Emilia
15-03-2008	00:45:12.30	46.183	13.835	9.0	1.6	Rut	Slovenia
17-03-2008	13:07:57.73	46.322	13.530	15.0	2.3	Zaga	Slovenia
18-03-2008	11:03:42.83	47.125	11.338	1.2	3.0	Blase B.	Austria
19-03-2008	04:50:41.88	46.741	13.643	8.8	2.9	Paternion	Austria
19-03-2008	06:25:33.12	46.334	13.003	9.4	1.4	Tolmezzo	Friuli
20-03-2008	13:24:03.89	46.485	13.555	8.3	1.9	Cave del Predil	Friuli
21-03-2008	05:42:24.61	45.911	13.946	16.5	2.0	Ajdovscina	Slovenia
21-03-2008	18:32:08.40	45.805	11.079	9.1	2.8	Pasubio	Trentino
23-03-2008	16:00:57.95	45.138	15.059	4.8	2.8	Dreznica	Croazia
24-03-2008	13:13:44.27	46.340	13.100	8.4	1.4	Moggio Udinese	Friuli
25-03-2008	07:40:44.02	46.209	13.399	14.8	2.4	Taipana	Friuli
26-03-2008	00:42:37.04	46.386	15.047	6.8 76.0	2.3	Sostanj	Slovenia
26-03-2008	09:19:30.76	44.382	9.899	/6.9	4.1	Pontremoli	Toscana
27-03-2008	11:42:54.72	40.387	10.000	7.0	2.2	Sosianj	Slovenia
28-03-2008	11:23:43.79	44.495	10.270	22.7	2.8	Kanzano Naviana D. Anduini	Emilia
28-03-2008	10:58:22.51	44.303	10.280	21.9	2.7	Neviano D.Ardunni Domzolo	Ellilla
28-05-2008	19:39:20.43	40.090	14.392	7.0 11.1	2.1	Villa Sontina	Slovenia
29-03-2008	05:00:59.74	40.595	12.879	11.1	2.5	Villa Salulla Neviene D. Arduini	Filuli
29-05-2008	20:19:12.03	44.301	10.233	22.4	2.7	Neviano D.Ardunni Koharid	Elillia
01-04-2008	12.08.00.62	40.308	13.015	0.2 12.5	2.2	Rupa	Venezia Giulia
01-04-2008	15.06.00.02	45.072	12.000	12.5	1.9	Kupa Koharid	Vellezia-Olulia
01-04-2008	21.12.11.01	40.512	0.009	10.2	2.5	Solignano	Silvellia
03-04-2008	18.26.07.29.49	44.023	9.990	50.2 14-4	5.4	Soligitatio S Diatro al Natisona	Emma
03-04-2008	18.20.07.39	40.151	13.403	14.4	1.5	S.Fletto al Natisone	Filuli
03-04-2008	18.26.20 22	46 152	13/182	14.5	0.6	S Pietro al Natisone	Friuli
05-04-2008	00.01.00 23	46 268	13 667	50	1.6	Koharid	Slovenia
06-04-2008	06.38.56 76	46 321	13.668	6.8	21	Kobarid	Slovenia
06-04-2008	19.04.54 87	46 407	13.000	6.1	1.1	Arta	Friuli
06-04-2008	23.32.27	45 618	15 347	57	3.1	Makovec	Slovenia
08-04-2008	08.30.38 72	46 268	13.665	63	1.0	Kobarid	Slovenia
09-04-2008	16.57.41 55	46 772	13 376	73	1.9	Waisach	Austria
09-04-2008	10.57.41.55	40.772	15.520	1.3	1.0	waisach	пизита

Tabella 4.2: Terremoti localizzati dalla RSFVG nel 2008.

logs

data	ora	lat.	long.	prof.	MD	località	regione
	UTCO	۳N	°Е	(km)			
09-04-2008	18:51:24.02	46.389	12.882	9.9	1.8	Villa Santina	Friuli
11-04-2008	12:11:04.56	45.097	10.682	39.2	2.5	Castellucchio	Lombardia
11-04-2008	19:54:42.78	46.981	11.309	12.1	2.5	Montarso	Alto Adige
13-04-2008	20:27:24.26	44.710	10.297	27.8	2.5	Sala Baganza	Emilia
14-04-2008	04:36:37.71	46.286	13.657	4.8	1.7	Kobarid	Slovenia
14-04-2008	07:55:01.70	46.298	13.587	11.2	1.7	Kobarid	Slovenia
15-04-2008	02:12:01.83	44.879	11.408	41.4	2.6	Bondeno	Romagna
16-04-2008	16:58:48.42	46.283	13.672	7.0	1.9	Kobarid	Slovenia
17-04-2008	01:07:36.59	46.6/1	10.110	0.3	3.1	P.Lasch.	Svizzera
17-04-2008	16:00:32.01	47.708	12.836	0.7	3.5	Saalfelden Am Stein	Austria
17-04-2008	21:59:54.99	46.294	13.668	3.2	1.5	Kobarid	Slovenia
18-04-2008	13:37:34.41	46.040	15./14	14./	1.8	Cepovan	Slovenia
19-04-2008	01:49:53.30	40.103	15.010	5.0	3.6	Zagarie	Slovenia
19-04-2008	02:54:53.42	46.105	13.295	12.4	2.0	Tricesimo	Friuli
19-04-2008	11:49:35.58	40.300	12.972	6.9 0.5	1.0	Ioimezzo Kataria	Friuli
19-04-2008	12:49:56.75	46.307	13.602	9.5	2.1	Kobaria	Slovenia
19-04-2008	17:54:40.87	40.108	12.303	0.5	2.0	Pieve d'Alpago	Veneto
20-04-2008	02:13:12.15	46.110	14.451	14.8	2.2	Medvode	Slovenia
21-04-2008	14:21:03.04	40.552	12.003	0.1	1.4	Kobarid	Slovenia
23-04-2008	12:04:14.13	40.293	12.008	14.0	1.0	Nobaria	Slovenia
24-04-2008	19:00:21.03	40.251	13.343	10.4	2.1	Pullero Koharid	Fluii
24-04-2008	22.11.43.49	40.273	10.507	9.1	2.0	Nobaliu S Catarina Valfurya	Lombardia
25-04-2008	13.16.23 30	40.413	11.742	3.5 7.0	2.4	Bassano del Granna	Veneto
23-04-2008	16.23.24.88	45 200	12/17	7.9	2.0	Golfo di Venezia	veneto
29-04-2008	12.29.24.00	46 259	12.77 13 547	23.1 Q A	1.5		Slovenia
30-04-2008	11.13.01.89	46 257	13.547	9.4	1.5	Zaga Zaga	Slovenia
30-04-2008	11.13.01.09	46 316	13.54)	73	1.4	Kobarid	Slovenia
01-05-2008	22.27.52.12	46 103	13.849	13.0	2.6	Grahovo	Slovenia
02-05-2008	16:31:50.08	46 410	13.017	12.2	1.7	Tolmezzo	Friuli
03-05-2008	07:00:04.33	44.647	10.066	20.5	2.7	Solignano	Emilia
03-05-2008	07:18:20.78	46.527	13.507	4.9	1.8	Camporosso In Valca.	Friuli
05-05-2008	09:45:30.75	46.195	13.738	14.5	1.5	Tolmin	Slovenia
05-05-2008	21:04:09.15	46.431	12.945	15.1	2.2	Ovaro	Friuli
06-05-2008	22:32:06.33	46.174	13.925	13.2	2.3	Rut	Slovenia
06-05-2008	23:21:59.12	46.166	13.913	16.2	1.4	Grahovo	Slovenia
07-05-2008	22:18:23.93	46.309	13.602	8.4	1.5	Kobarid	Slovenia
09-05-2008	13:16:01.98	46.328	12.326	9.6	2.0	Longarone	Veneto
09-05-2008	20:37:44.20	46.313	13.609	8.0	2.0	Kobarid	Slovenia
10-05-2008	05:49:03.57	46.305	13.595	9.0	1.6	Kobarid	Slovenia
10-05-2008	20:44:31.81	46.469	12.788	8.3	1.5	Sauris	Friuli
13-05-2008	22:49:05.39	46.130	14.058	15.2	2.0	Cerkno	Slovenia
13-05-2008	22:56:20.21	46.127	14.066	15.8	1.6	Cerkno	Slovenia
14-05-2008	05:44:21.11	46.125	14.060	15.3	1.6	Cerkno	Slovenia
14-05-2008	08:57:25.81	46.125	14.059	15.4	1.8	Cerkno	Slovenia

Tabella 4.2: Terremoti localizzati dalla RSFVG nel 2008.

data	ora	lat.	long.	prof.	MD	località	regione
	UTC0	°N	°E	(km)			
14-05-2008	16:29:44.01	46.127	14.064	14.7	1.4	Cerkno	Slovenia
17-05-2008	13:14:30.45	46.128	14.064	15.5	1.7	Cerkno	Slovenia
17-05-2008	22:39:24.56	46.421	13.007	13.8	1.5	Arta	Friuli
18-05-2008	02:33:39.18	45.442	11.007	12.2	3.1	Verona	Veneto
18-05-2008	22:15:13.93	46.305	13.510	15.2	1.5	Zaga	Slovenia
19-05-2008	00:09:31.69	46.283	13.632	9.9	1.3	Kobarid	Slovenia
19-05-2008	07:53:08.88	46.314	13.278	12.2	1.4	Lusevera	Friuli
20-05-2008	23:52:02.25	46.327	12.726	10.3	1.5	Tramonti di Sotto	Friuli
21-05-2008	07:16:01.21	46.281	13.700	3.5	1.4	Kobarid	Slovenia
21-05-2008	07:21:01.07	47.439	13.634	10.8	2.8	Mt.Dachstein	Austria
21-05-2008	13:30:42.31	46.263	13.648	10.4	1.4	Kobarid	Slovenia
21-05-2008	13:39:57.40	47.445	13.612	9.7	3.2	Mt.Dachstein	Austria
21-05-2008	15:32:03.35	47.446	13.593	9.4	2.9	Mt.Dachstein	Austria
22-05-2008	11:43:02.29	46.135	13.811	10.9	1.6	Most Na Soci	Slovenia
22-05-2008	11:45:27.32	46.130	13.810	9.5	1.8	Most Na Soci	Slovenia
23-05-2008	10:51:18.28	46.381	13.065	14.1	2.4	Tolmezzo	Friuli
25-05-2008	00:09:58.12	46.302	13.551	5.9	2.0	Zaga	Slovenia
25-05-2008	07:09:47.88	46.317	13.623	6.0	1.9	Kobarid	Slovenia
26-05-2008	14:23:15.68	46.207	13.983	14.8	2.0	Podbrdo	Slovenia
27-05-2008	09:52:04.64	46.306	13.273	12.8	2.6	Lusevera	Friuli
28-05-2008	02:35:11.10	46.297	13.620	8.4	2.2	Kobarid	Slovenia
28-05-2008	08:45:31.30	46.298	13.688	5.3	1.5	Kobarid	Slovenia
29-05-2008	03:51:37.02	46.285	13.858	15.8	1.5	Stara Fuzina	Slovenia
29-05-2008	09:38:52.65	46.159	13.029	11.2	2.3	S.Daniele	Friuli
29-05-2008	10:52:54.70	46.380	13.183	8.6	1.2	Moggio Udinese	Friuli
29-05-2008	11:57:33.20	46.026	13.793	6.5	1.7	Cepovan	Slovenia
29-05-2008	12:32:53.08	46.160	13.007	10.8	2.1	S.Daniele	Friuli
29-05-2008	15:02:16.13	46.291	13.615	8.9	1.7	Kobarid	Slovenia
29-05-2008	17:45:30.94	46.408	12.957	11.7	1.7	Tolmezzo	Friuli
30-05-2008	10:59:09.81	46.039	13.761	6.6	1.5	Cepovan	Slovenia
31-05-2008	06:28:25.00	46.230	12.756	18.4	1.8	Maniago	Friuli
01-06-2008	03:08:05.24	46.249	13.757	3.0	1.4	Tolmin	Slovenia
03-06-2008	15:53:41.27	46.293	13.690	4.4	1.4	Kobarid	Slovenia
07-06-2008	04:25:11.06	44.876	11.248	13.9	3.2	Finale Emilia Nord	Emilia
09-06-2008	05:16:29.15	46.225	13.321	10.7	1.6	Tarcento	Friuli
10-06-2008	02:44:25.04	46.476	12.828	11.9	1.7	Ovaro	Friuli
12-06-2008	20:37:13.80	46.242	12.978	2.0	1.7	Maiano	Friuli
14-06-2008	02:52:32.78	46.274	13.703	5.1	1.7	Kuk	Slovenia
15-06-2008	02:16:50.47	46.548	15.040	9.6	2.2	Slovenji-Gradec	Slovenia
15-06-2008	13:51:22.16	46.533	15.045	8.2	2.4	Slovenji-Gradec	Slovenia
17-06-2008	18:22:44.52	45.653	10.495	7.0	2.8	Salo'	Lombardia
18-06-2008	00:09:43.42	45.646	10.497	7.0	2.8	Salo ⁷	Lombardia
19-06-2008	02:20:07.01	44.294	9.888	9.6	3.0	Aulla	Toscana
19-06-2008	03:21:06.55	46.217	13.381	13.9	1.5	Taipana	Friuli
19-06-2008	05:44:15.10	46.191	14.307	16.7	1.9	Selca	Slovenia

Tabella 4.2: Terremoti localizzati dalla RSFVG nel 2008.

data	ora	lat.	long.	prof.	MD	località	regione
	UTC0	°N	°Е	(km)			
19-06-2008	22:51:25.14	45.887	14.003	12.8	1.9	Col	Slovenia
20-06-2008	00:00:24.86	46.264	12.497	10.5	1.8	Claut	Friuli
21-06-2008	17:27:59.81	46.575	10.593	9.5	2.3	Cima Vertana	Alto Adige
21-06-2008	19:21:37.51	46.303	13.582	5.5	1.5	Kobarid	Slovenia
22-06-2008	15:05:46.52	47.851	14.298	2.8	2.6	Rottenmann	Austria
22-06-2008	18:44:05.97	46.102	13.700	13.9	2.2	Stregna	Friuli
24-06-2008	03:43:31.60	45.699	15.200	4.4	2.9	Poljane	Slovenia
25-06-2008	09:47:52.64	45.818	11.008	2.9	2.8	Ala	Trentino
25-06-2008	14:09:21.99	45.896	15.093	9.3	3.2	Trebnje	Slovenia
25-06-2008	15:48:54.08	45.946	14.470	14.9	2.4	Zelimije Dagag dal Canaialia	Slovenia
23-06-2008	10:33:14.79	40.005	12.41/	11.7	1.0	Bosco del Cansigno	Veneto
28-00-2008	17.22.24.12.90	45.784	14.314	4.4	4.5	INOVA VAS	Slovenia
28-00-2008	17:22:34.33	40.195	12.304	3.2 4.0	2.0	VIAIISKO	Slovenia
02-07-2008	15.54.21.81	40.272	15.750	4.9	1.5	Crna	Slovenia
02-07-2008	12.57.08.35	46.115	13 505	15.4	2.0	Streama	Friuli
00-07-2008	09.53.52.01	46 312	13 533	15.4	2.0	Zaga	Slovenia
09-07-2008	18.08.19.15	46 115	14 184	11.9	1.4	Poliane	Slovenia
10-07-2008	01.59.38.46	46 111	14.104	16.1	2.1	Poliane	Slovenia
10-07-2008	03.17.04.74	46 111	14 186	10.1	1.6	Poliane	Slovenia
10-07-2008	10.38.22.04	45 973	13 923	15.9	2.0	Goliaki	Slovenia
10-07-2008	10:39:59.56	45.973	13.918	18.1	2.0	Goliaki	Slovenia
10-07-2008	13:34:42.11	46.372	13.443	10.1	1.5	M.Canin	Friuli
10-07-2008	15:02:15.71	44.392	10.846	21.8	2.3	Pavullo Nel Frignano	Emilia
11-07-2008	12:02:05.51	46.410	13.058	11.5	1.1	Tolmezzo	Friuli
14-07-2008	03:51:41.21	45.659	10.557	7.0	3.5	Salo'	Lombardia
17-07-2008	06:09:37.07	46.201	12.761	13.4	2.6	Maniago	Friuli
17-07-2008	11:08:49.78	46.311	14.174	13.4	1.9	Kropa	Slovenia
17-07-2008	18:17:42.29	46.454	13.540	7.5	1.3	Cave del Predil	Friuli
18-07-2008	16:54:57.58	46.342	13.742	5.6	1.7	Nalogu	Slovenia
18-07-2008	22:54:04.02	47.463	13.786	3.8	3.6	Grossming	Austria
19-07-2008	22:48:50.01	44.222	11.280	18.7	2.9	Monghidoro	Emilia
19-07-2008	23:30:07.25	47.104	10.207	0.2	2.8	Valluga	Austria
20-07-2008	04:50:56.30	45.972	13.025	20.4	1.6	Codroipo	Friuli
22-07-2008	07:21:02.12	46.246	13.785	12.0	0.5	Tolmin	Slovenia
22-07-2008	20:01:24.10	46.306	13.298	13.2	1.4	Lusevera	Friuli
22-07-2008	21:24:22.68	46.209	12.753	13.6	2.4	Maniago	Friuli
23-07-2008	03:22:25.90	44.893	11.184	14.2	3.3	S.Felice Sul Panaro	Emilia
24-07-2008	02:07:06.97	44.864	11.172	14.8	2.9	S.Felice Sul Panaro	Emilia
24-07-2008	03:45:54.19	46.258	13.255	8.8	1.6	Lusevera	Friuli
25-07-2008	03:11:08.42	46.103	14.222	10.2	2.1	Skofia-Loka	Slovenia
25-07-2008	10:33:53.32	46.150	13.444	14.6	1.2	Cividale	Friuli
25-07-2008	10:34:26.40	46.147	13.443	15.1	1.2	Cividale	Friuli
25-07-2008	10:38:15.44	46.135	13.451	13.0	1.5	Cividale	Friuli
25-07-2008	10:38:46.39	46.137	13.450	13.2	1.2	Cividale	Friuli

Tabella 4.2: Terremoti localizzati dalla RSFVG nel 2008.

data	ora	lat.	long.	prof.	MD	località	regione
	UTC0	°N	°E	(km)			
25-07-2008	10:46:13.75	46.147	13.446	14.7	0.9	Cividale	Friuli
25-07-2008	10:47:09.47	46.148	13.447	14.9	1.2	Cividale	Friuli
25-07-2008	15:04:37.60	46.145	13.447	15.4	1.6	Cividale	Friuli
26-07-2008	02:26:30.50	46.439	12.930	7.8	1.1	Ovaro	Friuli
26-07-2008	21:53:27.85	46.253	13.628	2.3	1.8	Kobarid	Slovenia
27-07-2008	09:56:14.21	46.301	13.556	6.9	1.7	Zaga	Slovenia
29-07-2008	20:21:03.36	46.314	13.609	6.6	1.1	Kobarid	Slovenia
30-07-2008	07:27:47.59	45.989	14.666	9.4	2.2	Smarje	Slovenia
30-07-2008	10:19:54.39	46.230	13.803	5.5	1.8	Tolmin	Slovenia
30-07-2008	13:40:04.41	46.492	13.089	6.7	1.3	M.Sernio	Friuli
01-08-2008	08:21:01.11	46.343	13.538	8.9	1.5	Sella Nevea	Friuli
04-08-2008	20:07:31.19	46.462	13.058	8.4	1.7	Arta	Friuli
05-08-2008	10:10:58.76	46.114	12.502	8.4	1.6	M.Cavallo	Friuli
06-08-2008	10:20:01.17	46.109	12.507	9.7	1.4	M.Cavallo	Friuli
06-08-2008	18:51:33.06	45.609	13.004	27.5	2.3	Porto di Baseleghe	Veneto
06-08-2008	20:56:28.58	46.307	13.262	7.5	2.2	Lusevera	Friuli
08-08-2008	11:25:43.97	46.098	12.523	10.8	1.5	M.Cavallo	Friuli
08-08-2008	13:29:11.88	46.298	13.137	8.0	1.2	Gemona	Friuli
11-08-2008	03:00:27.83	46.155	13.472	13.0	1.3	S.Pietro al Natisone	Friuli
11-08-2008	03:04:14.41	46.160	13.469	12.1	1.4	S.Pietro al Natisone	Friuli
11-08-2008	05:19:35.34	45.828	10.819	0.8	2.7	Malcesine	Veneto
12-08-2008	00:44:19.76	46.771	12.216	14.3	2.0	S.Martino In Casies	Alto Adige
12-08-2008	03:52:23.95	46.769	12.222	15.9	2.4	S.Martino In Casies	Alto Adige
13-08-2008	05:06:19.23	46.581	14.033	10.7	2.2	Ledenitzen	Austria
14-08-2008	03:04:10.92	46.203	15.512	5.2	2.6	Vransko	Slovenia
14-08-2008	04:02:27.78	46.167	12.448	6.5	2.5	Pieve d'Alpago	Veneto
14-08-2008	20:38:43.04	46.286	13.642	8.0	1.6	Kobarid	Slovenia
14-08-2008	23:58:22.71	46.173	13.890	15.9	1.6	Rut	Slovenia
17-08-2008	10:51:07.23	46.390	13.022	10.0	2.0	Tolmezzo	Friuli
17-08-2008	16:01:49.99	46.291	13.613	8.7	1.6	Kobarid	Slovenia
17-08-2008	19:07:01.96	47.151	14.397	13.6	2.1	Scheifling	Austria
18-08-2008	19:44:05.99	46.273	13.054	8.2	2.0	Trasaghis	Friuli
19-08-2008	09:55:54.00	46.339	13.171	11.1	2.4	Moggio Udinese	Friuli
19-08-2008	09:57:14.27	46.334	13.161	11.1	1.3	Moggio Udinese	Friuli
19-08-2008	16:55:25.71	44.874	11.178	13.7	3.1	S.Felice Sul Panaro	Emilia
23-08-2008	18:35:21.53	45.396	14.512	6.6	2.9	Cavle	Croazia
24-08-2008	22:09:52.69	46.272	13.642	7.5	1.3	Kobarid	Slovenia
25-08-2008	03:10:41.14	45.849	9.983	8.0	2.7	Rovetta	Lombardia
25-08-2008	11:27:21.85	46.365	13.469	3.8	1.6	Sella Nevea	Friuli
26-08-2008	03:50:43.57	46.374	12.553	8.3	2.6	M.Pramaggiore	Friuli
26-08-2008	13:45:21.92	46.330	13.143	7.4	1.2	Gemona	Friuli
26-08-2008	15:43:58.43	46.177	13.691	14.9	1.9	Drenchia	Friuli
27-08-2008	19:55:22.25	46.285	13.632	6.2	1.5	Kobarid	Slovenia
28-08-2008	05:39:49.19	46.186	13.040	7.6	2.5	Maiano	Friuli
28-08-2008	09:58:40.35	46.236	13.787	2.2	1.6	Tolmin	Slovenia

Tabella 4.2: Terremoti localizzati dalla RSFVG nel 2008.

logs

data	ora	lat.	long.	prof.	MD	località	regione
	UTC0	°N	°E	(km)			
28-08-2008	12:08:41.26	46.167	13.034	9.3	2.0	Maiano	Friuli
28-08-2008	12:43:35.85	46.372	12.568	7.9	1.9	M.Pramaggiore	Friuli
30-08-2008	02:27:15.73	46.193	13.688	10.9	1.2	Drenchia	Friuli
31-08-2008	00:26:27.58	46.162	13.611	11.4	1.3	Stregna	Friuli
31-08-2008	04:33:20.26	46.395	12.903	13.8	2.9	Villa Santina	Friuli
31-08-2008	04:38:43.07	46.388	12.893	12.4	2.0	Villa Santina	Friuli
01-09-2008	03:07:03.98	46.479	12.909	5.2	1.6	Ovaro Kalani I	Friuli
01-09-2008	09:44:55.11	46.290	13.043	1.2	1.5	Kodaria	Slovenia
02-09-2008	10.48.55 70	40.150	14.999	0.0	2.2	Comono	Siovenia
02-09-2008	05.20.10.03	40.300	13.105	12.5	1.7	7iri	Slovenia
03-09-2008	07.51.28 94	46 222	13 426	00	1.9	Tainana	Friuli
03-09-2008	18.15.03.82	46 640	12.420	18.7	1.0	Valle Visdende	Veneto
03-09-2008	22:58:49.04	46 481	13 506	77	2.1	Cave del Predil	Friuli
04-09-2008	18:20:46.27	46.229	13.429	9.3	1.8	Taipana	Friuli
04-09-2008	22:02:22.85	46.001	12.386	10.8	2.2	Bosco del Cansiglio	Veneto
04-09-2008	22:50:16.90	44.256	11.318	20.0	2.8	Loiano	Emilia
04-09-2008	23:18:25.66	46.227	13.428	8.8	1.8	Taipana	Friuli
05-09-2008	03:54:35.51	44.470	10.207	21.0	2.7	Ranzano	Emilia
05-09-2008	11:25:55.72	45.844	13.874	13.1	1.9	Ajdovscina	Slovenia
05-09-2008	12:56:10.06	46.034	14.065	16.1	1.8	Idrija	Slovenia
06-09-2008	06:48:45.78	46.109	13.647	11.9	1.3	Stregna	Friuli
08-09-2008	05:21:50.63	46.337	12.893	12.9	2.0	Villa Santina	Friuli
09-09-2008	12:31:05.74	46.501	12.849	3.2	1.6	Comeglians	Friuli
10-09-2008	04:10:12.84	46.117	13.598	13.0	1.5	Stregna	Friuli
10-09-2008	12:35:11.88	46.421	10.420	13.6	2.4	Bormio	Lombardia
10-09-2008	19:38:02.89	46.304	13.113	5.9	2.1	Gemona	Friuli
11-09-2008	09:08:04.00	46.806	11.219	2.7	2.3	S.Leonardo Passiria	Alto Adige
15-09-2008	15:42:00.64	46.369	13.397	12.2	1.4	M.Canin	Friuli
17-09-2008	10:12:38.96	46.318	13.645	9.0	1.5	Kobarid	Slovenia
17-09-2008	18:06:35.61	46.318	13.651	9.0	1.2	Kobarid	Slovenia
17-09-2008	22:10:39.33	47.046	11.320	7.3	3.0	Mt.Habicht	Austria
18-09-2008	12:39:07.06	40.320	13.050	0.9	1.8	Kobaria Delfene	Slovenia
19-09-2008	01:22:20.77	40.178	13.481	15.0	0.9	Pullero	Friuli
19-09-2008	01:23:14.00 00:23:53.47	40.173	13.462	13.5	1.3	Pullero Dabala Gara	Fluii
20-09-2008	10.10.57 31	45.717	14.234	12.4	2.4	Tolmezzo	Siovenia
20-09-2008	10.19.37.31	40.390	13.040	13.4	2.1	Tolmezzo	Friuli
20-09-2008	10.20.13.91	46 389	13.078	12.7	0.7	Tolmezzo	Friuli
20-09-2008	15.26.04 51	45 797	13.055	16.6	2.0	Palazzolo D Stella	Friuli
21-09-2008	10:49:20 70	44,264	10.818	17.6	2.7	Lama Mocogno	Emilia
22-09-2008	04:11:46.06	45.653	14.205	11.0	2.2	Knezak	Slovenia
22-09-2008	07:41:56.84	46.121	14.994	5.7	2.5	Zagarie	Slovenia
22-09-2008	12:01:22.57	46.094	13.775	12.4	1.3	Most Na Soci	Slovenia
23-09-2008	10:29:34.84	46.408	13.081	10.9	1.5	Moggio Udinese	Friuli

Tabella 4.2: Terremoti localizzati dalla RSFVG nel 2008.

data	ora	lat.	long.	prof.	MD	località	regione
	UTC0	°N	°E	(km)			
24-09-2008	18:35:46.63	46.202	12.759	15.1	2.4	Maniago	Friuli
25-09-2008	11:58:29.54	46.408	13.394	11.9	1.7	M.Canin	Friuli
28-09-2008	02:55:56.86	46.491	13.472	5.0	1.5	Cave del Predil	Friuli
28-09-2008	09:41:51.08	46.283	13.669	13.4	1.6	Kobarid	Slovenia
28-09-2008	19:39:43.26	46.500	13.559	6.9	1.1	Camporosso In Valca.	Friuli
29-09-2008	00:18:23.97	46.498	13.574	7.1	1.1	Cave del Predil	Friuli
29-09-2008	09:36:37.90	46.371	13.474	9.9	1.5	Sella Nevea	Friuli
29-09-2008	11:23:25.95	46.484	13.572	5.4	1.6	Cave del Predil	Friuli
29-09-2008	16:51:55.44	46.269	13.672	6.4	1.6	Kobarid	Slovenia
30-09-2008	05:37:46.14	45.594	14.438	8.0	3.0	Masun	Slovenia
30-09-2008	12:38:50.74	46.660	13.815	10.8	1.8	Bleiberg	Austria
30-09-2008	17:44:15.04	46.083	13.638	13.5	1.5	Plave	Slovenia
01-10-2008	19:03:41.34	44.759	10.719	18.4	2.3	Correggio	Emilia
02-10-2008	18:37:57.97	46.271	12.403	7.8	2.3	Cimolais	Friuli
04-10-2008	00:37:36.83	46.194	13.589	12.3	1.5	Drenchia	Friuli
04-10-2008	22:22:46.79	45.132	12.386	20.9	2.6	Adriatico	
05-10-2008	01:05:56.84	45.489	15.848	9.1	3.3	Brod	Croazia
06-10-2008	09:19:45.33	45.279	14.669	6.9	2.9	Hrelijn	Croazia
07-10-2008	00:43:17.56	46.475	13.485	4.2	1.4	Cave del Predil	Friuli
08-10-2008	20:29:07.71	45.855	12.492	16.5	2.8	Gaiarine	Veneto
09-10-2008	13:00:40.90	46.358	13.405	11.1	1.6	M.Canin	Friuli
09-10-2008	17:03:46.39	45.804	12.065	7.0	3.3	Montebelluna	Veneto
09-10-2008	18:49:24.73	46.411	12.793	7.0	1.9	Ampezzo	Friuli
10-10-2008	01:18:49.16	46.118	13.605	12.8	1.2	Stregna	Friuli
10-10-2008	17:06:53.49	46.135	13.605	13.8	1.4	Stregna	Friuli
10-10-2008	22:43:48.04	46.743	10.751	2.3	3.0	Punta Saldura	Alto Adige
12-10-2008	21:52:57.15	46.350	13.032	11.6	1.7	Tolmezzo	Friuli
13-10-2008	08:11:13.75	45.896	13.607	8.4	1.7	Rupa	Venezia-Giulia
13-10-2008	12:15:45.79	45.882	10.535	2.2	2.5	Darzo	Trentino
14-10-2008	17:41:15.14	46.200	13.534	14.2	2.4	Pulfero	Friuli
16-10-2008	04:19:05.21	46.285	12.402	9.2	2.3	Cimolais	Friuli
16-10-2008	05:00:57.75	46.275	12.413	7.1	2.5	Cimolais	Friuli
16-10-2008	07:57:47.64	46.296	12.411	9.1	2.9	Cimolais	Friuli
16-10-2008	12:17:22.28	46.285	12.413	8.2	1.9	Cimolais	Friuli
16-10-2008	23:23:21.47	46.291	12.423	6.2	1.8	Cimolais	Friuli
17-10-2008	19:55:31.21	46.286	12.401	10.1	2.2	Cimolais	Friuli
17-10-2008	20:36:45.97	46.283	12.411	7.7	2.1	Cimolais	Friuli
19-10-2008	03:50:01.18	46.288	12.405	8.0	2.6	Cimolais	Friuli
19-10-2008	04:19:01.59	46.294	12.393	8.0	1.9	Cimolais	Friuli
19-10-2008	13:43:42.93	46.316	13.605	8.4	1.9	Kobarid	Slovenia
19-10-2008	14:27:44.72	46.402	13.003	11.2	1.3	Tolmezzo	Friuli
21-10-2008	08:12:39.53	45.721	14.178	12.9	3.6	Pivka	Slovenia
21-10-2008	20:29:42.63	46.467	13.169	7.3	1.6	M.Sernio	Friuli
22-10-2008	09:31:39.77	46.355	12.898	11.2	1.8	Villa Santina	Friuli
22-10-2008	18:21:21.73	45.726	14.193	11.6	3.0	Pivka	Slovenia

Tabella 4.2: Terremoti localizzati dalla RSFVG nel 2008.

data	ora LITCO	lat. °N	long. °F	prof.	MD	località	regione
22-10-2008	19:33:25.18	45 720	14 182	10.8	23	Pivka	Slovenia
22-10-2008	21:52:22.96	46.274	12.489	11.1	2.3	Claut	Friuli
23-10-2008	15:03:20.37	45.695	14.189	14.7	2.2	Pivka	Slovenia
23-10-2008	18:38:24.64	46.253	13.075	0.6	1.1	Trasaghis	Friuli
24-10-2008	02:09:39.05	46.314	12.576	12.0	2.1	Claut	Friuli
26-10-2008	01:20:34.57	46.506	13.252	9.0	1.4	Pontebba	Friuli
27-10-2008	03:08:26.51	46.414	12.736	8.9	1.7	Ampezzo	Friuli
27-10-2008	22:30:50.87	46.262	13.073	7.0	1.3	Trasaghis	Friuli
28-10-2008	02:38:57.30	46.282	13.701	3.9	1.8	Kobarid	Slovenia
28-10-2008	05:20:06.31	46.345	13.210	11.4	1.7	Chiusaforte	Friuli
30-10-2008	10:10:20.37	46.496	13.552	5.9	1.4	Cave del Predil	Friuli
30-10-2008	22:39:01.31	46.322	13.592	8.8	1.2	Kobarid	Slovenia
31-10-2008	15:12:24.35	46.329	13.634	7.7	2.6	Kobarid	Slovenia
01-11-2008	01:49:39.03	46.319	13.611	8.2	1.7	Kobarid	Slovenia
01-11-2008	09:22:10.46	46.306	13.602	9.1	1.1	Kobarid	Slovenia
01-11-2008	14:10:53.20	46.448	13.573	4.4	1.4	Cave del Predil	Friuli
02-11-2008	01:25:55.93	45.807	11.061	5.5	2.7	Ala	Trentino
02-11-2008	03:00:56.83	46.321	13.615	5.0	1.9	Kobarid	Slovenia
02-11-2008	08:20:06.58	46.145	14.133	8.1	2.8	Poljane	Slovenia
02-11-2008	15:31:08.39	46.311	13.607	10.8	1.1	Kobarid	Slovenia
03-11-2008	04:38:59.65	46.315	13.616	9.2	1.4	Kobarid	Slovenia
03-11-2008	09:22:35.52	46.317	13.612	9.1	1.2	Kobarid	Slovenia
03-11-2008	11:34:26.45	46.511	13.066	7.9	1.1	Paluzza	Friuli
04-11-2008	14:29:43.01	46.146	14.122	9.8	1.9	Poljane	Slovenia
04-11-2008	14:31:19.88	46.117	12.394	6.6	1.7	Puos d'Alpago	Veneto
04-11-2008	16:10:16.83	46.492	13.674	7.4	1.6	Fusine	Friuli
04-11-2008	21:36:50.60	46.119	12.399	6.9	1.9	Puos d'Alpago	Veneto
05-11-2008	06:49:07.32	46.404	13.055	12.2	1.6	Tolmezzo	Friuli
06-11-2008	16:07:58.99	46.298	12.712	11.3	1.8	Tramonti di Sotto	Friuli
09-11-2008	05:04:56.24	46.307	13.604	11.1	1.2	Kobarid	Slovenia
09-11-2008	22:50:16.45	46.533	14.755	9.2	2.4	Globasnitz	Austria
10-11-2008	04:21:25.59	46.491	13.822	/.0	1.4	Kranjska Gora	Slovenia
10-11-2008	15:55:52.27	46.421	12.724	11.0	1.8	Sauris	Friuli
11-11-2008	11:23:22.00	40.100	12.479	14.5	1.0	M.Cavallo Duca d'Almaga	Friuli
12-11-2008	06:02:11:50	40.133	12.338	11.0	0.0	Puos d'Alpago	Veneto
12-11-2008	20.55.40 16	40.152	12.544	12.1	1.7	Fuos u Alpago	Frinli
14-11-2008	20.33.49.10	40.527	12 305	8.6	1.2	Demona Duos d'Alpago	Veneto
16-11-2008	21.45.51.45	46.123	12.393	14.4	1.4	Voisko	Slovenia
18_11_2008	22.37.10.72	46 327	13.502	13.9	1.7	Zaga	Slovenia
18-11-2008	22.50.01.91	44 196	11 955	30.8	3.1	Forli'	Romagna
21-11-2008	02.36.25 38	46 379	13 241	83	3.0	Chiusaforte	Frinli
21-11-2008	04.49.04 46	46 285	13.271	6.5	17	Trasaghis	Friuli
23-11-2008	04:28:29.64	46.478	13.474	7.1	1.7	Cave del Predil	Friuli
23-11-2008	08:11:59.44	44.186	11.937	34.3	2.9	Castrocaro	Romagna

Tabella 4.2: Terremoti localizzati dalla RSFVG nel 2008.

data	ora	lat.	long.	prof.	MD	località	regione
	UTC0	°N	°E	(km)			
23-11-2008	22:21:00.45	45.929	11.823	10.1	2.0	Arsie	Veneto
29-11-2008	22:23:37.27	46.379	13.074	12.7	1.5	Tolmezzo	Friuli
30-11-2008	02:55:50.37	46.374	12.948	6.5	1.9	Villa Santina	Friuli
30-11-2008	11:43:12.47	46.364	13.305	11.4	1.6	Chiusaforte	Friuli
04-12-2008	00:24:01.84	46.264	13.682	6.1	1.3	Kobarid	Slovenia
05-12-2008	04:29:19.99	46.261	13.688	8.1	1.7	Kobarid	Slovenia
07-12-2008	14:22:45.48	46.073	14.041	9.7	1.7	Idrija	Slovenia
08-12-2008	00:36:01.99	46.190	14.601	15.2	2.3	Kamnik	Slovenia
08-12-2008	06:53:06.74	46.315	13.125	12.5	1.4	Gemona	Friuli
09-12-2008	04:49:23.50	46.429	13.120	13.3	1.2	M.Sernio	Friuli
09-12-2008	08:53:00.90	46.433	13.121	12.4	1.2	M.Sernio	Friuli
10-12-2008	13:56:28.70	46.032	12.184	11.0	1.8	Mel	Veneto
13-12-2008	06:02:23.94	46.512	10.060	2.2	3.0	Passo di Cassana	Lombardia
13-12-2008	11:18:17.34	45.120	14.934	4.5	2.7	Ledenice	Croazia
18-12-2008	00:07:36.72	46.225	13.366	12.4	1.6	Taipana	Friuli
18-12-2008	04:55:29.33	46.285	13.630	6.9	1.0	Kobarid	Slovenia
18-12-2008	18:56:15.48	46.350	12.898	8.1	1.3	Villa Santina	Friuli
19-12-2008	09:07:02.23	44.836	11.154	28.5	2.3	S.Felice Sul Panaro	Emilia
19-12-2008	12:53:08.98	45.989	14.352	16.5	1.8	Preserje	Slovenia
20-12-2008	22:15:07.93	45.562	11.005	9.7	2.3	Grezzana	Veneto
21-12-2008	13:18:11.00	46.461	13.069	7.9	0.5	Arta	Friuli
21-12-2008	21:46:11.19	46.618	10.325	16.1	1.7	Acqua del Gallo	Lombardia
22-12-2008	14:44:50.96	45.941	11.945	10.6	1.8	Seren del Grappa	Veneto
23-12-2008	03:44:12.49	46.321	12.599	11.3	1.9	Clautana	Friuli
23-12-2008	15:18:20.27	44.536	10.352	28.8	3.5	Rossena	Emilia
23-12-2008	15:24:20.47	44.529	10.233	30.6	5.5	Neviano D.Arduini	Emilia
23-12-2008	21:58:26.37	44.522	10.392	29.9	5.1	Rossena	Emilia
23-12-2008	23:37:05.74	44.565	10.300	27.3	4.0	Neviano D.Arduini	Emilia
24-12-2008	12:22:58.26	44.505	10.429	27.3	3.7	Rossena	Emilia
24-12-2008	17:32:35.24	46.333	13.594	8.4	1.6	Kobarid	Slovenia
24-12-2008	21:09:09.19	44.549	10.441	26.0	2.6	Rossena	Emilia
24-12-2008	21:38:59.01	44.565	10.306	25.6	2.9	Neviano D.Arduini	Emilia
25-12-2008	03:08:29.45	44.542	10.364	29.0	4.2	Rossena	Emilia
25-12-2008	06:00:30.86	44.550	10.395	25.5	2.7	Rossena	Emilia
25-12-2008	12:15:49.08	44.547	10.351	28.6	2.3	Rossena	Emilia
25-12-2008	14:28:29.95	46.488	10.637	5.7	1.6	M.Cevedale	Trentino
25-12-2008	14:37:22.62	44.541	10.362	27.6	2.3	Rossena	Emilia
25-12-2008	22:41:05.10	44.583	10.329	25.0	2.6	S.Polo d'Enza	Emilia
25-12-2008	22:51:40.28	44.521	10.451	26.6	2.4	Rossena	Emilia
26-12-2008	07:54:06.92	44.532	10.371	27.7	2.8	Rossena	Emilia
26-12-2008	11:13:17.65	44.587	10.390	25.0	2.7	S.Polo d'Enza	Emilia
26-12-2008	12:30:57.32	44.576	10.310	26.2	3.0	Neviano D.Arduini	Emilia
27-12-2008	08:23:14.62	44.635	10.401	13.4	2.9	S.Polo d'Enza	Emilia
27-12-2008	12:40:27.73	44.285	11.436	27.1	3.1	Monterenzio	Emilia
27-12-2008	13:50:37.11	46.265	13.724	5.1	0.8	Kuk	Slovenia

Tabella 4.2: Terremoti localizzati dalla RSFVG nel 2008.

Logs

data	ora	lat.	long.	prof.	MD	località	regione
	UTC0	°N	°E	(km)			
27-12-2008	23:07:56.97	46.412	12.822	6.7	2.1	Ampezzo	Friuli
28-12-2008	00:28:03.54	44.577	10.472	22.4	2.5	Casina	Emilia
28-12-2008	07:18:33.49	46.292	13.270	10.7	1.7	Lusevera	Friuli
28-12-2008	13:21:01.43	44.544	10.543	21.2	2.6	Casina	Emilia
28-12-2008	14:46:05.26	44.579	10.310	27.4	2.6	Neviano D.Arduini	Emilia
28-12-2008	19:41:04.48	45.815	11.266	3.8	2.1	Posina	Veneto
29-12-2008	02:09:42.30	44.486	10.349	33.9	2.3	Castelnovo Ne Monti	Emilia
29-12-2008	04:10:07.47	46.863	14.288	2.5	2.7	Strassz.	Austria
29-12-2008	04:20:20.28	44.548	10.432	25.7	2.8	Rossena	Emilia
29-12-2008	07:22:57.17	46.312	13.236	12.6	1.6	Lusevera	Friuli
29-12-2008	15:58:35.27	46.857	14.273	4.3	1.9	Strassz.	Austria
29-12-2008	18:24:40.38	46.479	10.561	8.4	2.3	Il Gran Zebru'	Lombardia
29-12-2008	18:41:00.35	44.575	10.326	24.8	2.5	Neviano D.Arduini	Emilia
30-12-2008	00:46:22.06	46.123	12.383	11.2	1.8	Puos d'Alpago	Veneto
30-12-2008	01:06:58.91	46.355	13.037	6.6	1.7	Tolmezzo	Friuli
30-12-2008	01:07:54.66	46.356	13.046	4.5	1.0	Tolmezzo	Friuli
30-12-2008	09:18:40.93	46.280	13.809	4.8	1.7	Kuk	Slovenia
30-12-2008	16:58:37.00	45.672	14.413	14.0	2.8	Otak	Slovenia
30-12-2008	18:23:06.90	46.290	13.112	9.1	2.0	Gemona	Friuli
31-12-2008	03:49:40.88	46.281	13.815	7.3	2.0	Kuk	Slovenia
31-12-2008	11:48:01.12	44.548	10.378	25.0	2.4	Rossena	Emilia
31-12-2008	12:07:25.99	44.564	10.477	23.9	2.2	Casina	Emilia
31-12-2008	12:47:59.25	44.592	10.236	28.6	2.8	Langhirano	Emilia
31-12-2008	15:26:26.75	44.531	10.466	25.8	2.8	Casina	Emilia
31-12-2008	16:18:00.77	44.561	10.415	25.2	2.5	Rossena	Emilia

Tabella 4.2: Terremoti localizzati dalla RSFVG nel 2008.

5 Attività di ricerca

Le principali attività di ricerca effettuate dal CRS durante il 2008, ed inerenti alla convenzione, hanno riguardato:

- la determinazione dei meccanismi focali dei principali terremoti avvenuti nel corso dell'anno, il loro inquadramento nel contesto sismotettonico regionale e la loro integrazione in un catalogo dei meccanismi focali disponibili per l'area dal 1928;
- un'analisi spazio/temporale della magnitudo di completezza fornita dalla rete di monitoraggio;
- la valutazione della deformazione sismica regionale;
- la messa a punto di un programma per la stima rapida dei parametri di sorgente dei terremoti di bassa magnitudo;
- la valutazione della risposta sismica locale per i siti della RSFV.

5.1 Meccanismi focali dei terremoti avvenuti nel corso del 2008

Figura 5.1: Meccanismi focali dei principali eventi localizzati nell'area regionale nel 2008. Accanto a ciascun meccanismo è riportata la data e tra parentesi la magnitudo locale. Sono riportate anche le principali zone sismotettoniche (Bressan et al., 2003).

La Fig. 5.1 riporta i meccanismi focali degli eventi più significativi avvenuti nel corso del 2008, all'interno delle principali zone sismotettoniche dell'area regionale e zone limitrofe (Bressan et al., 2003).

L'evento verificatosi il 16 ottobre alle 07:57 (ora GMT) con magnitudo 2.8, al confine tra le zone sismotettoniche A e B, è caratterizzato da un meccanismo normale. Viene attribuito a struttura tettonica minore rispetto alle principali strutture tettoniche, costituite da sovrascorrimenti che in questo settore assumono un'orientazione circa NW-SE e sono SW vergenti.

All'interno della zona sismotettonica B sono localizzati gli eventi avvenuti il 26 agosto alle 03:50 (magnitudo 2.6) e il 31 agosto alle 04:33 (magnitudo 2.9), entrambi caratterizzati da meccanismo focale di tipo inverso e diversa orientazione dei piani

nodali. Si ritiene che i meccanismi siano legati a strutture tettoniche localizzate e non abbiano interessato le principali strutture tettoniche sismogenetiche rappresentate da estesi sovrascorrimenti, orientati N80-90°E.

Al confine tra le zone sismotettoniche D e K è localizzato l'evento avvenuto l'8 febbraio alle 06:31 con magnitudo 2.3. Il meccanismo focale di tipo trascorrente è posto in relazione alle minori faglie trascorrenti presenti in questo settore.

All'interno della zona sismotettonica K è localizzato l'evento del 29 febbraio, caratterizzato da magnitudo 3.7, che ha dato origine ad una piccola sequenza sismica. Il meccanismo focale è di tipo inverso e risulta compatibile con il campo di sforzi agente in quest'area, con asse di compressione massimo sub-orizzontale e orientato NNW-SSE (Bressan et al., 2003). Il piano nodale attivo è orientato NNE-SSW, con pendenza di circa 28°e non ha corrispondenza con la tettonica superficiale. Considerata la profondità focale (circa 10 km), è da attribuirsi a faglia inversa profonda. L'evento del 3 marzo, avvenuto alle 23:49 e che costituisce una replica dell'evento di magnitudo 3.7, è caratterizzato da meccanismo focale trascorrente. Il fatto che la replica abbia un meccanismo focale diverso da quello della scossa principale è da attribuirsi al locale riaggiustamento di sforzi indotto dalla scossa principale, favorito dalle eterogeneità meccaniche del mezzo.

L'evento verificatosi il 17 luglio alle 06:09 è localizzato nella zona G, in prossimità del confine con le zone sismotettoniche A, B e K. L'evento è caratterizzato da meccanismo trascorrente, analogo alla tipologia di alcuni eventi verificatisi verso la fine di marzo del 2005, che hanno costituito uno sciame con magnitudo massima 3.2 nella zona di Maniago. Tale evento è da porsi in relazione a faglie trascorrenti locali.

L'evento più importante localizzato all'interno dell'area sismotettonica J è avvenuto il 21 novembre alle 02:36 con magnitudo 2.9. Il meccanismo focale è di tipo trascorrente ed è posto in relazione a fagliazione minore rispetto alle strutture tettoniche principali dell'area, costituite da sovrascorrimenti ad orientazione circa E-W.

L'evento maggiormente significativo che ha interessato la zona sismotettonica E è avvenuto il 31 ottobre alle 15:12 con magnitudo 2.6. Il meccanismo focale è di tipo normale, simile ad altri eventi che caratterizzano questo settore e legati a faglie normali minori rispetto alla struttura sismogenetica principale, costituita da faglia trascorrente sub-verticale orientata NW-SE.

L'evento avvenuto il 6 luglio alle 12:57 con magnitudo 2.7 nella zona sismotettonica F è caratterizzato da meccanismo focale inverso. Tale episodio è legato a struttura geologica minore in quanto il campo di sforzi che interessa questa zona è di tipo trascorrente (Bressan et al., 2003), con asse di compressione massimo sub-orizzontale e orientato NNE-SSW.

5.2 Catalogo dei meccanismi focali per il Nord-Est Italia dal 1928 al 2008

I meccanismi focali rappresentano l'orientazione dei due piani di faglia che hanno originato un terremoto e sono informazioni indispensabili per le indagini sismotettoniche, ossia per individuare le sorgenti sismogenetiche di un'area, per determinare i processi di rilascio dello sforzo nella litosfera e quindi per gli studi finalizzati alla riduzione del rischio sismico.

Attualmente per terremoti con M>4, i meccanismi focali sono immediatamente calcolati subito dopo un terremoto dallo studio del tensore momento sismico e riportati in cataloghi on-line (e.g. Harvard CMT catalogue, SED catalogue, MedNet catalogue) che li rendono facilmente reperibili.

Figura 5.2: Mappa dei meccanismi focali riportati nel catalogo da Saraò (2008) realizzata utilizzando il software GMT (Wessel and Smith, 1991).

Per i terremoti medio-forti avvenuti prima dello sviluppo della sismologia digitale a larga banda, o per gli eventi di magnitudo 3-4, il meccanismo focale viene generalmente calcolato da inversione delle polarità dei primi arrivi. In questi casi le soluzioni pubblicate in letteratura risultano essere fondamentali, anche se non sempre facilmente accessibili perché sparse su varie pubblicazioni talvolta difficili da reperire.

Al fine di agevolare gli studi sulla sismicità del Friuli-Venezia Giulia, abbiamo quin-

di raccolto i meccanismi focali calcolati per i terremoti avvenuti dal 1928 al 2008 nel Nord Est Italia e nelle immediate zone confinanti (Saraò, 2008).

Partendo dai dati inseriti nel catalogo EMMA (Vannucci and Gasperini, 2004) che ha raccolto i meccanismi focali di terremoti avvvenuti nell'area Euro-Mediterranea, abbiamo integrato le informazioni nella regione di Lat. 45°-48° e Long. 10°-16° (Fig. 5.2), non solo con le soluzioni pubblicate in letteratura dal 2004 al 2008, ma anche inserendo meccanismi focali inediti, calcolati da Gianni Bressan e Gianfranco Renner, ricercatori CRS-OGS. Oltre ad aggiungere nuovi dati, abbiamo

- 1. integrato il dataset con dati uniformi (ad esempio derivando gli assi P e T dai piani nodali o viceversa);
- 2. verificato la consistenza dei piani nodali, correggendo eventuali errori.

Il nostro catalogo contiene 858 meccanismi focali relativi a 586 terremoti avvenuti tra il 27/03/1928 e il 18/07/2008. Rispetto al catalogo EMMA (2004) abbiamo aggiunto 636 nuove soluzioni nell'area di nostro interesse, ossia il 74% circa di nuove soluzioni. In questa prima versione del catalogo, abbiamo riportato tutte le soluzioni disponibili per uno stesso terremoto. La molteplicità delle soluzioni per uno stesso evento non deve sorprendere. Se infatti il tensore momento di terremoti con M>4.5, fornisce oggi una stima robusta del meccanismo focale, la stima dei meccanismi da inversione dei primi arrivi dei terremoti, calcolati in genere per i terremoti meno energetici, può essere inficiata da errori sistematici che rendono meno stabile la soluzione ritrovata. La lettura dei primi arrivi richiede infatti notevole esperienza, soprattutto per i terremoti avvenuti prima degli attuali sismogrammi digitali, e può essere incerta, sia per la presenza di rumore sul segnale, che per la scarsa energia con cui il primo impulso si rivela in alcuni casi. Inoltre, la conoscenza dei modelli di velocità e la localizzazione ipocentrale risulta fondamentale per ritrovare soluzioni attendibili. È per questo che spesso per uno stesso terremoto esistono diverse soluzioni, proposte spesso in tempi diversi, dipendendo dal numero di dati usati, dalle stazioni considerate, dal modello di velocità impiegato, dalla localizzazione ipocentrale e non ultimo dalla tecnica utilizzata per l'inversione.

5.3 Magnitudo di completezza probabilistica per l'Italia Nord-Orientale

La Magnitudo di completezza (Mc) è definita come la magnitudo più bassa alla quale tutti i terremoti sono rilevati (nello spazio e nel tempo) (Rydelek and Sacks, 1989). Al di sotto di tale magnitudo, una parte degli eventi sismici non viene rilevata dalla rete sismometrica, o perché sono troppo piccoli per essere registrati da un numero sufficiente di stazioni, o perché si trovano sotto la magnitudo di interesse per l'area analizzata o ancora perché risultano inseriti nella coda di eventi più grossi e perciò non sono rilevabili. Una corretta stima della Mc è indispensabile poiché essa costituisce un elemento fondamentale per l'ottimizzazione del monitoraggio, per la stima della pericolosità sismica, per l'analisi della sismicità e per le indagini finalizzate allo studio della sorgente sismica.

La geometria e le caratteristiche strumentali della rete gestita da OGS sono cambiate nel tempo. L'analisi degli oltre 16.000 eventi localizzati dal 6/5/1977 al 31/12/2007 in un'area di circa 350 km in longitudine e 300 km in latitudine, ha evidenziato ampie fluttuazioni della soglia di rilevamento dei terremoti sia nel tempo che nello spazio. La presenza di confini internazionali (Austria e Slovenia) limita lo sviluppo della rete a nord e a est; verso sud, invece, le limitazioni sono essenzialmente di tipo ambientale (es.: pianura alluvionale rumorosa e presenza del mare). Questi fattori hanno influenzato fortemente la magnitudo di completezza del catalogo sismico regionale.

In questo lavoro è stata applicata la tecnica recentemente proposta da (Schorlemmer and Woessner, 2008) per ottenere una stima della magnitudo di completezza probabilistica (Mp) e mappe regionali relative alla probabilità di rilevare dei terremoti in funzione della magnitudo. I risultati ottenuti sono stati presentati a vari congressi nazionali ed internazionali (Gruppo Nazionale Geofisica della Terra Solida, GNGTS 2008, European Science Foundation conference, ESF 2008). Attualmente è in fase di preparazione la pubblicazione dal titolo 'Probability-based magnitude of completeness on 30 years of seismic monitoring in NE Italy' (Gentili et al., 2008).

L'approccio utilizzato è puramente empirico: vengono analizzati i dati registrati dalla rete senza ricorrere a ipotesi preconcette sul modello di distribuzione delle magnitudo. Dato che essa prevede per ogni stazione della rete il calcolo della probabilità di registrare un terremoto in funzione della magnitudo e della distanza, la distribuzione di probabilità finale riflette le prestazioni delle singole stazioni.

I codici originari forniti dagli autori sono stati integrati e modificati nelle parti opportune per consentire il loro utilizzo sulla struttura dei dati OGS. L'applicazione del codice di completezza probabilistica ha richiesto inoltre una dettagliata analisi sullo stato di funzionamento della rete, l'utilizzo di magnitudo omogenee nel tempo e di relazioni di attenuazione della magnitudo in funzione della distanza specificatamente calibrate per la rete OGS (Bragato and Tento, 2005). L'analisi è stata effettuata per quattro diverse finestre temporali (1977-1987; 1988-1994; 1995-1999; 2000-2007), selezionate in base alle diverse modalità di acquisizione dati (Marcellini and Milani, 2003) e a criteri di omogeneità nello sviluppo della rete OGS, e per il periodo che comprende l'intero catalogo 1977-2007. Lo studio ha permesso di ricavare informazioni relative al grado di copertura della rete di monitoraggio e alla Mp sul territorio e nel tempo.

Le mappe regionali di probabilità sono state ottenute dalla probabilità combinata di rilevare terremoti con almeno 3 stazioni su una griglia di 0.05°in un'area compresa tra 10°e 14.5°in longitudine e 44.6°e 47.2°in latitudine. La magnitudo di completezza probabilistica (Mp) è stata stimata come la più bassa magnitudo per la quale la probabilità di rilevare l'evento risulta maggiore o uguale a 0.999, cui corrisponde una perdita di un evento su 1000. Il calcolo è stato eseguito considerando una profondità degli eventi di 10 km, dal momento che nell'area considerata la sismicità risulta principalmente compresa tra 8 e 12 km.

L'analisi sull'evoluzione temporale dello sviluppo della rete, ottenuta confrontando le finestre relative a due intervalli temporali strumentalmente omogenei (1995-1999; 2000-2007), ha evidenziato un netto miglioramento delle capacità di rilevazione della rete nel tempo, con un evidente abbassamento del valore di Mp. Con la configurazione di rete e la strumentazione più recente, alla data del 31/12/2007, la rete sismometrica di OGS presenta una probabilità unitaria di rilevare terremoti di $M_L \ge 1,5$ per gran parte della Regione Friuli Venezia Giulia, mentre la probabilità decresce nel settore occidentale (Regione Veneto) e verso la costa, nelle aree caratterizzate da una più bassa copertura strumentale. La Mp raggiunge valori inferiori a 1,5 in corrispondenza del settore centrale del Friuli e di circa 2,3-2,5 nell'area del Veneto occidentale (Fig. 5.3).

La stessa tecnica è stata applicata dall'INGV per lo studio di tutto il territorio italiano, utilizzando i dati delle Rete Sismica Nazionale (RSN) (Schorlemmer et al., 2008). Ad oggi, la rete gestita da OGS garantisce la rilevazione di terremoti nell'area del Nord-Est con dei risultati comparabili con le migliori performances offerte dalla RSN per alcune porzioni del territorio nazionale (Fig. 5.4).

Figura 5.3: Magnitudo di completezza probabilistica (Mp) calcolata alla data del 31/12/2007 in riferimento all'intervallo temporale 2000-2007. I triangoli bianchi identificano le stazioni utilizzate per la stima.

Figura 5.4: Confronto tra la mappa di probabilità per M_L =1,5 ottenuta da INGV per tutto il territorio nazionale (Schorlemmer et al., 2008) e quella ottenuta da OGS per il settore del Nord-Est Italia. Mappe calcolate alla data del 31/12/2007.

5.4 Assetto spaziale della deformazione sismica nella regione Friuli-Venezia Giulia e Slovenia occidentale

Lo studio è stato focalizzato sull'analisi del pattern spaziale della deformazione cosismica dell'area regionale e della Slovenia occidentale, nel periodo compreso tra il 1984 e il 2006 (Bressan and Bragato, 2009). Nell'area analizzata sono state identificate le principali zone strutturali caratterizzate da deformazione relativamente omogenea. L'obiettivo dell'indagine è ricostruire la geometria della deformazione crostale indotta dalla sismicità e la velocità di deformazione cosismica di ciascuna zona.

Il metodo di analisi si basa sulla tecnica della sommatoria del tensore momento sismico secondo la formulazione di Kostrov (1974) e Jackson and McKenzie (1988), a partire dai meccanismi focali. Il tensore medio della velocità di deformazione cosismica in una data zona è correlata alla sommatoria delle componenti del tensore momento sismico (meccanismo focale) secondo la seguente relazione:

$$\dot{\varepsilon}_{ij} = \frac{1}{2\mu V\tau} \sum_{n=1}^{N} M_{ij}^n \tag{5.1}$$

dove μ è il modulo di taglio delle rocce crostali, V il volume roccioso, $\sum_{n=1}^{N} M_{ij}^n$ è la sommatoria dei momenti tensori (meccanismi focali) degli N terremoti avvenuti all'interno del volume in τ anni. Il volume crostale V considerato è costituito da un blocco roccioso rettangolare con lati l (lunghezza), a (profondità) e t (spessore o strato sismogenetico).

Le relazioni di Jackson and McKenzie (1988) permettono il calcolo delle componenti del tensore della velocità indotta dalla sismicità a cui si muovono le zone. Tale calcolo viene eseguito in un sistema di riferimento dove le coordinate x, y e z sono rispettivamente perpendicolare, parallela e verticale rispetto all'orientazione della zona di deformazione, ovvero l'azimuth del lato l.

$$V_X^X = \frac{1}{2\mu l t \tau} \sum_{n=1}^N M_{11}^n$$
(5.2)

$$V_Y^Y = \frac{1}{2\mu a t \tau} \sum_{n=1}^N M_{22}^n$$
(5.3)

$$V_Z^Z = \frac{1}{2\mu a l \tau} \sum_{n=1}^N M_{33}^n \tag{5.4}$$

$$V_Y^X = \frac{1}{\mu l t \tau} \sum_{n=1}^N M_{12}^n$$
(5.5)

Figura 5.5: Assetto tettonico; linee piene e tratteggiate: faglie sub-verticali, linee dentate: sovrascorrimenti e faglie inverse. Le principali zone di deformazione sono evidenziate con numerazione da 1 a 10. I punti grigi rappresentano la sismicità dal 1977 al 2006, con M_D (magnitudo) variabile da 1.0 a 5.6 ed errore di localizzazione minore o uguale a 3 km. Nel riquadro più piccolo sono riportati I due cunei tettonici giustapposti, marcati dalle principali paleofaglie. PC-VB: linea Pieve di Cadore - Val Bordaglia; TV-BC: linea Tramonti - But-Chiarsò; D-I: linea Dogna - Idria; IL: lineamento orientale Insubrico (linea della Gailtal); ML: linea Mojstrana - Ljubljana. BL: Belluno; PN: Pordenone; UD: Udine; GO: Gorizia; TS: Trieste.

$$V_Z^X = \frac{1}{\mu a l \tau} \sum_{n=1}^N M_{13}^n \tag{5.6}$$

$$V_Z^Y = \frac{1}{\mu a l \tau} \sum_{n=1}^N M_{23}^n$$
(5.7)

 V_X^X rappresenta la componente del moto perpendicolare al lato l, V_Y^Y rappresenta l'estensione laterale del materiale, perpendicolare al lato a, V_Z^Z la velocità di ispessimento (Pondrelli et al., 1995). La componente di taglio orizzontale della velocità V_Y^X corrisponde all'ammontare del moto trascorrente.

Le aree del Friuli-Venezia Giulia e della Slovenia occidentale fanno parte di un sistema di deformazione polifasico localizzato nel margine settentrionale della microplacca adriatica. Il complesso assetto tettonico fu prodotto dall'Eocene al Plio-Quaternario dalla progressiva convergenza della microplacca adriatica e dalla sua rotazione antioraria rispetto alla placca euroasiatica (Anderson and Jackson, 1987). Il movimento viene accomodato da un complesso meccanismo di raccorciamento crostale e indentazione (Mantovani et al., 1996). L'assetto tettonico appare caratterizzato (Venturini, 1991), da due grandi cunei tettonici giustapposti (Fig. 5.5), delimitati da sistemi di paleofaglie orientati NE-SW e NW-SE, causato dalla sovrapposizione di diverse fasi tettoniche cenozoiche. Ciascuna fase ha ereditato e riattivato le deformazioni geologiche della fase precedente producendo un complesso assetto tettonico. Conseguentemente anche la struttura crostale superficiale appare molto eterogenea e frammentata (Gentile et al., 2000), con segmentazione dei principali lineamenti tettonici superficiali (Slejko et al., 1989; Galadini et al., 2005).

L'attività sismica, che interessa prevalentemente la parte centrale della regione Friuli-Venezia Giulia, con locali clusters nella parte settentrionale e centrale dell'area e nella Slovenia occidentale, la variabilità dei meccanismi focali e i diversi domini tettonici, suggeriscono che l'interazione tettonica e l'indentazione della microplacca adriatica e della placca euroasiatica sono accomodate da diverse zone di deformazione.

All'interno dell'area oggetto dello studio sono state identificate 10 principali zone di deformazione relativamente omogenea (Fig. 5.5). Le zone comprendono i principali lineamenti tettonici ed i maggiori terremoti verificatisi dal 1984 al 2006. Per il calcolo delle deformazioni co-sismiche sono stati utilizzati i meccanismi focali di 279 eventi, dal 1984 al 2006, con M_D (magnitudo) che varia da 1.5 a 5.6 Le zone di deformazione sono state riconosciute sulla base della distribuzione spaziale della sismicità, dell'attività sismica e della similarità dei meccanismi focali. Dove disponibili si è ricorso a dati geofisici come immagini tomografiche (Gentile et al., 2000) e il pattern delle anomalie di Bouguer (Cassano et al., 1989).

I meccanismi focali risultanti dal calcolo dei momenti tensori cumulativi, per ciascuna zona di deformazione, sono riportati in Fig. 5.6. Le tabelle 5.1 e 5.2 mostrano, rispet-

Belt	F _S	Ė ₁₁	$\dot{\epsilon}_{12}$	$\dot{\epsilon}_{13}$	$\dot{\epsilon}_{22}$	Ė ₂₃	Ė33
1	10 ⁻¹¹ /yr	-2.46	-0.85	1.11	0.62	0.44	1.84
2	10 ⁻¹⁰ /yr	-3.07	0.24	-0.72	0.46	-0.49	2.60
3	10 ⁻¹¹ /yr	-1.40	1.83	-2.53	1.46	-1.18	-0.05
4	$10^{-12}/yr$	-5.76	2.81	1.86	5.42	0.98	0.33
5	10 ⁻¹⁰ /yr	-8.41	1.40	1.36	0.67	-2.38	7.73
6	10 ⁻¹¹ /yr	-4.72	2.32	3.81	-1.23	-1.63	5.96
7	$10^{-11}/yr$	-4.35	1.34	0.38	0.65	-0.47	0.36
8	$10^{-12}/yr$	-1.17	1.72	0.51	0.06	-0.47	1.10
9	10 ⁻⁰⁹ /yr	-0.53	9.79	0.30	0.64	-2.21	-0.11
10	$10^{-12}/yr$	-1.83	5.94	2.80	0.87	-2.14	0.96

Tabella 5.1: Componenti del tensore velocità di deformazione $\dot{\epsilon}$. La colonna F_S indica il fattore/anno moltiplicativo. Valori positivi indicano estensione o ispessimento, valori negativi indicano compressione o assottigliamento.

Belt	Fv	<i>V</i> ₁₁	<i>V</i> ₁₂	V ₁₃	V ₂₂	V ₂₃	V ₃₃
1	10^{-4}	-3.94	-2.74	3.77	2.08	1.51	3.13
2	10^{-3}	-3.37	0.54	-2.90	1.41	-1.98	5.21
3	10^{-4}	-1.26	3.30	-7.08	4.60	-3.33	-0.08
4	10^{-4}	-0.66	0.64	0.63	1.92	0.33	0.05
5	10^{-2}	-1.31	0.43	0.51	0.25	-0.90	1.46
6	10^{-3}	-0.59	0.58	1.52	-0.41	-0.65	1.19
7	10^{-3}	-0.67	0.41	0.13	0.18	-0.16	0.62
8	10^{-5}	-1.52	4.47	1.44	0.23	-1.33	1.54
9	10^{-2}	-0.66	24.48	0.98	2.81	-7.07	-0.18
10	10^{-4}	-0.38	2.49	0.95	0.46	-0.73	0.16

Tabella 5.2: Componenti del tensore di velocità V. Tutti i valori sono in mm/anno. La colonna F_V indica il fattore moltiplicativo. Valori positivi indicano estensione o ispessimento, valori negativi indicano compressione o assottigliamento.

Figura 5.6: Zone di deformazione. Le sfere focali rappresentano i meccanismi focali risultanti dalla sommatoria dei momento tensori. Le frecce nere indicano compressione, le frecce bianche indicano estensione. Gli altri simboli sono come in Fig. 5.5.

tivamente, le componenti del tensore della velocità di deformazione e le componenti del tensore della velocità di spostamento per ciascuna zona.

Il campo delle deformazioni cosismiche ottenuto rappresenta un quadro complessivo delle deformazioni crostali attive che interessano la parte settentrionale della microplacca adriatica. Deformazioni compressionali caratterizzano le zone 1 e 2 nella parte occidentale dell'area studiata (Fig. 5.6). Le componenti dominanti del tensore della velocità di deformazione sono correlate a compressione che varia la sua orientazione da NW-SE (zona 1) a NNW-SSE (zona 2) e all'ispessimento dello strato sismogenetico. La deformazione sismica della zona 2 è maggiore. Le velocità di deformazione relative alla compressione sono 3.4×10^{-3} mm/anno (zona 2) e 3.9×10^{-4} (zona 1). Il modo dominante di deformazione delle zone settentrionali 3, 4, 8 è legato ad un movimento trascorrente destro (Fig. 5.6). L'ammontare della deformazione sismica e le velocità di deformazione non sono omogenee. I dati esaminati nel periodo 1984-2006 evidenziano che la zona 3 è sottoposta ad una maggiore deformazione. In particolare, le velocità di spostamento, relative alla componente $\dot{\epsilon}_{12}$ del tensore della velocità di deformazione, sono 3.3×10^{-4} mm/anno (zona 3), 0.6×10^{-4} mm/anno (zona 4) and 4.5×10^{-5} mm/anno (zona 8). La zona 3 è interessata da assotigliamento crostale mentre le zone 4 e 8 sono caratterizzate da ispessimento crostale. La deformazione sismica delle zone orientali 9 e 10 (Fig. 5.6), entrambe caratterizzate da tettonica dinarica, è prevalentemente accomodata da movimento trascorrente destro, che avviene ad una velocità di 0.24 mm/anno (zona 9) e 2.5×10^{-4} mm/anno (zona 10). La zona 9 è caratterizzata dal massimo ammontare di deformazione sismica e velocità di deformazione nell'area oggetto di studio. La componente verticale del tensore di velocità di deformazione indica assottigliamento crostale nella zona 9 e ispessimento crostale nella zona 10.

La geometria della deformazione delle zone centrali 5, 6 e 7 (Fig. 5.6) mostra tratti comuni. Le zone sono sottoposte a compressione dominante nella direzione N-S e ad ispessimento dello strato sismogenetico. La zona 5 è caratterizzata dal maggiore ammontare di deformazione sismica e dalla più alta velocità di deformazione. Le zone 6 e 7 sono caratterizzate da valore molto simile della componente $\dot{\epsilon}_{11}$ (compressione N-S). La velocità di ispessimento dello strato sismogenetico (componente $\dot{\epsilon}_{33}$) della zona 6 è maggiore della corrispondente della zona 7. Le velocità di deformazione associate alla deformazione compressiva sono 1.3×10^{-2} mm/anno (zona 5) e circa 0.6×10^{-3} mm/anno (zone 6 e 7).

Grenerczy et al. (2005) hanno calcolato il campo di velocità nella regione adriatica settentrionale da dati GPS, stimando che la collisione adriatico-alpina avviene ad una velocità di 2.3 mm/anno. Le velocità di spostamento delle zone di deformazione calcolate dalla sommatoria del momento tensore sono considerevolmente più basse e suggeriscono che una significativa parte della deformazione avviene in modo asismico.

In conclusione, l'assetto spaziale della deformazione sismica studiato traccia un quadro dettagliato della cinematica del margine settentrionale della microplacca adriatica ed evidenzia i processi tettonici dominanti che accomodano la sua interazione con la placca euroasiatica. La geometria della deformazione dell'area analizzata non è omogenea, con una significativa partizione della deformazione stessa tra le varie zone coinvolte nella rotazione antioraria della microplacca adriatica.

5.5 Un programma per il calcolo dei parametri di sorgente di eventi di bassa magnitudo

Durante il 2008, è stato sviluppato il programma PROCSOR per la stima dei parametri di sorgente di un terremoto. Il codice calcola lo spettro di Fourier della componente orizzontale delle onde S e, dopo aver corretto per l'attenuazione, ottiene stime di momento sismico, dimensioni della sorgente, energia sismica irradiata, caduta di sforzo e stress apparente tramite l'analisi in frequenza. A tal fine, vengono impiegati i modelli spettrali di Brune (Brune, 1970, 1971) e Boatwright (1980). Il metodo utilizzato è lo stesso adottato in precedenza per la valutazione dei parametri di sorgente dei principali terremoti in Friuli Venezia Giulia e in Slovenia occidentale per le loro sequenze sismiche (Franceschina et al., 2006; Bressan et al., 2007) ed è ottimizzato per lo studio di segnali provenienti da stazioni sismiche a corto periodo.

Il programma, sviluppato a partire da una serie di programmi per uso proprio in linguaggi di programmazione diversi sviluppati da G. Franceschina nel 2001, presenta le seguenti novità:

- è interamente scritto in Matlab, il che lo rende platform independent, purché Matlab sia installato sulla macchina usata. Ne è stato verificato il corretto funzionamento sui sistemi operativi Windows e Linux;
- è stata introdotta un'interfaccia grafica (si veda Fig. 5.7) che ne rende facile l'utilizzo da parte dell'utente.

Lo scopo dello sviluppo di questo codice è rendere possibile la valutazione dei parametri di sorgente subito dopo l'evento, anche se la magnitudo non è elevata (magnitudo di durata $M_D < 3.5$). L'utilizzo del programma non presuppone nessuna conoscenza di Matlab.

Le prestazioni di PROCSOR sono state valutate su un insieme di 4 terremoti avvenuti in Friuli Venezia Giulia. Il momento sismico ottenuto, quando possibile, è stato confrontato con i risultati presentati nell'ambito dei codici per il calcolo del tensore momento sviluppati l'anno precedente (Saraò, 2007) a partire dai dati delle stazioni a banda larga, utilizzabili per $M_D \ge 3.5$.

I terremoti analizzati sono i seguenti:

- un terremoto di magnitudo M_D =3.7 avvenuto a Claut nel 1994; momento sismico calcolato con PROCSOR: 6.15 × 10¹⁴ Nm;
- un terremoto di magnitudo M_D =3.7 avvenuto a Tramonti nel 2003; momento sismico calcolato con PROCSOR: 1.53×10^{14} Nm;
- un terremoto di magnitudo M_D =3.9 avvenuto a Claut 26/2/2007 alle 05:50 ; momento sismico calcolato con PROCSOR: 3.36×10^{14} Nm;

Figura 5.7: Interfaccia grafica del programma PROCSOR.

• un secondo terremoto di magnitudo M_D =3.6 avvenuto a Claut 26/2/2007 alle 14:16, solo 8 ore e mezzo dopo il precedente; momento sismico calcolato con PROCSOR: 1.63×10^{14} Nm.

L'analisi è stata effettuata utilizzando i sismogrammi di due stazioni sismiche a corto periodo (Bernadia -BAD and Zouf Plan -ZOU).

I valori del momento sismico dei due eventi avvenuti a Claut nel 2007 risultano in buon accordo con quelli di Saraò (2007) ($M_0 = 3.96 \times 10^{14}$ Nm e $M_0 = 1.38 \times 10^{14}$ per la scossa principale e la secondaria, rispettivamente).

5.6 Valutazione della risposta sismica locale per i siti della rete

Uno studio di dettaglio è stato condotto sui siti che ospitano le stazioni di misura della rete (Tab. 1.1 e Tab. 1.2). L'importanza di conoscere e quantificare il livello di rumore di ogni sito è strettamente legato alla capacità della singola stazione di individuare e trasmettere finestre di dato che possono contenere singoli eventi sismici. Per questo motivo la scelta del sito e la monumentazione del sensore, specie se a larga banda, sono determinanti nel funzionamento della rete una volta individuata l'area di interesse.

Premesso che anche i singoli elementi (sensori, acquisitori, cavi) che compongono la stazione introducono disturbo abbassando il rapporto segnale/rumore, in questa analisi si è tralasciato lo studio sistematico della componente elettrica/elettronica del rumore, assumendola uguale per tutte le stazioni, e approfondendo i caratteri locali di ogni sito. E' stato ritenuto opportuno dividere le analisi per le stazioni a corto perdio e a larga banda.

Due sono state le indagini effettuate: il confronto tra la densità spettrale di rumore ad ogni stazione con delle curve di riferimento (Peterson, 1993), e il calcolo del rapporto tra le componenti orizzontali e verticali (Nakamura, 1989).

Il confronto del rumore di fondo con dei livelli standard ha le sue basi nello studio di Peterson (1993). L'autore ha considerato la densità spettrale di finestre di noise provenienti da 75 siti sparsi per il mondo, che comprendevano stazioni poste lungo litorali, in alta montagna e in bunkers, equipaggiate con sensori a corto e lungo periodo. Tutto il materiale raccolto, che escludeva eventi sismici, ha fornito una buona casistica per definire i livelli minimi e massimi di rumore ambientale accettabili per un sito. E' quindi usuale ormai, che un sito sia considerato buono se la densità spettrale del rumore ambientale rientra nei limiti di Peterson.

Per i siti della rete a corto periodo, si sono acquisite delle finestre di dato nelle ore diurne, mentre per i siti broad-band, disponendo di un database continuo nel tempo, si sono considerate finestre notturne e diurne, sia nella stagione estiva che in quella invernale. Tali finestre di registrazione escludevano al loro interno registrazioni di terremoti locali o telesismi. E' stata calcolata la densità spettrale per tutte e tre le componenti del moto mediante algoritmo di Welch (1967), correggendola opportunamente per le unità di misura secondo (Bormann, 2002).

I risultati sono mostrati nelle Figg. 5.8–5.11, per le stazioni a corto periodo, e nelle Figg. 5.12–5.14 per i siti a banda larga. La stazione di ZOU ha subito una nuova monumentazione nel corso del 2008, per cui sono disponibili solo i dati invernali. Nel complesso le stazioni a corto periodo, a causa della loro monumentazione superficiale risultano essere più rumorose rispetto ai siti a larga banda (eccetto il sito di MPR2, tutti gli altro sono posizionati in grotte, caverne o bunkers). Nel complesso comunque a parte le stazioni di BAD, BUA, CAE e COLI tutte rientrano nei limiti di Peterson. Sempre su questi dati, si sono calcolati i rapporti spettrali tra le componenti orizzontali e verticali del moto, secondo la tecnica di Nakamura (1989), utilizzando il software messo a disposizione dal Progetto SESAME (SESAME, 2003). I siti posti all'interno di cavità (quasi tutti i larga banda, Fig. 5.16) mostrano un valore di amplificazione molto basso, e per i siti di TRI e VINO una de-amplificazione, in accordo con Amoruso et al. (1997). I siti a corto periodo (Fig. 5.15), invece, hanno un andamento più accidentato. E' particolare notare che il sito di BUA, che eccede superiormente i limiti di Peterson, presenti un profilo HV piatto, indice di assenza di marcati contrasti di impedenza acustica nell'intorno della stazione. I siti con decise amplificazioni nella banda 7-10Hz ed oltre (cfr. CSO e CAE) sono stazioni ubicate su fianchi particolarmente scoscesi dei rilievi: tali amplificazioni sono quindi di origine topografica.

Figura 5.8: Densità spettrali per finestre di rumore acquisite nel corso del 2008 per le stazioni della rete a corto periodo del FVG. A tratteggio sono rappresentati i limiti di Peterson, entro cui il rumore ambientale del sito dovrebbe mantenersi.

Figura 5.9: Come in Fig. 5.8.

Figura 5.10: Come in Fig. 5.8.

Figura 5.11: Come in Fig. 5.8.

Figura 5.12: Variazione stagionale e diurna del rumore ambientale nei siti delle stazioni broad-band (rosso:estate notte; rosa:estate giorno; blu:inverno notte; azzurro:inverno giorno).

Figura 5.13: Come in Fig. 5.12.

Figura 5.14: Come in Fig. 5.12.

Figura 5.15: Rapporti spettrali HV per i siti della rete a corto periodo del FVG. La linea grigia rappresenta il limite al di sotto del quale non c'è amplificazione.

Figura 5.16: Rapporti spettrali HV per i siti della rete a banda larga del FVG. La linea grigia rappresenta il limite al di sotto del quale non c'è amplificazione.

6 Attività didattico-divulgativa

Durante il 2008 è proseguita l'attività didattica a scopo d'informazione tecnico-scientifica e di prevenzione in caso di sismi a favore di istituzioni pubbliche e scuole di ogni ordine e grado, sia presso la propria Sede, che presso altre Istituzioni. Questa iniziativa si inserisce coerentemente tra le finalità istituzionali dell'OGS. Lo scopo è quello di migliorare le conoscenze di chi opera nell'ambito della protezione civile e di preparare le popolazioni insediate in aree sismiche a sostenere gli effetti di un sisma. In particolare, l'attività è concentrata su:

- le cause geologiche che danno origine al fenomeno sismico;
- gli effetti del sisma del 1976 che ha colpito la regione FVG;
- l'attività di monitoraggio sismico tramite reti sismometriche e sistemi automatici di allertamento;
- l'attività di ricerca di base ed applicata svolta presso il CRS;
- le norme comportamentali da tenere in caso di evento distruttivo.

Tra gli altri, nel corso del 2008, sono stati ospiti del CRS: alunni del Liceo Scientifico Statale "M. Gortani" di Tolmezzo; allievi della "Scuola Media G. di Artegna"; studenti del corso di Geofisica Applicata dell'Università di Udine (Docente dr. Carniel).

In collaborazione con l'Area di ricerca e con l'Osservatorio Astronomico di Trieste il 10 maggio si è svolto a Trieste presso l'OGS la manifestazione "Open Day" a cui il CRS ha partecipato con lo scopo di far conoscere meglio le tematiche inerenti il fenomeno terremoto. Con questa manifestazione si è voluto rispondere alle domande che la comunità regionale, particolarmente sensibile ai temi della sismicità, si pone con curiosità e preoccupazione ogni qual volta che avviene un terremoto, anche di modesta entità.

7 Commenti conclusivi

Come per gli anni precedenti, l'attività del CRS svolta nell'ambito della convenzione ha coniugato la parte di servizio con quella di ricerca. Il sistema di monitoraggio sismico del CRS si è rivelato affidabile assicurando quel controllo sismico del territorio indispensabile a fini di Protezione Civile. L'attività sismica del 2008 è stata moderata con eventi di magnitudo modesta (magnitudo massima M_D =3,7 per il terremoto di Trasaghis il 29 febbraio). Gli eventi di magnitudo maggiore (intorno a 4) si sono verificati in Slovenia, eventi di M_D =4,3 Nova Vas e di M_D =3,6 Pivka ad una distanza di qualche decina di km dal confine italiano. A maggiore distanza e di relativo interesse per la Regione FVG, si segnalano gli eventi localizzati sull'Appennino Tosco-Emiliano, di cui si segnalano gli eventi di M_D =4,2 (Barberino del Mugello, FI), M_D =5,5 (Neviano degli Arduini, PR) e di M_D =5,1 (Rossena, RE).

Durante il 2008 l'attività più rilevante è stata quella inerente alla gestione della rete sismometrica che ha registrato, oltre al lavoro in sede, un'attività esterna di circa un centinaio di uscite per il servizio di manutenzione ordinaria/straordinaria alle stazioni. Di rilievo anche il lavoro svolto a Palmanova per l'installazione di un nuovo server, l'aggiornamento del sistema Antelope e la relizzazione del collegamento per lo scambio dati con l'INGV per il tramite del Dipartimento di Protezione Civile nazionale.

L'attività di maggior sviluppo tecnologico è legata sempre al progressivo miglioramento della rete di trasmissione dati in banda larga basata su tecnologia *spread-spectrum* nonché sullo studio atto a migliorare il rapporto segnale/disturbo dei siti della rete sismometrica. Questo studio è poi culminato con il posizionamento sul Monte Zouf Plan di una stazione di acquisizione con un sismometro a larga banda in una camera interrata a circa 5 metri dal piano di campagna.

L'attività di ricerca svolta durante il 2008 ha riguardato sia temi classici, come il calcolo dei meccanismi focali degli eventi principali verificatisi nel corso dell'anno ed il loro inquadramento nel contesto sismotettonico regionale, sia temi nuovi come lo studio della magnitudo di completezza probabilistica per l'Italia nord-orientale, l'assetto spaziale della deformazione sismica nella regione Friuli-Venezia Giulia e Slovenia occidentale, studi dei parametri sorgente di eventi di bassa magnitudo e la valutazione della

risposta sismica locale per i siti della rete.

In conclusione, il programma di attività del CRS si è articolato durante il 2008 lungo diverse linee che garantiscono nel presente l'efficienza del sistema di monitoraggio ed allerta sismica e la qualificazione e l'analisi del dato raccolto, e danno nel contempo garanzia di sviluppo in prospettiva futura. In particolare, per il 2009 si prevede di migliorare ulteriormente il sistema di trasmissione con la totale sostituzione dei collegamenti UHF con collegamenti spread-spectrum. Per aumentare l'affidabilità del sistema è anche allo studio la realizzazione, per le stazioni più importanti, di un collegamento satellitare. Dal punto di vista più strettamente sismologico, si ritiene utile replicare per altre stazioni a banda larga l'ottima soluzione adottata per la stazione di Zoufplan. Inoltre, la realizzazione di una stazione in pozzo profondo nella pianura Friulana potrà fornire utilissime indicazioni sulla struttura crostale.

Bibliografia

- Amoruso, A., Crescini, L., Luca, G. D., Scarpa, R., Abril, M., and Cirella, A. (1997). Underground earth strain and seismic radiation measurements with laser interferometer and a dense small-aperture seismic array. *Annali di Geofisica*, 40:995–1005.
- Anderson, H. and Jackson, J. (1987). Active tectonics of the Adriatic Region . *Geophys.* J.R. Astr. Soc., 91:937–983.
- Boatwright, J. (1980). A spectral theory for circular seismic sources: simple estimates of source dimension, dynamic stress drop and radiated energy. *Bull. Seismol. Soc. Am.*, 70:1–27.
- Bormann, P. (2002). Chapter 4: Seimic signals and noise. *IASPEI New manual of seismological observatory practice, GeoForschungsZentrum Potsdam*, 1:34.
- Bragato, P. L. and Govoni, A. (2000). The Friuli automatic earthquake alert system. *BGTA*, 41:59–77.
- Bragato, P. L. and Tento, A. (2005). Local Magnitude in Northeastern Italy. *Bull. Seismol. Soc. Am.*, 95(2):579–591.
- Bressan, G. and Bragato, P. L. (2009). Seismic deformation pattern in the Friuli-Venezia Giulia Region (northeastern Italy) and western Slovenia. *Boll. Geof. Teor. Appl.*, in stampa.
- Bressan, G., Bragato, P. L., and Venturini, C. (2003). Stress and strain tensors based on focal mechanisms in the seismotectonic framework of the Friuli-Venezia Giulia region (Northeastern Italy). *BSSA*, 93:1280–1297.
- Bressan, G., Kravanja, S., and Franceschina, G. (2007). Source parameters and stress release of seismic sequences occurred in the Friuli-Venezia Giulia region (Northeastern Italy) and in Western Slovenia. *Phys. Earth Planet. Interiors*, 160:192–214.
- Brune, J. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes. J. Geophys. Res., 75:4997–5009.

Brune, J. (1971). Correction. J. Geophys. Res., 76:5002.

- Cassano, E., Maino, A., Amadei, G., Cesi, C., Salvadei, R., Ventura, R., Visicchio, F., Zanoletti, F., Paulucci, G., and Todisco, A. (1989). *Carta gravimetrica dell'Italia scala 1:100000*. Servizio Geologico, Istituto Poligrafico e Zecca dello Stato, Roma.
- Franceschina, G., Kravanja, S., and Bressan, G. (2006). Source parameters and scaling relationships in the Friuli-Venezia Giulia (Northeastern Italy) region . *Phys. Earth Planet. Interiors*, 154:148–167.
- Galadini, F., Poli, M., and Zanferrari, A. (2005). Seismogenic sources potentially responsible for earthquakes with M6 in the eastern Southern Alps (Thiene-Udine sector, NE Italy). *Geophys. J. Int.*, 161:739–762.
- Gentile, G. F., Bressan, G., Burlini, L., and Franco, R. D. (2000). Three dimensional Vp and Vp/Vs models of the upper crust in the Friuli area (Northeastern Italy). *Geophys. Journ. Int.*, 141:457–478.
- Gentili, S., Sugan, M., Peruzza, L., and Schorlemmer, D. (2008). Probability-based magnitude of completeness on 30 years of seismic monitoring in NE Italy. *In progress*.
- Grenerczy, G., Sella, G., Stein, S., and Kenyeres, A. (2005). Tectonic implications of the GPS velocity field in the northern Adriatic region . *Geophys. Res. Lett.*, 32:L16311 doi:10.1029/2005GL022947.
- Jackson, J. and McKenzie, D. (1988). The relationship between plate motions and seismic moment tensors, and the rates of active deformation in the Mediterranean and Middle east. *Izv. Acad. Sci. USSR Phys. Solid Earth*, Geophys. J. Int.:45–73.
- Kostrov, B. V. (1974). Seismic moment and energy of earthquakes and seismic flow of rocks. *Izv. Acad. Sci. USSR Phys. Solid Earth*, 1:23–44.
- Lee, W. H. K. and Lahr, J. C. (1975). Hypo 71 (revised): a computer program for determining hypocenter, magnitude and first motion pattern of local earthquakes. USGS Open File Report 75-311, Menlo Park.
- (2004).Seismogram Lomax, A. SeisGram2K visualization and software for the Internet Ver.3.1.1. Sito internet. analysis http://alomax.free.fr/seisgram/SeisGram2K.html.
- Mantovani, E., Albarello, D., Tamburelli, C., and Babbucci, D. (1996). Evolution of the Tyrrhenian basin and surrounding regions as a result of the Africa-Eurasia convergence. *J. Geodynamics*, 21:35–72.

- Marcellini, A. and Milani, D. (2003). Valutazione della sismicità temporale del Friuli-Venezia Giulia. Rapporto interno OGS Rel.OGS-38/2003/CRS-5, Udine, Italy.
- Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. *QR Railway Tech. Res. Inst.*, 30:1.
- Pesaresi, D., Bragato, P. L., Bartolomeo, P. D., Saraò, A., and Bernardi, P. (2008a). XXXI General Assembly of ESC, Hersonissos, Greece, 7-12 September 2008. Poster Session.
- Pesaresi, D., Bragato, P. L., Bartolomeo, P. D., Saraò, A., Bernardi, P., and Govoni, A. (2008b). Data mining from Antelope at OGS-CRS (Udine, Italy). European Geosciences Union General Assembly 2008, Vienna, Austria, 13-18 April 2008. Poster Session.
- Peterson, J. (1993). *Observations and Modeling of Sesimic Background Noise*. USGS Open File Report 93–322, Albuquerque, New Mexico.
- Pondrelli, S., Morelli, A., and Boschi, E. (1995). Seismic deformation in the mediterranean area estimated by moment tensor summation. *Geophys. J. Int.*, 122:938–952.
- Rebez, A. and Renner, G. (1991). Duration magnitude for the northeastern Italy seismometric network. *Boll. Geof. Teor. Appl.*, 33:177–186.
- Rydelek, P. A. and Sacks, S. (1989). Testing the completeness of earthquake catalogues and the hypothesis of self-similarity. *Nature*, 337:251–253.
- Saraò, A. (2007). Seismic moment tensor determination at CRS: feasibility study. Rapporto OGS Rel.OGS 2007/60-CRS/16, Trieste, Italy.
- Saraò, A. (2008). Focal mechanisms of NE Italy and surroundings (1928-2008). Rapporto OGS Rel.OGS 2008/143-CRS/20, Trieste, Italy.
- Scherbaum, F. and Johnson, J. (1993). *Programmable interactive toolbox for* seismological analysis (PITSA). User Manual, Ver. 4.0.
- Schorlemmer, D., Mele, F., and Marzocchi, W. (2008). A Completeness Analysis of the National Seismic Network of Italy. J. Geophys. Res., submitted.
- Schorlemmer, D. and Woessner, J. (2008). Probability of Detecting an Earthquake. Bull. Seismol. Soc. Am., 98(5):2103–2117.
- SESAME (2003). SESAME Project WP03: Report on the multi-platform h/v processing software J-SESAME. *European Project No. EVG1-CT-2000-00026 SESAME*.

- Slejko, D., Carulli, G. B., Nicolich, R., Rebez, A., Zanferrari, A., Cavallin, A., Doglioni, C., Carraro, F., Castaldini, D., Iliceto, V., Semenza, E., and Zanolla, C. (1989). Seismotectonics of the eastern Soutern-Alps: a review. *Boll. Geof. Teor. Appl.*, 31:109–136.
- Vannucci, G. and Gasperini, P. (2004). The new release of the database of Earthquake Mechanisms of the Mediterranean Area (EMMA Version 2). *Annals Geophys.*, Supplement to Vol.47:307–334 with CD–ROM.
- Venturini, C. (1991). Cinematica neogenico-quaternaria del Sudalpino orientale (settore friulano). *Studi Geol. Camerti, Vol. Spec.*, pages 109–116.
- Wessel, P. and Smith, H. F. (1991). Free software helps map and display data. *EOS Transaction of American Geophisical Union*, 72:441.