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S U M M A R Y
Seismic reflection images of mass-transport deposits often show apparently chaotic, disorded
or low-reflectivity internal seismic facies. The lack of laterally coherent reflections can prevent
horizon-based interpretation of internal structure. This study instead inverts for geostatistical
parameters which characterize the internal heterogeneity of mass-transport deposits from
depth-domain seismic reflection images. A Bayesian Markov Chain Monte Carlo inversion
is performed to estimate posterior probability distributions for each geostatistical parameter.
If the internal heterogeneity approximates an anisotropic von Kármán random medium these
parameters can describe the structural fabric of the imaged mass-transport deposit in terms
of lateral and vertical dominant scale lengths and the Hurst number (roughness). To improve
the discrimination between vertical and lateral dominant scale lengths an estimate of the
vertical dominant scale length from a borehole is used as a prior in the inversion. The method
is first demonstrated on a synthetic multichannel seismic reflection image. The vertical and
lateral dominant scale lengths are estimated with lower uncertainty when data from a synthetic
borehole data are included. We then apply the method to a real data example from Nankai
Trough, offshore Japan, where a large mass-transport deposit is imaged in a seismic profile
and penetrated by a borehole. The results of the inversion show a downslope shortening in
lateral scale length, consistent with progressive down-slope disaggregation of the mass-flow
during transport. The dominant scale lengths can be used as a proxy for strain history, which
can improve understanding of post-failure dynamics and emplacement of subacqueous mass-
movements, important for constraining the geohazard potential from future slope failure.
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1 I N T RO D U C T I O N

Subacqueous mass-movements such as slides, slumps and debris
flows are capable of rapidly mobilizing and transporting large vol-
umes of sediment in marine and lacustrine slope environments.
They represent a significant geohazard to seafloor infrastructure
(Piper et al. 1999; Carter et al. 2014) and to shoreline populations
from slide-induced tsunami (Assier-Rzadkieaicz et al. 2000; Sa-
take 2012). Such events are preserved in the geological record as
mass-transport deposits.

One focus of geohazard research is to characterize the internal
structure of mass-transport deposits to better understand the fail-
ure dynamics and emplacement of subacqueous mass-movements.
Outcrop studies of exhumed ‘fossil’ mass-transport deposits iden-
tify a wide variety of internal structural fabrics, often showing
complex and intense deformation (Pini et al. 2012). Lucente & Pini

(2003) document low-angle thrusting, recumbent folding and pro-
gressive down-flow deformation within mass-wasting deposits out-
cropping in the Marnoso-Arenacea Formation in central Italy. They
also identify kinematic indicators such as asymmetric folding and
imbricated duplexes. Ogata et al. (2014) report soft-sediment defor-
mation structures, slumping and intact blocks of substrate, ripped
up and incorporated into the flow during sliding in mass-transport
deposits caused by the collapse of carbonate platforms. These dif-
ferent internal fabrics reflect differing modes of slope failure, sedi-
ment properties and flow dynamics. Internal structure informs strain
history and can thus characterize different flow regimes, enabling
division of mass-transport deposits into, for example, headscarp
(extensional), translational and toe (compressive) domains. It can
also constrain flow kinematics such as run-out distance and flow
acceleration, which play a large role in governing the geohazard
potential of an event.
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Acoustic reflection techniques are currently the only geophys-
ical methods able to image submarine mass-transport deposits in
situ. In recent years it has become increasingly common to study
mass-transport deposits using seismic reflection imaging (Martinez
et al. 2005; Moscardelli & Wood 2008; Berndt et al. 2012; Sun
et al. 2017). Scientific drilling and coring is also commonly per-
formed to estimate geotechnical and petrophysical parameters, such
as undrained shear strength and excess pore pressure (Camerlenghi
et al. 2007; Sawyer et al. 2009; Strasser et al. 2011; Dugan 2012).
Sediment cores can give a high resolution 3-D reconstruction of
strain fabric within mass-transport deposits (e.g. Strasser et al.
2011), but only for centimetre-scale structure at single point lo-
cations.

Bull et al. (2009) catalogue a variety of internal structures seen
in mass-transport deposits and mass-transport complexes from 3-D
seismic reflection data. Jackson (2011) documents internally co-
herent rafted megablocks emplaced within more chaotic sediments
in a mass-transport deposit from a seismic survey in the Santos
Basin, offshore Brazil. Steventon et al. (2019) estimate the over-
all strain distribution within a mass-transport complex offshore
Uruguay from 3-D seismic data by identifying individual seismic
reflectors and using a backstripping approach.

Evidently conventional seismic interpretation techniques (hori-
zon tracking) can be used to interpret internal structure of mass-
transport deposits. But this is only possible when (i) the deposit is
well-imaged; (ii) there is sufficient internal reflectivity to generate
seismic reflections and (iii) the scale of internal structure is above
the seismic resolution. Very often, however, internal reflectors can
appear chaotic, disordered or low-amplitude (e.g. Diviacco et al.
2006; Moscardelli & Wood 2008; Badhani et al. 2019). In fact,
identifying apparently chaotic or transparent seismic facies is a
common way to discriminate failed from unfailed sediments. Many
studies use seismic attributes which are sensitive to discontinuous
reflectors, for example the coherence attribute or the chaos attribute
(Chopra & Marfurt 2016) to identify mass-transport deposits (Mar-
tinez et al. 2005; Gafeira et al. 2010).

This common lack of laterally continuous reflectors within mass-
transport deposits makes conventional interpretation of internal
structure difficult. Instead, this study aims to characterize inter-
nal structure from seismic reflection data using a geostatistical ap-
proach. This avoids the subjectivity inherent to approaches such
as horizon tracking and is applicable even when the chaotic nature
of a deposit changes laterally, such as a progressive down-slope
loss of horizon continuity (e.g. Badhani et al. 2019). The goal is
to go beyond using non-dimensional seismic attributes such as the
chaos attribute (Chopra & Marfurt 2016) and estimate geostatistical
parameters that are quantitative and physically meaningful.

Numerous studies have shown evidence that heterogeneous ge-
ology can be described as a band-limited, self-similar medium
(sometimes referred to as having fractal characteristics). Exam-
ples include (i) seafloor bathymetry from multibeam measurements
(Goff & Jordan 1988); (ii) exhumed lower continental crust anal-
ysed from geological maps (Holliger & Levander 1992); (iii) acous-
tic and elastic numerical modelling of teleseismic waves recorded
by earthquake seismology arrays (Frankel & Clayton 1986) and
(iv) analysis of borehole logs from the upper crust (Holliger 1996;
Dolan & Bean 1997; Browaeys & Fomel 2009; Cheraghi et al.
2013). Self-similarity means that the statistical properties of the
medium do not change with scale. Specifically, medium properties
in power-spectral domain will follow an inverse power-law (Dolan
& Bean 1997). In this context, band-limited means that there exists a

so-called dominant scale length, the scale above which the medium
stops showing self-similar characteristics.

There is also a long history of characterizing self-similarity in
complex geology using geophysical reflection images. These in-
clude (i) investigating partial saturation in freshwater acquifers from
ground-penetrating radar images (Irving et al. 2009); (ii) modelling
random media heterogeneities to characterize the seismic response
of the crust and mantle at different scales (Carcione et al. 2005)
and (iii) characterizing the geostatistics of complex turbidite sys-
tems from 3-D seismic reflection volumes (Caers et al. 2001). Some
studies have explored the link between the spatial statistics of the ge-
ological medium and the power spectrum of the reflected wavefield.
Irving & Holliger (2010) present an analytical relationship between
band-limited, self-similar random media and a corresponding ide-
alized reflection image. They demonstrate that it is possible to use
this relationship to estimate geostatistical parameters characteriz-
ing the P-wave velocity heterogeneity, such as the aspect ratio of
lateral and vertical dominant scale lengths and the Hurst number (a
self-similarity coefficient related to the roughness of the medium).
This approach relies on the assumption that the reflection image
approximates a so-called primary reflectivity section, an idealized
seismic image in depth. Irving et al. (2009) demonstrate that this
relationship can recover geostatistical parameters for zero-offset
ground-penetrating radar images of shallow, partially saturated ac-
quifers. Scholer et al. (2010) use a similar approach to estimate
the correlation structure of P-wave velocity heterogeneity in the
crystalline crust from seismic reflection images, including a term to
compensate for the theoretical lateral resolution limit of migrated
reflection images.

There is currently little published literature investigating the self-
similar characteristics of the internal structure of mass-transport
deposits. Micallef et al. (2008) document scale invariant charac-
teristics of the Storegga Slide, a retrogressive ‘megaslide’ from
the mid-Norwegian margin. They use multibeam bathymetry data
to perform a statistical analysis of sub-bodies within the slide
and infer that the slide exhibits self-organized critical behaviour.
They observe an inverse power-law scaling in their frequency-area
distribution and find that headwalls are self-similar from small
to large scales. The authors hypothesize that the fractal statistics
of submarine landslides could be related to the physics of slope
failure.

This study represents the internal structure of mass-transport
deposits as a specific type of band-limited, self-similar medium,
an anisotropic von Kármán random medium (Von Kármán 1948).
In two dimensions the random medium can be characterized by
three geostatistical parameters: lateral and vertical dominant scale
lengths and the Hurst exponent (roughness). The dominant scale
lengths describe the degree of continuity of the medium in hor-
izontal and vertical directions respectively. The Hurst number is
a dimensionless parameter related to the degree of self-similarity,
which characterizes the roughness or texture of the medium .

The aim of this study is to demonstrate a method to constrain
the geostatistics of the internal structure of mass-transport deposits
directly from seismic reflection images (after Irving & Holliger
2010). A further goal is to integrate information from a vertical
borehole log, where available. The method is first validated on a
synthetic model representing a typical submarine mass-transport
deposit scenario, with a synthetic multichannel seismic reflection
image and a colocated synthetic vertical borehole. Then, the method
is applied to a real data case study from the Nankai Trough, offshore
Japan.
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2 M E T H O D O L O G Y

This method inverts seismic reflection images of mass-transport
deposits for geostatistical parameters which can characterize their
internal structural fabric. This is achieved by assuming the velocity
heterogeneity within the mass-transport deposit is a random field
defined by an anisotropic von Kármán random medium. Under this
assumption it is straightforward to forward model the spatial power
spectrum of a corresponding idealized seismic reflection image for
a given seismic source spectrum. A likelihood function is defined
from the residual between the forward modelled and observed power
spectra. Then, a Bayesian Markov Chain Monte Carlo (MCMC)
inversion is used to estimate the posterior probability distribution
(expected value and uncertainty) for each geostatistical parameter.
When borehole log information is available, a constraint on the
vertical dominant scale length and Hurst number can be included
in the inversion as a prior.

2.1 Spatial power spectrum of a random field

Here the velocity field, v, is represented by two components, a
smoothly varying background component, v0, and a zero-mean,
small-scale stochastic component, v′, such that

v(x, z) = v0(x, z) + v′(x, z), (1)

where v′(x,z)
v0(x,z) � 1 (i.e. the stochastic component is small relative to

the background). In general terms, the background velocity is well
resolved by geophysical techniques such as traveltime tomography.
At the bandwidth of conventional marine seismic data (approxi-
mately 10–100 Hz), however, the small-scale stochastic component
generates the vast majority of observed reflections in a seismic im-
age. The small-scale stochastic velocity structure is generally poorly
resolved by seismic reflection experiments except perhaps by full-
waveform modelling techniques, which can require significant ac-
quisition effort, model conditioning and computational power, with
little measure of uncertainty in the final result.

We make the assumption that the internal heterogeneity (small-
scale stochastic structure, v′) of a mass-transport deposit can be
approximated as an anisotropic von Kármán random medium.

The normalized 2-D spatial power spectrum of an anisotropic
von Kármán random medium (eq. A1) is

Pv′ (kx , kz) = c

(k2
x a2

x + k2
z a2

z + 1)γ+1
, (2)

where c is a normalizing constant, kx and kz are the horizontal and
vertical spatial wavenumbers, ax and az are the dominant lateral and
vertical scale lengths and γ is the Hurst number (see Appendix A).

2.2 Forward modelling spatial power spectra

2.2.1 Migrated seismic image

This section follows the methodology presented in Irving & Holliger
(2010) which links the random medium parameters to the 2-D power
spectrum of a resulting idealized seismic image, sometimes referred
to as a primary reflectivity section (Irving et al. 2009; Scholer et al.
2010). The idealized seismic image is a convolutional, zero-offset,
normal-incidence, constant density approximation. The formulation
in depth-domain is:

s(x, z) ≈ r (x, z) ∗ w(z) ∗ h(x) (3)

where s(x, z) is the idealized seismic image in depth, r(x, z) is the
normal-incidence acoustic reflectivity, w(z) is the source wavelet
in depth and h(x) is a horizontal filter to account for the lateral
resolution of a migrated seismic section (Scholer et al. 2010).

The choice of the lateral resolution operator h(x) is arbitrary
but should reflect the lateral resolution of the analysed reflection
image, which after proper migration is on the order of the dominant
wavelength of the seismic source (Chen & Schuster 1999). This
study follows Scholer et al. (2010) in using a Gaussian low-pass
filter with width (distance between the two points where the filter is 1
per cent of the maximum value) equal to the dominant wavelength:

h(x) = exp

(
4x2log(0.01)

λ2
dom

)
. (4)

Assuming that variation in density is small relative to velocity, the
normal-incidence reflectivity can be approximated as the derivative
of the velocity field:

r (x, z) ≈ ∂

∂z
v(x, z). (5)

If reflections from the smooth background velocity, v0, are negligi-
ble (i.e. the only contribution to acoustic reflectivity is the small-
scale stochastic component of P-wave velocity) and the source
wavelet is stationary in depth within the analysis window, the ideal-
ized seismic response s(x, z) depends only on the stochastic velocity
component, v′:

s(x, z) ≈ ∂

∂z
v′(x, z) ∗ w(z) ∗ h(x). (6)

The power spectrum of the seismic image can then be related
to the spatial power spectrum of the stochastic component by the
Fourier transform (Irving & Holliger 2010):

Ps(kx , kz) = k2
z Pv′ (kx , kz) · Pw(kz) · Ph(kx ), (7)

where Pw is the power spectrum of the source wavelet, w, and Ph is
the power spectrum of the lateral resolution filter, h. It follows that
the power spectrum of the seismic image can be directly related to
the random medium parameters by eq. (2):

Ps(kx , kz) = ck2
z

(k2
x a2

x + k2
z a2

z + 1)γ+1
· Pw(kz) · Ph(kx ). (8)

Therefore it is possible to forward model an idealized spatial
power spectrum which is comparable to a window of an observed
seismic image under the following assumptions:

(i) The analysed window of the observed seismic image approxi-
mates a noise-free, zero-offset, true-amplitude, convolutional image
in depth-domain.

(ii) The stochastic component of P-wave velocity heterogene-
ity, v′, within the analysed window is an anisotropic von Kármán
random medium parametrized by ax, az and γ .

(iii) The geostatistical parameters and source wavelet are station-
ary over the analysed window.

Only physically realizable models are considered (i.e. dominant
scale lengths are non-negative and non-zero).

2.2.2 Borehole log

For geohazard studies borehole logs and cores are often acquired to
estimate geotechnical or petrophysical information about the mass-
transport deposit (Strasser et al. 2011; Dugan 2012). As these logs
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have spatial power spectra, we can better constrain geostatistical
parameters in the direction of the borehole.

Normally, boreholes are approximately vertical, so we can es-
timate az and γ independently from a vertical borehole log alone
(Browaeys & Fomel 2009). As borehole logs generally directly mea-
sure physical parameters we do not need to account for the effect
of the seismic source wavelet on the geophysical response of the
medium. The 1-D form of eq. (2) is

Pb(kz) = c

(k2
z a2

z + 1)γ+0.5
, (9)

where the exponent is modified for a field with Euclidean dimension
N = 1 (see Appendix A).

2.3 Inversion for geostatistical parameters

This study uses a Bayesian MCMC approach to invert for the
geostatistical parameters. The output of the method is a chain of
‘accepted’ models whose joint distribution is proportional to the
posterior probability density of the model. The chain is sampled
using the Metropolis–Hastings algorithm (detailed in Appendix B).
Bayesian approaches have the advantage of using prior probabil-
ity density functions, so prior geological information can be easily
incorporated if it can be expressed in terms of the model parameters.

The likelihood function assumes Laplacian errors (double-
exponential distribution) for each observation (Mosegaard & Taran-
tola 1995):

L(m) = 1

2N σ N
exp

(
−

N∑
i=1

|gi (m) − dobs,i |
σ

)
, (10)

where gi (m) represents the forward modelled power spectrum at a
given wavenumber, σ is a parameter proportional to the magnitude
of the combined modelling and observation error, N is the number
of observations (total number of points in the observed power spec-
trum) and dobs,i is the observed power spectral density for a given
wavenumber ki .

For this study, the model parameters considered are the geostatis-
tical parameters (lateral and vertical dominant scale lengths and the
Hurst number) and the error parameter. Multiple parallel chains are
run to measure convergence and ensure that individual chains are
well-mixed and have truly converged (not simply sampling a low-
probability area). For this study, convergence is measured using
the Gelman–Rubin statistic (Brooks & Gelman 1998), R̂, and the
weighted mean absolute error (WMAE, Pirot et al. 2017). Details
of the convergence measures are given in Appendix B. Chains are
generally assumed to have converged when R̂ < 1.2 for all param-
eters (Brooks & Gelman 1998). The weighted mean absolute error
should oscillate around 1 when the chain is sampling the posterior
distribution. To ensure that none of the pre-convergence ‘burn-in’
samples are included in the posterior distribution, the first half of
each chain is discarded from the final posterior distributions.

2.3.1 Seismic reflection image

For the chosen window of the 2-D image (the chaotic mass-transport
deposit zone), calculate the following:

(i) Pobs(kx, kz), the 2-D spatial power spectrum of the chaotic
window (using a 2-D fast Fourier transform).

(ii) Pw(kz), the power spectrum of the seismic source wavelet.
(iii) Ph(kx), the power spectrum of the lateral resolution filter

(eq. 4).

Each iteration of the Metropolis–Hastings algorithm proposes
a new candidate model, m′ = [a′

x , a′
z, γ

′, σ ′]. For each proposal,
forward model the idealized 2-D spatial power spectrum (eq. 8);
compute the likelihood of the proposal given dobs = Pobs(kx, kz)
(eq. 10) and accept or reject the model according to the acceptance
criterion (Appendix B).

2.3.2 Borehole log

Borehole logs generally attempt to directly measure a physical prop-
erty of the subsurface. Specifically for a sonic log, the measured
velocity (or slowness) will include both the background velocity
trend, v0, and the small-scale stochastic component, v′ (eq. 1). The
background trend must be removed prior to estimation of the dom-
inant scale lengths and Hurst number (Cheraghi et al. 2013). The
choice of method for detrending is arbitrary and depends on the
complexity of the geology. As this study uses relatively small win-
dows of data from borehole logs, we simply remove the first-order
background trend by finding a line of best fit and subtracting it.
Borehole logs from different geology may instead require detrend-
ing with a more sophisticated approach such as subtracting a low-
order best-fitting polynomial. The resulting detrended log should
be approximately zero-mean and contain only information from the
small-scale stochastic component.

As for the seismic inversion, the power spectrum of the detrended
borehole log, Pb(kz), should be computed using a fast Fourier trans-
form.

Each iteration of the Metropolis–Hastings algorithm proposes a
new candidate model, m′ = [a′

z, γ
′, σ ′]. For each proposal, forward

model the idealized 1-D spatial power spectrum (eq. 9); compute the
likelihood of the proposal given dobs = Pb(kz) (eq. 10) and accept or
reject the model according to the acceptance criterion (Appendix B).

2.3.3 Seismic image and borehole log

Irving & Holliger (2010) show that under typical experimental con-
ditions the two dominant scale length parameters ax and az are
strongly dependent on each other, such that it may not be possible
to resolve each parameter individually from conventional reflection
images. However, they show analytically that is possible to reliably
estimate the aspect ratio of heterogeneity α = ax

az
. With an external

estimate of one of the dominant scale lengths, for example az from
a vertical borehole log, it should be possible to resolve ax and az

individually.
Because the probabilistic inversion approach uses prior probabil-

ity density functions as an input, we can alter these prior probability
density functions to reflect our a priori knowledge of the subsur-
face. For this inversion, prior probability density functions for the
dominant vertical scale length, az, and Hurst number, γ , are chosen
to be Gaussian, with mean and standard deviation calculated from
the marginal posterior distributions from the borehole log inversion.
The inversion proceeds as for the seismic reflection image.

3 R E S U LT S

3.1 Synthetic benchmark – buried submarine
mass-transport deposit

This synthetic example is designed to benchmark the inversion for
a typical marine geohazard survey. The data acquisition simulates
a multichannel, marine, towed-streamer acquisition over a chaotic
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(a)

(b)

Figure 1. Synthetic buried mass-transport deposit (MTD) model. (a) Geostatistical parameters: lateral and vertical scale lengths (ax and az) and Hurst number
(γ ) for each model zone. The water layer is uniform. Background elastic parameters are given in Table 1. (b) P-wave velocity model. The location of the
synthetic borehole is shown in red.

Table 1. Background elastic parameters and geostatistical parameters for each unit in the synthetic model (Fig. 1). z is the depth below the waterbottom, vP

and vS are the P- and S-wave velocities, respectively, and ρ is the density.

Background elastic parameters (v0) Geostatistical parameters (v′)

vP(z) [m s−1] vS(z) [m s−1] ρ [kg m -3] ax [m] az [m] γ

Water 1500 – 1000 – – –
Unfailed sediments 1750 + 0.3z 875 + 0.15z 1600 1200 20 0.75
MTD 1750 + 0.3z 875 + 0.15z 1600 160 20 0.25

mass-transport deposit body buried under a water layer and het-
erogeneous sediment overburden. The aim of this test is to estimate
geostatistical parameters from the seismic reflection image with and
without an a priori estimate of the vertical dominant scale length
from a synthetic borehole velocity log.

The model is divided into two layers, a water layer and a sediment
layer, both 350 m thick (see Fig. 1). Background elastic parameters
and geostatistical parameters for the small-scale stochastic compo-
nent are given in Table 1. The sediment layer has linearly increasing
background P- and S-wave velocity to approximate the effect of in-
creasing compaction with depth on the seismic velocities. It includes
a zone with significantly shorter lateral dominant scale length and
distinct Hurst number to represent a buried, chaotic mass-transport
deposit. Otherwise, the mass-transport deposit zone has the same

background elastic parameters as the host sediment layer. The ran-
dom medium zones are realized on a regular (staggered) 2-D mesh
(Ikelle et al. 1993).

This synthetic benchmark simulates a typical 2-D multichan-
nel marine acquisition geometry. The modelled source wavelet is
a 40 Hz Ricker. For this synthetic test we use a pseudospectral,
isotropic, viscoelastic scheme (Carcione et al. 2005; Carcione 2014)
to forward model the seismic reflection response. Sources and re-
ceivers are located in the first row of grid points (z = 0 m). For
this experiment free surface multiples are not modelled; perfectly
absorbing boundary conditions are imposed on all four boundaries
of the mesh. P- and S-wave quality factors are set to QP = QS =
10 000 (i.e. negligible attenuation at seismic wavelengths) for all
gridpoints. Full details of the acquisition and modelling parameters
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Table 2. Synthetic marine multichannel seismic reflection experiment ac-
quisition and modelling parameters.

Synthetic acquisition parameters

Acquisition geometry 2-D towed streamer
Water depth 350 m
Source wavelet 40 Hz Ricker
Shot inverval 40 m
Receiver interval 20 m
Near-offset 50 m
Far-offset 550 m
Nominal midpoint inverval 10 m
Fold 7
Sampling interval 1 m

Synthetic modelling parameters

Modelling scheme Pseudo-spectral (isotropic,
viscoelastic)

Boundary conditions Perfectly absorbing boundaries
Timestep 0.125 ms
Grid spacing 2 m × 2 m (staggered)

are given in Table 2. In total, 50 shots are modelled which required
25 hr computation time on a quad-core Intel R© CoreTM i7-6700
3.40 GHz CPU.

As the background velocity model is known and does not vary
laterally, the seismic processing follows a basic marine imaging
flow, with a pre-stack true-amplitude Kirchhoff time migration (to
60◦ maximum angle), outer angle mute (to eliminate refracted ar-
rivals), stack and time-to-depth conversion using the background
P-wave velocity model. The image is cut to the full-fold area, with
maximum depth equal to the maximum depth in the synthetic model
(Fig. 2).

3.1.1 Borehole log inversion

The synthetic P-wave velocity borehole log is shown in Fig. 2.
The window analysed is the mass-transport deposit zone between
500 and 650 m depth. For the inversion, uniform priors are used: 0
< az ≤ 50 m, 0 ≤ γ ≤ 1 and 0 < σ ≤ 2.

The MCMC is run with 12 parallel chains until 1 × 104 samples
are accepted to the chain (Table 6). The final Gelman–Rubin statistic

R̂ < 1.02 for all parameters. The WMAE begins to oscillate around
1 after approximately 200 accepted samples.

Marginal posterior probability distributions for az, γ and σ are
shown in Fig. 3. Summary statistics of the distributions are shown
in Table 3. Both geostatistical parameters are centred closed to their
true values.

3.1.2 Seismic image inversion

Two inversions were run on the seismic reflection image, with and
without estimates of the vertical scale length Hurst number from
the borehole as priors. The synthetic seismic image is shown in
Fig. 2. The window analysed is the mass-transport deposit zone
highlighted in Fig. 1.

For the first inversion (seismic image only), uniform priors are
used for all parameters. 0 < ax ≤ 500 m, 0 < az ≤ 50 m, 0 ≤ γ ≤
1 and 0 < σ ≤ 2.

The second inversion (seismic image with borehole) is
parametrized as the first, but includes a constraint for az and γ

from the borehole inversion results. The prior probability density
functions for az and γ are Gaussian, with mean and standard devi-
ation from the results of the borehole-only inversion (Table 3). The
priors for ax and σ are uniform, as above: 0 < ax ≤ 500 m, 0 < σ

≤ 2. The priors for az and γ are truncated Gaussian distributions:
for az, mean 15.9 m and standard deviation 3.5 m (truncated at 0
< ax ≤ 50 m); for γ , mean 0.37 m and standard deviation 0.09 m
(truncated at 0 ≤ γ ≤ 1).

Both MCMCs are run with 12 parallel chains until 1 × 104

samples are accepted to the chain (Table 6). For the first inversion,
the final Gelman–Rubin statistic R̂ < 1.01 for all parameters. For
the second inversion, the final Gelman–Rubin statistic R̂ < 1.02 for
all parameters. For both inversions the WMAE begins to oscillate
around 1 after approximately 100 accepted samples.

Marginal posterior probability distributions for ax, az, γ and σ ,
alongside a distribution representing the aspect ratio of heterogene-
ity, α = ax

az
, are shown in Fig. 3. Summary statistics of the distribu-

tions are shown in Table 3.
With respect to the first inversion (seismic image only) the sec-

ond inversion (seismic image with constraint from borehole) shows
marginal posterior distributions that are closer to the true values.

(a) (b)

Figure 2. Synthetic buried mass-transport deposit modelling results. (a) Seismic reflection image in depth-domain (pre-stack time migrated and converted to
depth using the smooth background P-wave velocity function in Table 1). Location of the synthetic borehole is shown in solid red. The mass-transport deposit
zone (dashed red outline) shows a more disordered, chaotic seismic character compared to the more stratified unfailed sediments. (b) P-wave velocity log
sampled at 0.25 m.
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(a)

(b)

(c)

Figure 3. Marginal posterior probability distributions for the synthetic buried mass-transport deposit benchmark for dominant lateral and vertical scale lengths,
ax and az, aspect ratio of heterogeneity, α = ax

az
, Hurst number, γ , and error parameter, σ . True values are shown in red where applicable. Details of priors are

given in the text. Convergence measures (WMAE and Gelman–Rubin statistic, R̂) are shown for each experiment. (a) P-wave velocity log from the synthetic
borehole. (b) Seismic image. (c) Seismic image with constraints on az and γ from the synthetic borehole log.
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Table 3. Summary statistics for the synthetic benchmark marginal posterior probability distributions for dominant lateral and vertical scale lengths, ax and az,
aspect ratio of heterogeneity α = ax

az
, and Hurst number γ . Mean and standard deviation for each marginal distribution are shown.

Mean Standard deviation

Experiment ax [m] az [m] α = ax
az

γ σ ax [m] az [m] α = ax
az

γ σ

Synthetic model (true values) 160 20 8 0.25
Synthetic borehole – 15.9 – 0.37 0.70 – 3.5 – 0.09 0.05
Seismic image 126 16.9 7.4 0.91 0.78 4 0.7 6.1 0.07 0.01
Seismic image (with synthetic borehole) 144 19.3 7.5 0.62 0.78 6 0.9 6.5 0.07 0.01

3.2 Real data case study – Nankai Trough, offshore Japan

The Nankai Trough (offshore southwest Japan) is an oceanic trench
formed by the subduction of the Philippine plate under the Eurasian
Plate. Associated accretion, seismicity and slope-steeping have re-
sulted in significant mass-wasting during the last 3 Ma (Strasser
et al. 2011; Lackey et al. 2018). A large mass-transport deposit is
identified in a 3-D seismic volume (Fig. 4). Here we consider a 2-D
profile extracted from the 3-D volume, chosen to show the maxi-
mum extent and thickness of the mass-transport deposit. The body
has a chaotic internal seismic character, with little visible coherent
structure.

The survey acquisition parameters are documented in Table 4
(Uraki et al. 2009). The maximum observed thickness (at the point
where the mass-transport deposit intersects the edge of the seismic
volume) is approximately 180 m (Strasser et al. 2011).

Also available are logging-while-drilling borehole logs from
nearby International Ocean Discovery Programme (IODP) bore-
hole C0018B (Expedition 338, Henry et al. 2012), which penetrates
the mass-transport deposit (Fig. 4). No sonic log was acquired, so
the gamma ray log is used to estimate the vertical dominant scale
length and Hurst number. Whilst the gamma ray log is not a measure
of the P-wave velocity, it is sensitive to changes in lithology (specif-
ically shale fraction), which should correlate well with the P-wave
velocity. It is expected that both gamma ray and sonic velocity logs
should have similar geostatistics within a local interval of a 1-D
borehole log.

3.2.1 Borehole log inversion

The gamma ray log from IODP borehole C0018B is shown in Fig. 4.
The analysis window is the mass-transport deposit zone between
3235 and 3295 m. For the inversion, uniform priors are used: 0 <

az ≤ 50 m, 0 ≤ γ ≤ 1 and 0 < σ ≤ 2.
The MCMC is run with 12 parallel chains until 5 × 104 samples

are accepted to the chain (Table 6). The final Gelman–Rubin statistic
R̂ < 1.01 for all parameters. The WMAE begins to oscillate around
1 after approximately 50 accepted samples.

Marginal posterior probability distributions for az, γ and σ are
shown in Fig. 5. Summary statistics of the distributions are shown
in Table 5.

3.2.2 Seismic image inversion

Two analysis windows are used on the seismic image, in the down-
slope and mid-slope parts of the mass-transport deposit (Fig. 4).
Both windows have the same dimensions (1000 m by 60 m). The
down-slope window is located towards the toe of the mass-transport
deposit. The mid-slope window is located relatively further up-
slope, in the more proximal part of the mass-transport deposit. Two
inversions are run for each window, with and without estimates of

the vertical scale length az and Hurst number γ from the borehole
log.

For the first inversions (seismic image only), uniform priors are
used: 0 < ax ≤ 500 m, 0 < az ≤ 50 m, 0 ≤ γ ≤ 1 and 0 < σ ≤ 2.

The second inversions (seismic image with borehole) are
parametrized as the first, but include a constraint from the bore-
hole log inversion results (Table 5). The prior for ax is uniform, as
above: 0 < ax ≤ 500 m. The priors for az and γ are Gaussian, fit to
the marginal posterior probability distributions from the borehole-
only inversion: for az, mean 5.3 m and standard deviation 1.3 m; for
γ , mean 0.41 m and standard deviation 0.13 m.

Marginal posterior probability distributions for ax, az, γ and σ ,
alongside a distribution representing the aspect ratio of heterogene-
ity α = ax

az
, are shown in Fig. 6 for both zones. Summary statistics

of the distributions are shown in Table 5.
With respect to the first inversion (seismic image only), the second

inversion (seismic image with borehole) shows better-constrained
(lower standard deviation) marginal distributions for ax, az and γ .
The marginal distributions for the down-slope zone show a notably
smaller mean ax and α compared to the mid-slope zone, while
maintaining similar distributions for az.

4 D I S C U S S I O N

This study applies a geostatistical inversion to characterize the in-
ternal structure of mass-transport deposits from seismic reflection
images, with and without a constraint from a borehole log. We first
demonstrate the method on a synthetic model representing a typi-
cal buried submarine mass-transport deposit scenario and then on a
real data case study from the Nankai Trough, offshore Japan. The
method gives probabilistic estimates of lateral and vertical dominant
scale lengths and the Hurst number of the internal heterogeneity.
To the authors’ knowledge, this is the first time that this technique
has been validated with a synthetic test on multichannel, stacked
seismic reflection data. This is also the first published example to
demonstrate how to condition the inversion using priors derived
from a vertical borehole log to better constrain the lateral and verti-
cal dominant scale lengths. We suggest that this technique could be
a useful tool to better constrain internal structure of mass-transport
deposits as it can be applied even to chaotic seismic reflection im-
ages of mass-transport deposits, which are common but difficult to
interpret using conventional horizon-tracking methods.

4.1 Synthetic inversion results

For the inversion performed on the synthetic seismic image with
uniform priors, the estimated aspect ratio of heterogeneity, α = ax

az
,

is close to the true model value (Fig. 3). This result is expected
from previous studies, which suggest that the 2-D power spectrum
(equivalently the 2-D autocorrelation function) is strongly sensitive
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Figure 4. Nankai Trough case study data. (a) Map showing extent of the Kumano 3-D seismic volume, the thickness of the mass-transport deposit, profile
X-X’ and IODP borehole C0018B. (b) Logging-while-drilling gamma ray log from IODP borehole C0018B, downsampled to 0.25 m, mass-transport deposit
(MTD) zone highlighted. (c) Seismic reflection profile X-X’ (from the 3-D volume) showing a buried mass-transport deposit. The body lacks laterally coherent
internal reflections compared to the unfailed sediments surrounding it. Mid-slope and down-slope zones are indicated alongside the extent of the IODP borehole
C0018B (dashed red line) when projected onto the profile.

Table 4. Kumano 3-D marine multichannel seismic reflection experiment
acquisition parameters (Uraki et al. 2009).

Kumano 3-D seismic survey acquisition parameters

Acquisition geometry 3-D towed streamer
Water depth Approx. 3000 m
Source Airgun (depth 6 m, dominant frequency

40 Hz)
Shot interval 37.5 m (flip-flop)
Streamers 4 × 4500 m (7 m depth, 150 m

separation)
Receiver interval 12.5 m
CMP interval 18.75 m × 12.5 m
Sampling interval 5 m
Nominal fold 30

to the aspect ratio of heterogeneity rather than to the individual
dominant scale lengths or the Hurst number (Irving et al. 2009;
Irving & Holliger 2010; Scholer et al. 2010). This synthetic test,

however, shows relatively good resolution of separate lateral and
vertical scale lengths from the seismic image alone. The Hurst
number is still poorly constrained. Repeating the inversion with
priors for vertical scale length and Hurst number estimated from a
synthetic borehole log improves the result, but only slightly. This
is in constrast to the conclusions of Irving & Holliger (2010), who
predict that the 2-D power spectrum should be sensitive only to
the aspect ratio of heterogeneity. Our result is likely because the
bandwidth of the seismic source overlaps both the ‘white noise’ and
self-similar parts of the random medium in power-spectral domain
for this test. Another contributing factor is that this is a synthetic
experiment. Seismic images created from field data contain noise
from (i) environmental noise (ii) instrument noise (iii) multiple
arrivals and (iv) processing artefacts. Future studies should inves-
tigate the reliability of this method to discriminate lateral and ver-
tical dominant scale lengths under a range of noise conditions and
source bandwidths, with respect to the spatial power spectrum of the
medium.
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Figure 5. Marginal posterior probability distributions for mass-transport deposit (MTD) zone of the gamma ray log from IODP borehole C0018B (Fig. 4)
for dominant vertical scale length, az, Hurst number, γ and error parameter, σ . Details of priors are given in the text. Convergence measures (WMAE and
Gelman–Rubin statistic, R̂) are shown.

Table 5. Summary statistics for the Nankai Trough case study marginal posterior probability distributions for dominant lateral and vertical scale lengths, ax

and az, aspect ratio of heterogeneity, α and Hurst number, γ . Mean and standard deviation for each marginal distribution are shown.

Mean Standard deviation

Experiment ax [m] az [m] α = ax
az

γ σ ax [m] az [m] α = ax
az

γ σ

Borehole (C0018B) — 5.3 — 0.41 0.72 — 1.3 — 0.13 0.07
Mid-slope zone 93 38.4 2.4 0.48 0.85 22 6.9 3.2 0.21 0.08
Mid-slope zone (with borehole) 53 8.4 6.4 0.50 1.00 12 1.3 8.6 0.13 0.08
Down-slope zone 42 47.2 0.9 0.93 0.79 11 2.0 5.4 0.06 0.06
Down-slope zone (with borehole) 34 8.6 4.0 0.51 1.20 12 1.4 8.5 0.14 0.10

4.2 Nankai Trough case study inversion results

For the Nankai Trough experiment we consider two identically sized
data windows, a down-slope zone and a mid-slope zone (Fig. 4). The
down-slope zone is located towards the toe of the mass-transport
deposit. The mid-slope zone is more proximal, located towards the
middle of the deposit. The seismic character in both windows is
chaotic, lacking laterally coherent seismic reflectors.

First, we invert for the geostatistical parameters in both windows
with uniform priors (Fig. 6). In the down-slope zone, the aspect ratio
of heterogeneity, α, is significantly smaller than in the mid-slope
zone. Including priors for az and γ based on the nearby IODP bore-
hole C0018B (Fig. 4), we still see a reduction in α from mid-slope
to down-slope, but we see the distributions for lateral and vertical
dominant scale lengths, ax and az, are much better constrained.

Mass-transport deposits often show extensional structures near
the headwall, little deformation in the central translational zone
and compressional structures in the toe region, where the flow may
be confined (Fig. 7). The observed reduction in lateral dominant
scale length from mid-slope to down-slope is consistent with this
interpretation of the mass-transport deposit. More compression will
result in increased stratal disruption, giving a shorter lateral dom-
inant scale length compared to relatively undeformed sediments.
Alternatively, the reduction is lateral dominant scale length could
be due to progressive down-slope deformation of the mass-flow
(Lucente & Pini 2003). Both models could explain the reduction in
lateral dominant scale length and aspect ratio of heterogeneity.

The velocity heterogeneity within the mass-transport deposit
should be closely related to lithological heterogeneity. For mass-
transport scenarios, this heterogeneity could be predominantly due

to included megaclasts, intact blocks or intense folding from stratal
disruption. The observed reduction in lateral scale length is con-
sistent with most conceptual models of the variation in internal
structure from proximal to distal within the depositional part of
mass-transport deposits (e.g. Bull et al. 2009, see Fig. 7).

4.3 Internal structure from geostatistical parameters

How should these geostatistical parameters be interpreted in the
context of mass-transport deposits? These parameters are abstract
and set in terms of a statistical model, not in terms of geological
structure. We suggest that the dominant scale lengths can be prox-
ies for relative deformation from both mass-transport processes and
tectonic stresses. Increasing deformation (e.g. folding from com-
pression, reduction in size of intact blocks due to progressive disag-
gregation) should reduce the lateral dominant scale length and also
the aspect ratio of heterogeneity.

Here we only consider heterogeneity of the P-wave velocity field,
as we believe this should capture much of the geological heterogene-
ity that controls the seismic response. In fact, this method could be
used to constrain any kind of geological heterogeneity, so long as it
can be related to the acoustic impedance (the idealized seismic im-
age approximation only models normal-incidence reflections). For
the mass-transport deposit case, for example, one could consider
the geological medium as a mixture of two component lithologies
with distinct acoustic impedances (e.g. matrix and clasts). Thus es-
timating the geostatistical parameters can inform the geostatistics
of the geology directly.
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(a)

(b)

(d)

(c)

Figure 6. Marginal posterior probability distributions for the Nankai Trough case study for dominant lateral and vertical scale lengths, ax and az, aspect ratio
of heterogeneity, α = ax

az
, Hurst number, γ , and error parameter, σ . Details of priors are given in the text. Convergence measures (WMAE and Gelman–Rubin

statistic, R̂) are shown for each experiment. (a) Mid-slope zone. (b) Down-slope zone. (c) Mid-slope zone with constraints on az and γ from the borehole log
(Fig. 5). (d) Down-slope zone with constraints on az and γ from the borehole log (Fig. 5).
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(a)

(b)

(c)

Disaggregation

Stratal disruption

Decreased lateral
dominant scale length

PROXIMAL DISTAL

~20 m
Large blocks

~20 m

Smaller blocks

Figure 7. (a) Schematic diagram showing representative internal structure found within submarine landslides and mass-transport deposits (from Bull et al.
2009). Note increasing deformation due to confinement towards the toe of the slide. (b) Illustration of two mechanisms for reducing the lateral dominant scale
length by mass-transport – disaggregation of large coherent intact blocks and stratal disruption of soft sediments. In general increased deformation will result
in a decrease in lateral dominant scale length (and aspect ratio of heterogeneity). (c) Outcrop example of variation in lateral dominant scale length due to a
reduction in size of included megaclasts (Vernasso Quarry, NE Italy).

Table 6. Computational cost of each MCMC run. All runs were performed on a quad-core Intel R© CoreTM i7-6700 3.40 GHz CPU.

Experiment Parallel chains Chain length (nmax)
Mean acceptance rate

(per cent)
Execution time

(min)

Synthetic Borehole 12 1 × 104 29 19
Seismic image 12 1 × 104 13 46
Seismic image (with
borehole)

12 1 × 104 10 60

Nankai Trough case study Borehole 12 5 × 104 48 23
Mid-slope zone 12 5 × 104 76 21
Mid-slope zone (with
borehole)

12 5 × 104 64 24

Down-slope zone 12 5 × 104 55 28
Down-slope zone (with
borehole)

12 5 × 104 65 24
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For unfailed sediments, one would expect very long lateral dom-
inant scale lengths due to the presence of laterally continuous beds.
After failure, sediments may become deformed due to shearing and
disaggregation, reducing the lateral dominant scale length. There-
fore the lateral dominant scale length is a useful structural param-
eter that can be a proxy for lateral shortening from deformation.
The vertical dominant scale length is more closely related to the
average thickness of beds, and therefore may be less affected by
mass-transport.

4.4 Limits in generalization

Using a synthetic example we show that an idealized seismic image
approximation (Section 2.2.1) is valid for one multichannel marine
seismic experiment, with a specific overburden and seismic char-
acter. This allows a computationally inexpensive inversion method
(Table 6) to estimate random medium parameters from a window of
a reflection image. The validity of the approximation will depend on
the local geology and on the seismic imaging performed. Multiple
scattering, attenuation and seismic noise will all reduce the validity
of the idealized seismic image approximation.

The method presented in this study uses the spatial power spec-
trum to evaluate random media models and to estimate the misfit
between a corresponding theoretical and observed seismic reflec-
tion image. For a given spatial power spectrum there exist infinite
physical realizations of the corresponding random medium. It is
important to note that this method only constrains the statistics of
the heterogeneity, not the medium properties directly. It is possible
that there are better statistical representations, especially for small
window sizes which may suffer from edge-effects from the fast
Fourier transform when calculating the power spectrum. Some pre-
vious studies have used the autocorrelation function instead (e.g.
Irving et al. 2009; Scholer et al. 2010).

This study only considers 2-D seismic profiles. Mass-transport is
an inherently 3-D geological process, so strong lateral heterogeneity
observed in the plane of the profile implies that strong heterogeneity
perpendicular to the profile is also likely. This 3-D heterogeneity
could generate strong out-of-plane reflections. For a chaotic seis-
mic reflection image, it may be impossible to identify or remove
these out-of-plane reflections during imaging or interpretation. It is
presently unclear how the results of the inversion may be affected
if these spurious reflections contaminate the analysis window. This
topic could be addressed in a future 3-D numerical modelling study
by performing geostatistical inversion on 2-D profiles which include
out-of-plane reflections.

Is the anisotropic von Kármán random medium a suitable statis-
tical representation of the internal structure of mass-transport de-
posits? There exist many studies suggesting that geology in general
has fractal-like properties (band-limited self-similarity; e.g. Goff &
Jordan 1988; Turcotte 1997; Browaeys & Fomel 2009; Nelson et al.
2015). There exist, however, few studies investigating the fractal
properties of internal structure of mass-transport deposits (Micallef
et al. 2008). Analysis of mass-transport deposits in outcrop is nec-
essary to determine whether an anisotropic von Kármán random
medium could be a broadly applicable geostatistical model.

The formulation used in this study (eq. 2) assumes no dom-
inant dip direction. This could be reasonable for mass-transport
deposits deposited in the deep ocean, for example, but not if there
has been post-depositional deformation from tectonics. In future
work it should be straightforward to include dominant dip direction
as an extra parameter in the inversion (see Yuan et al. 2014, for an
example).

5 C O N C LU S I O N S

In this study we demonstrate a method to invert for geostatistical
parameters (lateral and vertical dominant scale lengths and Hurst
number) which can describe the internal structure of mass-transport
deposits from chaotic multichannel seismic reflection images and
borehole logs. This approach assumes that the internal structure can
be approximated as an anisotropic von Kármán random medium
(Irving & Holliger 2010). The results are probability distributions
which provide the expected value and uncertainty of each geosta-
tistical parameter.

The method is first validated on a synthetic scenario contain-
ing a buried chaotic body, representing a submarine mass-transport
deposit, imaged with a typical multichannel marine seismic acqui-
sition and penetrated by a synthetic borehole. When the seismic
image is inverted with a constraint from the borehole, lateral and
vertical dominant scale lengths and Hurst number can be recovered.

The method is then applied to a real data case study from Nankai
Trough (offshore Japan). The data considered are a seismic reflec-
tion profile and the gamma ray log from a borehole which penetrates
a thick mass-transport deposit. We see a reduction in lateral dom-
inant scale length from mid-slope to down-slope part of the mass-
transport deposit. This is consistent with progressively increasing
deformation due to disaggregation or compression towards the toe
of the slide.

Geostatistical inversion is a useful new tool to constrain the in-
ternal structure of mass-transport deposits from seismic reflection
data. The geostatistical parameters can be used to validate concep-
tual models of internal structure and as a proxy for varying strain or
degree of deformation in different domains of the slide, even when
the seismic image appears chaotic or reflections lack the continu-
ity required for horizon-tracking approaches. The lateral dominant
scale length in particular could be a good proxy for strain history,
as it is strongly related to the degree of sediment deformation and
stratal disruption.
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A P P E N D I X A : V O N K Á R M Á N R A N D O M
M E D I A

The power spectrum of a 2-D anisotropic von Kármán random
medium is given by Goff & Jordan (1988) as

P(kx , kz) = 4πγ H 2

Kv(0)

ax az

(kx
2ax

2 + kz
2az

2 + 1)γ+1
, (A1)

where ax and az are the horizontal and vertical dominant scale
lengths, γ is the Hurst number, Kν is the modified Bessel function
of the second kind of order ν = γ , kx and kz are the horizontal and
vertical wavenumbers and H is the variance of the random field.

The Hurst number, 0 ≤ γ ≤ 1, describes the roughness of the
random field. γ = 0 corresponds to a smoothly varying medium. γ

= 1 corresponds to a rough medium. For γ = 0.5 the anisotropic
von Kármán random medium becomes equivalent to a random field
with exponential autocorrelation (Holliger & Levander 1992). The
Hurst number is related to the fractal dimension, D, by

D = N + 1 − γ, (A2)

where N is the Euclidean dimension of the medium (Mandelbrot
1983). This is important when comparing, for example, a borehole
log (1-D: N = 1; 1 ≤ D ≤ 2) to a seismic profile (2-D: N = 2; 2
≤ D ≤ 3). As such, the power spectrum of a one-dimensional von
Kármán random medium becomes

P(kz) = 4πγ H 2

Kv(0)

az

(kz
2az

2 + 1)γ+0.5
. (A3)

A P P E N D I X B : B AY E S I A N M A R KOV
C H A I N M O N T E C A R L O I N V E R S I O N

The goal of the inversion is to estimate a model m = [ax , az, γ, σ ]
which describes the geostatistical properties of the medium and
the observation and modelling errors. This study uses a Bayesian
MCMC approach to obtain probabilistic estimates for each geosta-
tistical parameter. MCMC methods simulate a random walk through
the parameter space of the model to sample the joint posterior prob-
ability distribution.

Let dobs be a vector of observations (for this study the power-
spectral density at each wavenumber). Bayes’ Theorem states

p(m|dobs) = p(dobs |m)p(m)

p(dobs)
, (B1)

where p(m|dobs) is the posterior probability density function,
p(dobs |m) is the likelihood function (the product of the likelihoods
of each observation), p(m) is the prior probability density function

for the model parameters and p(dobs) acts as a normalizing constant.
Thus

p(m|dobs) ∝ p(dobs |m)p(m). (B2)

Therefore the posterior probability density function (left-hand side)
is proportional to the posterior probability distribution (right-hand
side).

If the chain has converged (after a so-called ‘burn-in’ period)
the distribution of models in the ensemble will be proportional to
the joint posterior probability density function. The marginal dis-
tributions will be proportional to the marginal posterior probability
density functions for each parameter in the model. This allows es-
timates of most likely values and uncertainties for each parameter
from histograms of the accepted models.

For convenience when finding the product of multiple exponential
functions, and to avoid numerical underflow when dealing with
floating-point numbers close to zero, this study uses the logarithm
of the probability. Maximizing a log-likelihood is equivalent to
maximizing the likelihood.

B1 Metropolis–Hastings algorithm

The Metropolis–Hastings algorithm is a common MCMC method.
The method relies on defining a ‘target’ posterior distribution [prod-
uct of the prior probability density function and the likelihood func-
tion, eq. (B2)] and an arbitrary proposal distribution, q, which is
used to propose candidate additions to the chain, conditional on the
last accepted sample.

The acceptance ratio is the ratio of the candidate posterior to the
previously accepted posterior (Hastings 1970). If acceptance ratio
is greater than 1, the candidate is automatically accepted. If not, the
candidate is accepted with probability equal to the acceptance ratio.

For this study the proposal distribution, q, is chosen to be a
truncated Gaussian, centred on the m and truncated at the minimum
and maximum of the uniform distribution for each parameter given
in Section 2.3. The variance is 1 for the dominant scale length
parameters (ax and az), 0.1 for the Hurst number (γ ) and 0.01 for
the error (σ ) parameter.

Algorithm 1 Metropolis-Hastings algorithm for Markov Chain
Monte Carlo

Draw an initial model from the proposal distribution, m0 ∼ q(m)

Compute the likelihood of the initial model, L(m0)
Set n = 1
while n < nmax do

Draw parameters for a new candidate model, m′ ∼ q(mn−1)
Compute the candidate likelihood L(m′)
Compute the acceptance probability α =
min

(
1,

L(m′)p(m′)q(mn−1|m′)
L(m0)p(mn−1)q(m′ |mn−1)

)
Draw a random number from uniform distribution x ∼ U (0, 1)

if α ≥ x then
Accept proposal to chain: mn = m′

n = n + 1
end if

end while
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B2 Convergence criteria

The Markov Chain is guaranteed to sample the posterior distribution
once the chain has converged (after the so-called ‘burn-in’ period).
One problem with MCMC methods is determining when the ‘burn-
in’ period has finished, that is, after which point to start considering
samples as part of the posterior distribution. Estimating convergence
is important as oversampling the chain increases the computation
time, whilst undersampling the chain may bias the chain towards
the starting values and not properly sample low probability regions
of the posterior.

For this study, the Gelman–Rubin statistic (sometimes called the
scale-reduction factor), R̂, is calculated (Brooks & Gelman 1998).
This involves running several chains in parallel and comparing the

in-chain variance to the between-chain variance for each parameter
in the model. For m chains of length 2n accepted samples, W is the
mean variance each chain, B is the variance of the mean of each

chain, Vh = B + W (n−1)
n , R̂ =

√
Vh
W .

It is commonly considered that chains have converged for a pa-
rameter when R̂ < 1.2 (Brooks & Gelman 1998).

The weighted mean absolute error (WMAE) is given as

WMAE = 1

N

N∑
i=1

|gi (m) − dobs |
σ

, (B3)

where N is the number of observations (number of wavenumber
pairs). The WMAE should oscillate around 1 when the chain is
properly sampling the posterior distribution (Pirot et al. 2017). D
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